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Chapter 1

Number Systems,
Polynomials,

and Exponents

In This Chapter:

✔ Sets of Numbers
✔ Axioms for the Real Number System
✔ Properties of Inequalities
✔ Absolute Value
✔ Complex Numbers
✔ Order of Operations
✔ Polynomials
✔ Factoring
✔ Exponents
✔ Rational and Radical Expressions

Sets of Numbers

The sets of numbers used in algebra are, in general, subsets of R, the set
of real numbers.

• Natural numbers N: The counting numbers, e.g., 1, 2, 3, …
• Integers Z: The counting numbers, together with their opposites

and 0, e.g., 0, 1, 2, 3, …, −1, −2, −3…

1
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• Rational Numbers Q: The set of all numbers that can be written
as quotients a/b, b ≠ 0, a and b integers, e.g., 3/17, −5/13, …

• Irrational Numbers H: All real numbers that are not rational

numbers, e.g., π, −π/3, …

Example 1.1: The number −5 is a member of the
sets Z, Q, R. The number 156.73 is a member of the
sets Q, R. The number 5π is a member of the sets 
H, R.

Axioms for the Real Number System

There are two fundamental operations, addition and multiplication, which
have the following properties (a, b, c arbitrary real numbers):

• Commutative Laws :
a + b = b + a: order does not matter in addition.
ab = ba: order does not matter in multiplication.

• Associative Laws:
a + (b + c) = (a + b) + c: grouping does not matter in 
repeated addition.
a(bc) = (ab)c: grouping does not matter in repeated multi-
plication.

• Distributive Laws:
a(b + c) = ab + ac; also (a + b)c = ac + bc: multiplication is
distributive over addition.

• Zero Factor Laws:
For every real number a, a ⋅ 0 = 0.
If ab = 0, then either a = 0 or b = 0.

• Laws for Negatives:
− (− a) = a
(− a)(− b) = ab
− ab = (− a)b = a(− b) = − (− a)(− b) = − (ab)
(− 1)a = − a

• Laws for Quotients:

− = − =
−

= − −
−

−
−

=

= =

a

b

a

b

a

b

a

b
a

b

a

b
a

b

c

d
ad bcif and only if .

2 53, ,
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Properties of Inequalities

The number a is less than b, written a < b, if b – a is positive. If a < b then
b is greater than a, written b > a. If a is either less than or equal to b, this
is written a ≤ b. If a ≤ b then b is greater than or equal to a, written b ≥ a.
The following properties may be deduced from these definitions:

• If a < b, then a + c < b + c.

• If a < b, then
.

• If a < b and b < c, then a < c.

Absolute Value

The absolute value of a real number a, written �a�, is defined as follows:

.

Complex Numbers

Not all numbers are real numbers. The set of complex numbers, C, con-
tains all numbers of the standard form a + bi, where a and b are real and
i2 = −1. Since every real number x can be written as x + 0i, it follows that
every real number is also a complex number. The complex numbers that
are not real are sometimes known as imaginary numbers.

Example 1.2: are examples of

complex (imaginary) numbers.

In standard form, complex numbers can be combined using the op-
erations defined for real numbers, together with the definition of the
imaginary unit i: i2 = −1. The conjugate of a complex number z is denot-
ed z̄. If z = a + bi, then z̄ = a − bi.

3 4 3 2 5 2
1

2

3

2
+ − = + − +i i i i,  , ,  π

a
a a

a a
=

≥
− <





  if  0

  if  0
.

ac bc c

ac bc c

< >
> <





 if 0

 if 0
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Order of Operations

In expressions involving combinations of operations, the following order
is observed:

1. Perform operations within grouping symbols first. If grouping
symbols are nested inside other grouping symbols, proceed from
the innermost outward.

2. Apply exponents before performing multiplications and divi-
sions, unless grouping symbols indicate otherwise.

3. Perform multiplications and divisions, in order from left to right,
before performing additions and subtractions (also from left to
right), unless operation symbols indicate otherwise.

Example 1.3:
Evaluate (a) 3 − 4[5 − 6(2 − 8)], (b) [3 − 8 ⋅ 5 − (− 1 − 2 ⋅ 3)] ⋅ (32 − 52)2.

Polynomials

A polynomial is an expression that can be written as a term or a sum of

terms of the form , where the a is a constant and the x1, . . . ,

xm are variables. A polynomial of one term is called a monomial. A poly-
nomial of two terms is called a binomial. A polynomial of three terms is
called a trinomial. 

Example 1.4: 5, −20, π, t, 3x2, −15x3y2, 2
3 xy4zw are monomials.

Example 1.5: x + 5, x2 − y2, are binomials.3 35 7 3x y x z−

axn
1

1 2
2x xn

m
nmL

( ) [ ( )] ( ) [ ( )] ( )

[ ( ) ( )] ( )

[ ]

,

b  3 8 5 1 2 3 3 5 3 8 5 1 6 9 25

3 8 5 7 16

3 40 7 256

30 256 7 680

2 2 2 2

2

− ⋅ − − − ⋅ ⋅ − = − ⋅ − − − ⋅ −

= − ⋅ − − ⋅ −
= − + ⋅
= − ⋅ = −

( ) [ ( )] [ ( )]

[ ]

[ ]

a     3 4 5 6 2 8 3 4 5 6 6

3 4 5 36

3 4 41 3 164 161

− − − = − − −
= − +
= − = − = −

4 PRECALCULUS



Example 1.6: x + y + 4z, 5x2 − 3x+1, 8xyz − 5x2y + 20t3u are trinomials.

The degree of a term in a polynomial is the exponent of the variable, or,
if more than one variable is present, the sum of the exponents of the vari-
ables.

The degree of a polynomial with more than one term is the largest of
the degrees of the individual terms.

Example 1.7: (a) 3x8 has degree 8; (b) 12xy2z2 has degree 5; (c) π has
degree 0; (d ) x4 + 3x2 − 250 has degree 4; (e) x3y2 − 30x4 has degree 5.

Two or more terms are called like terms if they are both constants, or
if they contain the same variables raised to the same exponents, and dif-
fer only, if at all, in their constant coefficients. Terms that are not like
terms are called unlike terms.

Example 1.8: 3x and 5x, −16x2y and 2x2y, tu5 and 6tu5 are examples of
like terms. 3 and 3x, a3b2 and a2b3 are examples of unlike terms.

Sums and Differences of Polynomials

The sum of two or more polynomials is found by combining like terms.
The difference of two polynomials is found by using the definition of sub-
traction: A − B = A + (−B). 

Example 1.9:

Products of Polynomials

The product of two polynomials is found using the distributive property
as well as the first law of exponents: x x xa b a b= +

( ) ( ) ( ) ( )y y y y y y y y

y y y y

y

2 2 2 2

2 2

2

5 7 3 5 12 5 7 3 5 12

5 7 3 5 12

2 5

− + − − + = − + + − + −

= − + − + −

= − −
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Example 1.10:

Example 1.11: Multiply 

Often a vertical format is used for this situation:

The FOIL (First Outer Inner Last) Method is frequently used for mul-
tiplying two binomials:

Special Product Forms:

Factoring

Factoring polynomials reverses the distributive operations of multipli-
cation. A polynomial that cannot be factored is called prime. Common
factoring techniques include: removing a common factor; factoring by
grouping; reverse FOIL factoring; and special factoring forms.

( )( )

( )

( )

a b a b a b

a b a ab b

a b a ab b

+ − = −
+ = + +
− = − +

2 2

2 2 2

2 2 2

2

2

Difference of two squares

Square of a sum

Square of a difference

( )( )a b c d ac ad bc bd+ + = + + + = + + + (First)  (Outer)  (Inner)  (Last)

x x y xy

x y

x x y x y

x y x y xy

x x y x y xy

3 2 2

4 3 2 2

3 2 2 3

4 3 2 2 3

3

2

3

2 6 2

5 2

− +
+

− +

− +

− − +

       

( )( ) ( ) ( ) ( )x y x x y xy x y x x y x y x y xy

x x y x y x y x y xy

x x y x y xy

+ − + = + − + + +

= + − − + +

= − − +

2 3 2 2 3 2

2 3 6 2

5 2

3 2 2 3 2 2

4 3 3 2 2 2 2 3

4 3 2 2 3

( )( )x y x x y xy+ − +2 33 2 2

x x x x x x x x x x x

x x x x

3 4 2 3 4 3 2 3 3

7 5 4 3

3 5 7 2 3 5 7 2

3 5 7 2

( )− + + = ⋅ − ⋅ + ⋅ + ⋅

= − + +
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Example 1.12: A monomial factor:

Example 1.13: A nonmonomial factor:

Note!

The common factor in such problems consists of
each base to the lowest exponent present in each
term.

Example 1.14: Factoring by grouping:

Reverse FOIL factoring follows the patterns:

Example 1.15: Reverse FOIL factoring:

(a) To factor x2 − 15x + 50, find two factors of 50 that add to −15:
−5 and −10 · x2 − 15x + 50 = (x − 5)(x − 10)

(b) To factor 4x2 + 11xy + 6y2, find factors of 4 · 6 = 24 that add to
11: 8 and 3.

4 11 6 4 8 3 6

4 2 3 2 2 4 3

2 2 2 2x xy y x xy xy y

x x y y x y x y x y

+ + = + + +
= + + + = + +( ) ( ) ( )( )

x a b x ab x a x b

acx bc ad xy bdy ax by cx dy

2

2 2

+ + + = + +

+ + + = + +

( ) ( )( )

( ) ( )( )

3 4 3 4 3 4 3 4

3 4 3 4 3 4

2 2x xy xt ty x xy xt ty

x x y t x y x y x t

+ − − = + − +
= + − + = + −

( ) ( )

( ) ( ) ( )( )

12 1 3 1 8 1 3 1 4 1 3 1 3 1 2 3 1

4 1 3 1 9 2 3

2 4 3 2 3 4 2 3 3 2

2 3 3 2

( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )]

( ) ( ) ( )

x x x x x x x x x x

x x x x

− + + − + = − + − + +

= − + + −

3 24 12 3 8 45 4 3 3 2x x x x x x− + = − +( )
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General Factoring Strategy

Step 1: Remove all factors common to all terms.
Step 2: Note the number of terms. If the polynomial remaining

after step 1 has:
(a) two terms, look for a difference of two squares, or a sum or dif-

ference of two cubes.
(b) three terms, look for a perfect square or try reverse FOIL fac-

toring.
(c) four or more terms, try factoring by grouping.

Special Factoring Forms

Exponents

Natural number exponents are defined by xn = xx . . . x (n factors of x)

Example 1.16: 5a3b + 3(2ab)3 = 5aaab + 3(2ab)(2ab)(2ab)

Note: x0 = 1 for any nonzero real number x. 00 is not defined. Neg-

ative integer exponents are defined by for any nonzero real
number x. 

Example 1.17:

Rational number exponents, x1/n (the principal nth root of x), are de-
fined for n an integer greater than 1 by:

• If n is odd, x1/n is the unique real number y which, when raised
to the nth power, gives x.

• If n is even, then,
− if x > 0, x1/n is the positive real number y which, when

raised to the nth power gives x.

3 2 3 3
1

2
1

3

1 3 2

3
2 4 4 5 2

2
4

4 5
2

4

2

2

4 5x y x y z
x

y
x y

z
y

x

z

x y
− − −+ = ⋅ + ⋅ ⋅ = +( )

( ) ( )

x
x

n
n

− = 1

a b a b a b

a b

a ab b a b

a ab b a b

2 2

2 2

2 2 2

2 2 2

2

2

− = + −
+
+ + = +
− + = −

( )( )

( )

( )

Difference of two squares

 is prime. Sum of two squares

Square of a sum

Square of a difference
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− if x = 0, x1/n = 0.
− if x < 0, x1/n is not a real number.

Remember

Even roots of negative numbers
are not real numbers.

Example 1.18: (a) 161/4 = 2; (b) − 161/4 = − (16)1/4 = − 2; (c) (− 16)1/4

is not a real number; (d ) (− 8)1/3 = − 2

xm/n is defined by: xm/n = (x1/n)m = (xm)1/n, provided x1/n is real.

Example 1.19: (a) , (b) (− 64)5/6 is not
a real number.

Laws of exponents for a and b rational numbers and x and y real num-
bers (avoiding even roots of negative numbers and division by 0):

Rational and Radical Expressions

A rational expression is one which can be written as the quotient of two
polynomials. Rational expressions are defined for all real values of the
variables except those that make the denominator equal to zero.

Recall that one of the Laws of Quotients is:

(building to higher terms) or (reducing to lower terms)
ak

bk

a

b
=a

b

ak

bk
=

x x x xy x y x x
x

y

x

y

x

x
x

x

x x

x

y

y

x

x

y

y

x

a b a b a a a a b ab
a a

a

a

b
b a

a

b b a

m m n

m

m

n

= = =






=

= =






= 





=

+

−
−

− −

−

( ) ( )

1

8
1

8

1

8

1

2

1

16
4 3

4 3 1 3 4 4
− = = = =/

/ /( )

x
x

m n
m n

− =/
/

1
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Example 1.20: Reducing to lowest terms:

Operations on Rational Expressions

Complex fractions are expressions containing fractions in the nu-
merator and/or denominator. They can be reduced to simple fractions by
two methods:

Method 1: Combine numerator and denominator into single quo-
tients, then divide.

Example 1.21:

Method 2: Multiply numerator and denominator by the lowest com-
mon denominator (LCD) of all internal fractions.

Example 1.22:

Rational expressions are often written in terms of negative exponents.

x

y

y

x
x

y

y

x

x

y

y

x
x

y

y

x

x y

x y

x y xy

x y

xy x y x y

x y x xy y

xy x y

x xy y

−

+
=

−

+
⋅ = −

+
= − +

+ − +
= −

− +
2 2 2 2

2 2

2 2

3 3

3 3 2 2 2 2
( )( )

( )( )

( )

x
x

a
a

x a

x a a x
x a

x a

xa x ax a

x a
x a

a x

x a x a x a

−
−

−
−

=

− − −
− −

−
= − − +

− −
÷ −

= −
− −

⋅
−

= −
− −

1 1

1 1
1 1

1 1

1 1

1 1

1 1

( ) ( )
( )( )

( )( )
( )

( )( ) ( )( )

a

b

c

d

ad

bd

bc

bd

ad bc

bd
± = ± = ±a

c

b

c

a b

c
± = ±

a

b

c

d

a

b

c

d

a

b

d

c

ad

bc
÷ = ⋅


 = ⋅ =

−1
a

b

c

d

ac

bd
⋅ =

a

b

b

a




 =

−1

x xy y

x y

x y

x y x y

x y

x y

2 2

2 2

22− +
−

= −
− +

= −
+

( )

( )( )
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Example 1.23: Simplify .

This can be done in two ways:

Radical Expressions

For a natural number n greater than 1 and a real number x, the nth root
radical is defined to be the principal nth root of x:

Note!

The square root of x is written
instead of .

The symbol is called a radical, n is called the index, and x is called
the radicand.

Conversion of Radical Expression to Exponent Form

For m, n positive integers (n > 1) and x � 0 when n is even,

Simplification of Radicals

In general, each of the following conditions indicates simplification of the
radical expression is possible:

1. The radicand contains a factor with an exponent greater than or
equal to the index of the radical.

2. The radicand and the index of the radical have a common factor
other than 1.

x x xm n mn n
m/ .= = ( )

x2x

x xn n= 1/

( ) ( )
( )

( )

a x y x y
y x y

x

y

x

y

x

xy

x

y

x

xy y

x

y x

x

− − = −

− = − = − = −

4 5
5

4

5

3

6

4

5

4

6

4

5 6

4

5

4

3
3

3 3 3 3
(b)

x y x y− −−3 5 4 63
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3. A radical appears in a denominator.
4. A fraction appears in a radical.

Example 1.24:
(a) Condition 1:

(b) Condition 2:
(c) Condition 3 (rationalizing the denominator):

(d ) Condition 4:

The conjugate expression for a binomial of form a + b is the expres-
sion a − b and conversely.

To rationalize the denominator of an expression, multiply the nu-
merator and denominator by the conjugate of the denominator.

To rationalize the numerator, multiply the numerator and denomina-
tor by the conjugate of the numerator.

Example 1.25: Rationalize the denominator of .

Example 1.26: Rationalize the numerator of .

x a

x a

x a

x a

x a

x a

x a

x a x a x a

−
−

= −
−

⋅ +
+

= −
− +

=
+( )( )

1

x a

x a

−
−

x

x

x

x

x

x

x x

x
x

−
−

= −
−

⋅ +
+

= − +
−

= +4

2

4

2

2

2

4 2

4
2

( )( )

x

x

−
−
4

2

3

5

3

5

5

5

375

5

375

534 3

3

3
4

4 44
4x

y

x

y

y

y

xy

y

xy

y
= ⋅ = =

12

27

12

27

3

3

12 3

81

12 3

3

4 32

24

2

24

3 24

3 24

2 3 24

4 44

2 3 24 3 24x

xy

x

xy

x y

x y

x x y

x y

x x y

xy

x x y

y
= ⋅ = = =

 

t t t t36 32 3 33= = =⋅

16 8 2 8 2 2 23 53 3 3 23 3 33 23 23x y x y y x y y xy y= ⋅ = ⋅ =
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Chapter 2

Equations and
Inequalities

In This Chapter:

✔ Equations
✔ Linear Equations
✔ Quadratic Equations
✔ Radical Equations
✔ Applications
✔ Inequalities
✔ Absolute Value in Equations 

and Inequalities
✔ Parametric Equations

Equations

An equation is a statement that two expres-
sions are equal. An equation containing vari-
ables is in general neither true nor false; rather,
its truth depends on the value(s) of the vari-
able(s). For equations in one variable, a value
of the variable that makes the equation true is
called a solution of the equation. The set of all
solutions is called the solution set of the equa-
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tion. An equation that is true for all those values of the variable for which
it is meaningful is called an identity.

Equations are equivalent if they have the same solution sets.

Example 2.1: The equations x = − 5 and x + 5 = 0 are equivalent. Each
has the solution set {− 5}.

Example 2.2: The equations x2 = 25 and x = 5 are not equivalent. The
first has the solution set {−5, 5}, while the second equation has the solu-
tion set {5}.

The process of solving an equation consists of transforming it into
an equivalent equation whose solution is obvious. Operations of trans-
forming an equation into an equivalent equation include the following:

1. Adding the same number to both sides. Thus, the equations 
a = b and a + c = b + c are equivalent.

2. Subtracting the same number from both sides. Thus, the equa-
tions a = b and a − c = b − c are equivalent.

3. Multiplying both sides by the same nonzero number. Thus, the
equations a = b and ac = bc, (c ≠ 0) are equivalent.

4. Dividing both sides by the same nonzero number. Thus, the

equations a = b and , (c ≠ 0) are equivalent.

5. Simplifying expressions on either side of an equation.

Linear Equations

A linear equation is one that is in the form ax + b = 0 or can be trans-
formed into an equivalent equation in this form. If a ≠ 0, a linear equa-
tion has exactly one solution. If a = 0 the equation has no solutions un-
less b = 0, in which case the equation is an identity. An equation that is
not linear is called nonlinear.

Example 2.3: 2x + 6 = 0 is an example of a linear equation in one vari-
able. It has one solution, − 3. Therefore, the solution set is {− 3}.

Example 2.4: x2 = 16 is an example of a nonlinear equation in one vari-
able. It has two solutions, 4 and − 4. The solution set is {4, − 4}.

Linear equations are solved by the process of isolating the variable.
The equation is transformed into equivalent equations by simplification,

a

c

b

c
=
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combining all variable terms on one side, all constant terms on the other,
then dividing both sides by the coefficient of the variable.

Example 2.5: Solve the equation 3x − 8 = 7x + 9.

Quadratic Equations

A quadratic equation is one that is in the form ax2 + bx + c = 0, (a ≠ 0)
(standard form), or that can be transformed into this form. There are four
methods for solving quadratic equations.

1. Factoring. If the polynomial ax2 + bx + c has linear factors with
rational coefficients, write it in factored form, then apply the
zero-factor property that AB = 0 only if A = 0 or B = 0.

2. Square Root Property. If the equation is in the form A2 = b,
where b is a constant, then its solutions are found as and

, generally written .
3. Completing the Square.

(a) Write the equation in the form x2 + px = q
(b) Add p2/4 to both sides to form x2 + px + p2/4 = q + p2/4.
(c) The left side is now a perfect square. Write 

(x + p/2)2 = q + p2/4 and apply the square root property.
4. Quadratic Formula. The solutions of ax2 + bx + c = 0, (a ≠ 0)

can always be written as:

In general, a quadratic equation is solved by first checking whether
it is easily factorable. If it is, then the factoring method is used; otherwise
the quadratic formula is used. 

Example 2.6: (factoring) Solve 3x2 + 5x + 2 = 0.

3x2 + 5x + 2 = 0 Polynomial is factorable using integers
(3x + 2)(x + 1) = 0 Apply the zero-factor property

3x + 2 = 0 or x + 1 = 0
x = − 2/3 or x = −1

x
b b ac

a
= − ± −2 4

2

A b= ±A b= −
A b=

3 8 7 9 7

4 8 9

4 17 4
17

4

17

4

x x x

x

x

x

− = +
− − =

− = −

= − −







Subtract  from both sides.

Add 8 to both sides.

Divide both sides by .

Solution set is 
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Example 2.7: (complete the square) Solve 2x2 − 3x + 6 = 0.

2x2 − 3x + 6 = 0 Polynomial is not factorable

Write in the form x2 + px = q

Add p2/4 to both sides

Write (x + p/2)2 = q + p2/4

Apply the square root property

Example 2.8: (quadratic formula) Solve x2 + 5x + 2 = 0.

x2 + 5x + 2 = 0 Polynomial is not factorable

a = 1, b = 5, c = 2

In the quadratic formula, the quantity b2 − 4ac is called the discrim-
inant. The sign of this quantity determines the number and type of solu-
tions of a quadratic equation:

Sign of discriminant Number and type of solutions

positive 2 real solutions

zero 1 repeated real solution

negative 2 imaginary solutions

Note!

Many equations that are not at first glance linear or
quadratic can be reduced to linear or quadratic equa-
tions, or can be solved by a factoring method.

x = − ±5 17

2

x = − ± − ⋅ ⋅
⋅

5 25 4 1 2

2 1

x
i= ±3 39

4

x − = ± −3

4

39

16

x −



 = −3

4

39

16

2

x x2 3

2

9

16
3

9

16
− + = − +

x x2 3

2
3− = −
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Example 2.9: Solve x3 − 5x2 − 4x + 20 = 0.

x3 − 5x2 − 4x + 20 = 0 Factor by grouping
x2(x − 5) − 4(x − 5) = 0

(x − 5)(x2 − 4) = 0
(x − 5)(x + 2)(x − 2) = 0
x = 5 or x = −2 or x = 2

Example 2.10: Solve .

Multiply both sides by x + 1, the only denominator. Note: x ≠ −1.

In this case, since x ≠ −1, there can be no solution.

Radical Equations

Equations containing radicals require an additional
operation: In general, the equation a = b is not
equivalent to the equation an = bn; however, if n is
odd, they have the same real solutions. If n is even,
all solutions of a = b are found among the solutions
of an = bn. Hence it is permissible to raise both sides
to an even power if all solutions of the resulting
equation are checked to see if they are solutions of
the original equation.

Example 2.11: Solve .

x x

x x x

x x

x x

x x

+( ) = −( )

+ = − +

= − +
= − −
= =

2 4

2 8 16

0 9 14

0 7 2

2 or 7

2 2

2

2

( )( )

x x+ = −2 4

6

1
5

6

1

1
6

1
5 1

6

1
1

6 5 5 6

1

1

x

x

x

x
x

x
x

x
x

x x

x

x

+
= −

+

+ ⋅
+

= + −
+

⋅ +

= + −
= −
= −

( ) ( ) ( )

6

1
5

6

1x

x

x+
= −

+
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Applications

In formulas, literal equations, and equations in more than one variable,
letters are used as coefficients rather than particular numbers. However,
the procedures for solving for a specified variable are essentially the
same; the other variables are simply treated as constants.

Example 2.12: Solve A = P + Prt for P.

This equation is linear in P, the specified variable. Factor out P, then di-
vide by the coefficient of P.

Example 2.13: Solve for t.

This equation is quadratic in t, the specified variable. Isolate t2, then ap-
ply the square root property.

Frequently, but not always, in applied situations, only the positive solu-

tions are retained: .
In application problems a situation is described and questions are

posed in ordinary language. It is necessary to form a model of the situa-

t s g= 2

s gt

s

g
t

t
s

g

=

=

= ±

1

2
2

2

2

2

s gt= 1

2
2

A P Prt

A P rt

A

rt
P

P
A

rt

= +
= +

+
=

=
+

( )1

1

1
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x = + = − = + = −
≠ − =

2 2 2 2 4 7 7 2 7 4
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tion using variables to stand for unknown quantities, construct an equa-
tion (or inequality or system of equations) that describes the relation
among the quantities, solve the equation, then interpret the solution to an-
swer the original questions.

Example 2.14: A right triangle has sides whose lengths are three con-
secutive even integers. Find the lengths of the sides.
Sketch a figure as in Figure 2-1:

Let x = length of shortest side
x + 2 = length of next side
x + 4 = length of hypotenuse

Figure 2-1

Now apply the Pythagorean theorem: In a right triangle with sides a, b,
c, a2 + b2 = c2. Hence,

x = 6 or x = − 2

The negative answer is discarded. Hence, the lengths of the sides are: x =
6, x + 2 = 8, and x + 4 = 10.

Variation

The term variation is used to describe many
forms of simple dependence. The general pattern
is that one variable, called the dependent vari-
able, is said to vary as a result of changes in one
or more other variables, called the independent
variables. Variation statements always include a
nonzero constant multiple, referred to as the con-
stant of variation, or constant of proportionality,
and often denoted k.

x x x

x x x x x

x x x x

x x

x x

2 2 2

2 2 2

2 2

2

2 4

4 4 8 16

2 4 4 8 16

4 12 0

6 2 0

+ + = +

+ + + = + +

+ + = + +

− − =
− + =

( ) ( )

( )( )
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Direct variation is a relation of the form y = kx. The following lan-
guage is used to describe this type of relation:

1. y varies directly as x (occasionally, y varies as x).
2. y is directly proportional to x.

Example 2.15: Given that p varies directly as q, find an expression for p
in terms of q if p = 300 when q = 12.

Since p varies directly as q, write p = kq. Since p = 300 when q = 12,
substitute these values to obtain 300 = k(12), or k = 25. Hence p = 25q. 

Inverse variation is a relation of the form xy = k, or y = k/x. The fol-
lowing language is used to describe a relation of this form:

1. y varies inversely as x.
2. y is inversely proportional to x.

Example 2.16: Given that s varies inversely as t, find an expression for s
in terms of t if s = 5 when t = 8.

Since s varies inversely as t, write s = k/t. Since s = 5 when t = 8, sub-
stitute these values to obtain 5 = k/8, or k = 40. Hence s = 40/t.

Joint variation describes a relation of the form z = kxy. The follow-
ing language is used to describe a relation of this form:

1. z varies jointly as x and y.
2. z varies directly as the product of x and y.

Example 2.17: Given that z varies jointly as x and y and z = 3 when x =
4 and y = 5, find an expression for z in terms of x and y.

Since z varies jointly as x and y, write z = kxy. Since z = 3 when

x = 4 and y = 5, substitute these values to obtain 3 = k ⋅ 4 ⋅ 5, or .

Hence .

Example 2.18: If P varies jointly as the fourth root of y and the square of
x, and P = 24 when x = 12 and y = 81, find P when x = 1200 and 

.

Since P varies jointly as the fourth root of y and the square of x, write

. Since P = 24 when x = 12 and y = 81, substitute these val-P k yx= 4 2

y = 1

16

z xy= 3

20

k = 3

20
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ues to obtain or . Hence .  Thus when

x = 1200 and , .

Inequalities

If a < x and x < b, the two statements are often combined to write a < x <
b. The set of all real numbers x satisfying a < x < b is called an open in-
terval and is written (a, b). Similarly the set of all real numbers x satisfy-
ing the combined inequality a ≤ x ≤ b is called a closed interval and is
written [a, b]. The following table shows various common inequalities
and their interval representations.

P = =
1 16(1200)

18
40,000

4 2

y = 1

16

P
yx

=
4 2

18
k = 1

18
24 81(12)4 2= k
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An inequality statement involving variables, like an equation, is in
general neither true nor false; rather, its truth depends on the value(s) of
the variable(s). For inequality statements in one variable, a value of the
variable that makes the statement true is a solution to the inequality. The
set of all solutions is called the solution set of the inequality.

Remember

Inequalities are equivalent if they   
have the same solution sets.

Example 2.19: The inequalities x < −5 and x + 5 < 0 are equivalent. Each
has the solution set consisting of all real numbers less than −5, that is,
(−∞, −5).

The process of solving an inequality consists of transforming it into
an equivalent inequality whose solution is obvious. Operations of trans-
forming an inequality into equivalent inequality include the following:

1. Adding or subtracting: The inequalities a < b, a + c < b + c, and
a − c < b − c are equivalent for c any real number.

2. Multiplying and dividing by a positive number: The inequalities
a < b, ac < ab, and a/c < b/c are equivalent for c any positive
real number.

3. Multiplying and dividing by a negative number: The inequali-
ties a < b, ac > ab, and a/c > b/c are equivalent for c any nega-
tive real number. Note that the sense of an inequality reverses
upon multiplication or division by a negative number.

4. Simplifying expressions on either side of an inequality.

Linear Inequalities

A linear inequality is one which is in the form ax + b < 0, ax + b > 0,
ax + b ≤ 0, or ax + b ≥ 0, or can be transformed into an equivalent in-
equality in this form. In general, linear inequalities have infinite solutions
sets in one of the forms shown in the table above. Linear inequalities are
solved by isolating the variable in a manner similar to solving equations.
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Example 2.20: Solve 5 − 3x > 4.

5 − 3x > 4
− 3x > − 1

x < 1/3

Note that the sense of the inequality was reversed by dividing both sides
by − 3.

Nonlinear Inequalities

An inequality for which the left side can be written as a product or quo-
tient of linear factors (or prime quadratic factors) can be solved through
a sign diagram. If any such factor is not zero on an interval, then it is ei-
ther positive on the whole interval or negative on the whole interval.
Hence:

1. Determine the points at which each factor is 0. These are called
the critical points.

2. Draw a number line and show the critical points.
3. Determine the sign of each factor in each interval; then, using

laws of multiplication or division, determine the sign of the en-
tire quantity on the left side of the inequality.

4. Write the solution set.

Example 2.21: Solve (x − 1)(x + 2) > 0.

The critical points are 1 and − 2, where, respectively, x − 1 and x + 2 are
zero. Draw a number line showing the critical points (see Figure 2-2).
These points divide the real number line into the intervals (− ∞, − 2),
(− 2, 1), and (1, ∞). In (− ∞, − 2), x − 1 and x + 2 are negative; hence the
product is positive. In (− 2, 1), x − 1 is negative and x + 2 is positive; hence,
the product is negative. In (1, ∞), both factors are positive; hence the prod-
uct is positive.
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The inequality holds when (x − 1)(x + 2) is positive. Hence the solution
set consists of the intervals: (− ∞, − 2) ∪ (1, ∞).

Absolute Value in Equations and Inequalities

Remember

Geometrically, the absolute value of a real number is the distance of that
number from the origin (see Figure 2-3).

a
a a

a a
=

≥
− <





    

    

if 0

if 0

24 PRECALCULUS

Similarly, the distance between two real numbers a and b is the absolute
value of their difference: �a − b� or �b − a�.

Properties of Absolute Values

Example 2.22: (a) �− 5x2� = �− 5��x2� = 5x2; (b) �3y� = �3��y� = 3�y�

Example 2.23: �5 + (− 7)� = 2 ≤ �5� + �−7� = 5 + 7 = 12 

− = =

= + ≤ +

a a a a

ab a b

2

a b a b

Figure 2-3



Absolute Value in Equations

Since �a� is the distance of a from the origin,
1. The equation �a� = b is equivalent to the two equations a = b and

a = −b, for b > 0. (The distance of a from the origin will equal b
precisely when a equals b or −b.)

2. The equation �a� = �b� is equivalent to the two equations a = b and
a = −b.

Therefore, to solve an equation containing absolute values, transform it
into equivalent equations that do not contain the absolute value symbol
and solve.

Example 2.24: Solve �x + 3� = 5.

Example 2.25: Solve �x − 4� = �3x + 1�.

Absolute Value in Inequalities

1. For b > 0, the inequality �a� < b is equivalent to the double in-
equality −b < a < b. (Since the distance of a from the origin is
less than b, a is closer to the origin than b; see Figure 2-4.)

x x x x

x x x

x x

− = + − = − +
− = − = − −

= − =

4 3 1 or 4 3 1

2 5 4 3 1
5

2

3

4

( )

x x

x x

+ = + = −
= = −

3 5  or  3 5

2             8
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2. For b > 0, the inequality �a� > b is equivalent to the inequalities
a > b and a < −b. (Since the distance of a from the origin is
greater than b, a is further from the origin than b; see Figure 
2-5.)



Figure 2-5

Example 2.26: �x − 5� > 3

x − 5 > 3     or     x − 5 < − 3
x > 8 x < 2

Parametric Equations

An equation for a curve may be given by specifying x and y separately as
functions of a third variable, often t, called a parameter. These functions
are called the parametric equations for the curve. Points on the curve may
be found by assigning permissible values of t. Often, t may be eliminat-
ed algebraically, but any restrictions placed on t are needed to determine
the portion of the curve that is specified by the parametric equations.

Example 2.27: Graph the curve specified by the parametric equations 
x = 1 − t, y = 2t + 2.

First note that t can be eliminated by solving the equation specifying x for
t to obtain t = 1 − x, then substituting into the equation specifying y to ob-
tain y = 2(1 − x) + 2 = 4 − 2x. Thus for every value of t, the point (x,y) lies
on the graph of y = 4 − 2x. Moreover, since there are no restrictions on t,
it follows that x and y can take on any value. Form a table of values, then
plot the points and connect them (Figure 2-6).
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Chapter 3

Systems of
Equations and

Partial Fractions
In This Chapter:

✔ Systems of Equations
✔ Solving Linear Systems in 

Two Variables
✔ Solving Linear Systems in More

than Two Variables
✔ Partial Fraction Decomposition
✔ Nonlinear Systems of Equations 

Systems of Equations

A system of equations consists of two or more
equations, considered as simultaneous specifica-
tions on more than one variable. A solution to a
system of equations is an ordered assignment of
values of the variables that, when substituted,
would make each of the equations into true state-
ments. The process of finding the solutions of a
system is called solving the system. The set of all solutions is called the
solution set of the system. Systems with the same solution set are called
equivalent systems.
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Example 3.1: Verify that (x, y) = (− 4, 2) is a solution to the system

y2 + x = 0 (1)

2x + 3y = − 2 (2)

If x = − 4 and y = 2, then equation (1) becomes 22 + (− 4) = 0 and equa-
tion (2) becomes 2(− 4) + 3 ⋅ 2 = − 2. Since these are both true statements,
(x, y) = (− 4, 2) is a solution to the system.

A linear equation in several variables is one that can be written in the
form a1x1 + a2x2 + … + anxn = b, where ai are constants. This is referred
to as standard form. If all equations of a system are linear, the system is
called a linear system.

Equivalent systems of linear equations can be produced by the fol-
lowing operations on equations.

1. Interchanging two equations.
2. Replacing an equation by a nonzero multiple of itself.
3. Replacing an equation by the result of adding the equation to a

multiple of another equation.

You Need to Know ✔
It is understood that “adding two equations” means
adding left side to left side and right side to right
side to produce a new equation and “multiple of an
equation” means the result of multiplying left side
and right side by the same constant.

Systems of linear equations fall into one of three categories:
1. Consistent and independent. Such systems have exactly one so-

lution.
2. Inconsistent. Such systems have no solutions.
3. Dependent. Such systems have an infinite number of solutions.

28 PRECALCULUS



Solving Linear Systems in Two Variables

Solutions of linear systems in two variables are found by three methods:
1. Graphical Method. Graph each equation

(each graph is a straight line). If the lines
intersect in a single point, the coordinates
of this point may be read from the graph.
After checking by substitution in each
equation, these coordinates are the solution
of the system. If the lines coincide, the sys-
tem is dependent, and there are an infinite
number of solutions, with each solution of one equation being a
solution of the others. If neither of these situations occurs, the
system is inconsistent.

2. Substitution Method. Solve one equation for one variable in
terms of the other. Substitute this expression into the other equa-
tions to determine the value of the first variable (if possible). Then
substitute this value to determine the value of the other variable.

3. Elimination Method. Apply the operations on equations lead-
ing to equivalent systems to eliminate one variable from one
equation, solve the resulting equation for this variable, and sub-
stitute this value to determine the value of the other variable.

In methods 2 and 3, the occurrence of an equation of the form a = b,
where a and b are unequal constants, indicates an inconsistent system. If
this does not occur, but all equations except one reduce to 0 = 0, the sys-
tem is dependent, and there are an infinite number of solutions, with each
solution of one equation being a solution of the others.

Example 3.2: Solve the system 

(a) graphically, (b) by substitution, and (c) by elimination.
(a) Graph the two equations (Figure 3-1):

2 3 6 (1)

3 5 (2)

x y

x y

+ =
− − =
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The two lines appear to intersect at (−3, 4). It is necessary to check
this result: substituting x = −3 and y = 4 into equations (1) and (2) yields

2(−3) + 3 ⋅ 4 = 6 −3(−3) − 4 = 5

and

6 = 6 5 = 5

respectively. Thus (−3, 4) is the only solution of the system.
(b) It is correct to begin by solving either equation for either vari-

able in terms of the other. The simplest choice seems to be to
solve equation (2) for y in terms of x to obtain:

y = −3x − 5

Substitute the expression −3x − 5 for y in equation (1) to obtain:

Substitute −3 for x in equation (2) to obtain:

Again, (−3, 4) is the only solution of the system.
(c) If equation (2) is multiplied by 3, the coefficient of y will

“match” the coefficient of y in equation (1); that is, it will be
equal in absolute value and opposite in sign. Equation (2) then
becomes

−9x − 3y = 15 (3)

If equation (1) is replaced by itself plus this multiple of equation
(2), the following equivalent system results:

−7x = 21 (4)

−3x − y = 5 (2)

From equation (4), x = −3. Substituting into equation (2) yields
y = 4, as before.

− − − =
− =

=

3 3 5

9 5

4

( ) y

y

y

2 3 3 5 6

7 15 6

7 21

3

x x

x

x

x

+ − − =
− − =

− =
= −

( )
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Solving Linear Systems in 
More than Two Variables

Solutions of linear systems in more than two variables are found by two
methods:

1. Substitution Method. Solve one equation for one variable in
terms of the others. Substitute this expression into the other
equations to obtain a system with one fewer variable. If this
process can be continued until an equation in one variable is ob-
tained, solve the resulting equation for this variable, and substi-
tute this value to determine the value of the other variables.

2. Elimination Method. Apply the operations on equations lead-
ing to equivalent systems to eliminate one variable from all
equations except one. This leads to a system with one fewer vari-
able. If this process can be continued until an equation in one
variable is obtained, solve the resulting equation for this vari-
able, and substitute this value to determine the value of the other
variables.

Again, the occurrence of an equation of the form a = b, where a and
b are unequal constants, indicates an inconsistent system. If this does not
occur, but one or more equations reduce to 0 = 0, leaving fewer nontriv-
ial equations than there are variables, the system is dependent, and there
are an infinite number of solutions, with each solution of one equation be-
ing a solution of the others.

Example 3.3: Solve the system 

(a) by substitution and (b) by elimination.
(a) Solve equation (1) for x to obtain

x = 3y − 2z + 14 (4)

Substitute the expression 3y − 2z + 14 for x from equation (4)
into equations (2) and (3).

2(3y − 2z + 14) + 5y − z = −9

−3(3y − 2z + 14) − y + 2z = 2

Simplifying yields:

11y − 5z = −37 (5)

−10y + 8z = 44 (6)

x y z

x y z

x y z

− + =
+ − = −

− − + =

3 2 14

2 5 9

3 2 2

(1)

(2)

(3)
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Solve equation (5) for y to obtain

Substitute the expression on the right for y into equation (6).

Substituting this value for z into equation (7) yields y = − 2. Sub-
stituting y = − 2 and z = 3 into equation (4) yields x = 2. The so-
lution is written as the ordered triple (2, − 2, 3).

(b) Replacing equation (2) by itself plus − 2 times equation (1) will
eliminate x from equation (2). Thus:

2x + 5y − z = − 9 (2)

� 2x � 6y � 4z � � 28            (− 2) ⋅ Eq. (1)

11y − 5z = − 37 (5)

Similarly, replacing equation (3) by itself plus 3 times equation 
(1) will eliminate x from equation (3):

− 3x − y + 2z = 2 (3)

3x  � 9y � 6z � 42            (3) ⋅ Eq. (1)

− 10y + 8z = 44 (6)

Solving the system (5), (6) by elimination yields the same solution
as above: (2, − 2, 3).

Partial Fraction Decomposition

A rational expression is any quotient of the form , where f and g are

polynomial expressions. If the degree of f is less than the degree of g, the
rational expression is called proper, otherwise improper. An improper ra-
tional expression can always be written, using the long division scheme,
as a polynomial plus a proper rational expression.

Any polynomial g can, theoretically, be written as the product of one

f

g

− −



 + =

− + + =
=
=

10
5 37

11
8 44

50 370 88 484

38 114

3

z
z

z z

z

z

y
z= −5 37

11
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or more linear and quadratic factors, where the quadratic factors have no
real zeros (irreducible quadratic factors). It follows that any proper ra-
tional expression with denominator g can be written as a sum of one or
more proper rational expressions, each having a denominator that is a
power of a polynomial with degree less than or equal to 2. This sum is
called the partial fraction decomposition of the rational expression.

Example 3.4: is an improper rational expression. It can be rewrit-

ten as the sum of a polynomial and a proper rational expression:

.

Example 3.5: is a proper rational expression. Since its denomi-

nator factors as x2 + x = x(x + 1), the partial fraction decomposition of

is , as can be verified by addition:

Example 3.6: is already in partial fraction decomposed form,

since the denominator is quadratic and has no real zeros.
A procedure for finding the partial fraction decomposition of a ra-

tional expression is:
1. If the expression is proper, go to step 2. If the expression is im-

proper, divide to obtain a polynomial plus a proper rational ex-
pression and apply the following steps to the proper expression
f/g.

2. Write the denominator as a product of powers of linear factors
of form (ax + b)m and irreducible quadratic factors of form 
(ax2 + bx + c)n.

3. For each factor (ax + b)m write a partial fraction sum of form:

where the Ai are as yet to be determined unknown coefficients.
4. For each factor (ax2 + bx + c)n write a partial fraction sum of

form:

A
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where the Bj and Cj are as yet to be determined unknown coef-
ficients.

5. Set f/g equal to the sum of the partial fractions from steps 4 and
5. Eliminate the denominator g by multiplying both sides to ob-
tain the basic equation for the unknown coefficients.

6. Solve the basic equation for the unknown coefficients.

A general method for solving the basic equation is:
1. Expand both sides.
2. Collect terms in each power of x.
3. Equate coefficients of each power of x.
4. Solve the linear system in the unknowns Ai, Bj, and Cj that re-

sults.

Example 3.7: Find the partial fraction decomposition of .

This is a proper rational expression. The denominator x2 − 1 factors as 
(x − 1)(x + 1). Therefore there are only two partial fraction sums, one with
denominator x − 1 and the other with denominator x + 1. Then set

Multiply both sides by x2 − 1 to obtain the basic equation

4 = A1(x + 1) + A2(x − 1)

Expanding yields

4 = A1x + A1 + A2x − A2

Collecting terms in each power of x yields

0x + 4 = (A1 + A2)x + (A1 − A2)

For this to hold for all x, the coefficients of each power of x on both sides
of the equation must be equal; hence:

A1 + A2 = 0 (coefficients of x)
A1 − A2 = 4 (constants)

This system has one solution: A1 = 2, A2 = − 2. Hence the partial fraction
decomposition is

4

1

2

1

2

12x x x−
=

−
+ −

+

4

1 1 12
1 2

x

A

x

A

x−
=

−
+

+

4

12x −

B x C

ax bx c

B x C

ax bx c

B x C

ax bx c
n n

n
1 1

2
2 2

2 2 2
+

+ +
+ +

+ +
+ + +

+ +( ) ( )
L

34 PRECALCULUS



Alternative Method

Instead of expanding both sides of the basic equation, substitute values
for x into the equation. If, and only if, all partial fractions have distinct
linear denominators, if the values chosen are the distinct zeros of these
expressions, the values of the Ai will be found immediately. In other sit-
uations there will not be enough of these zeros to determine all the un-
knowns. Other values of x may be chosen and the resulting system of
equations solved, but in these situations the alternative method is not pre-
ferred.

Example 3.8: Use the alternative method to solve the basic equation in
the previous example.

The basic equation is 4 = A1(x + 1) + A2(x − 1).
Substitute x = 1, then it follows that:

4 = A1(1 + 1) + A2(1 − 1)
4 = 2A1

A1 = 2

Now substitute x = −1, then it follows that:

4 = A1(− 1 + 1) + A2(−1 − 1)
4 = − 2A2

A2 = − 2

This yields the same result as before.

Example 3.9: Find the partial fraction decomposition of 

This is a proper rational expression and the denominator is already fac-
tored. Notice that x + 1 is a repeated linear factor; thus one partial frac-
tion sum must be considered for both x + 1 and (x + 1)2. Therefore, there
are three partial fraction sums, one each with denominator x + 1, (x + 1)2,
and x2 + 1. Set

Multiply both sides by (x + 1)2(x2 + 1) to obtain

2x3 − 4x = A1(x + 1)(x2 + 1) + A2(x2 + 1) + (B1x + C1) (x + 1)2

2 4
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This is the basic equation. Expanding yields

2x3 − 4x = A1x3 + A1x2 + A1x+ A1+ A2x2 + A2

+ B1x3 + 2B1x2+ B1x+ C1x2 + 2C1x+ C1

Collecting terms in each power of x yields

2x3 + 0x2 − 4x + 0 = x3 (A1+ B1) + x2 (A1 + A2+ 2 B1+ C1)

+ x (A1 + B1+ 2 C1)+ (A1 + A2+ C1)

For this to hold for all x, the coefficients of each power of x on both sides
of the equation must be equal, hence:

The only solution to this system is A1 = 2, A2 = 1, B1 = 0, C1 = −3. Hence
the partial fraction decomposition is

Nonlinear Systems of Equations

A system of equations in which any one equation is not linear is a non-
linear system. A nonlinear system may have no solutions, an infinite set
of solutions, or any number of real or complex solutions.

Solutions of nonlinear systems in two variables can be found by three
methods:

1. Graphical method. Graph each equation. The coordinates of
any of the points of intersection may be read from the graph. Af-
ter checking by substitution in each equation, these coordinates
are the real solutions of the system. Normally, only approxima-
tions to real solutions can be found by this method, but when the
algebraic methods below fail, this method can still be used.

2. Substitution method. Solve one equation for one variable in
terms of the other. Substitute this expression into the other equa-
tions to determine the value of the first variable. Then substitute
this value to determine the value of the other variable.
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3. Elimination method. Apply the operations on equations lead-
ing to equivalent systems to eliminate one variable from one
equation, solve the resulting equation for this variable, and sub-
stitute this value to determine the value of the other variable.

Example 3.10: Solve by substitution:

Substitute the expression x2 − 2 from equation (1) into equation (2) for y
to obtain x + 2(x2 − 2) = 11.
Solving this quadratic equation in x yields

Substituting these values for x into equation (1) yields:

Thus the solutions are and (−3,7).

Example 3.11: Solve by elimination:

Replacing equation (2) by itself plus equation (1) yields the equivalent
system:

x2 + y2 = 1 (1)
2x2 = 8 (3)

Solving equation (3) for x yields

x2 = 4
x = 2 or x = −2

Substituting these values for x into equation (1) yields:
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Thus the solutions are .

There is no general procedure for solving nonlinear systems of equa-
tions. Sometimes a combination of the above methods is effective; fre-
quently no algebraic method works and the graphical method can be used
to find some approximate solutions, which can then be refined by ad-
vanced numerical methods.

2 3 2 3 2 3 2 3, , , , , , ,i i i i( ) −( ) −( ) − −( )
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Chapter 4

Analytic
Geometry and

Functions

In this Chapter:

✔ Analytic Geometry
✔ Functions
✔ Algebra of Functions
✔ Transformations and Graphs

Analytic Geometry

A Cartesian coordinate system consists of two perpendicular real num-
ber lines, called coordinate axes, that intersect at their origins. General-
ly one line is horizontal and called the x-axis, and the other is vertical and
called the y-axis. The axes divide the coordinate plane, or xy-plane, into
four parts, called quadrants, and numbered first, second, third, and fourth,
or I, II, III, and IV. Points on the axes are not in any quadrant.

A one-to-one correspondence exists between ordered pairs of num-
bers (a, b) and points in the coordinate plane (Figure 4-1). Thus,

1. To each point P there corresponds an ordered pair of numbers
(a, b) called the coordinates of P. a is called the x-coordinate or
abscissa; b is called the y-coordinate or ordinate.

2. To each ordered pair of numbers there corresponds a point,
called the graph of the ordered pair. The graph can be indicated
by a dot.
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Figure 4-1

The distance between two points P1(x1, y1) and P2(x2, y2) in a Carte-
sian coordinate system is given by the distance formula:

Example 4.1: Find the distance between (− 3, 5) and (4, −1).

Label P1(x1, y1) = (− 3, 5) and P2(x2, y2) = (4, −1). Then substitute into
the distance formula.

The graph of an equation in two variables is the graph of its solution
set, that is, of all ordered pairs (a, b) that satisfy the equation. Since there
are ordinarily an infinite number of solutions, a sketch of the graph is gen-
erally sufficient. A simple approach to finding a sketch of a graph is to
find several solutions, plot them, then connect the dots with a smooth
curve or line.

Example 4.2: Sketch the graph of the equation x − 2y = 10.

Form a table of values; then plot the points and connect them. The graph
is a straight line, as shown in Figure 4-2.
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Intercepts

The coordinates of the points where the graph of an equation crosses the
x-axis and y-axis have special names:

1. The x-coordinate of a point where the graph crosses the x-axis
is called the x-intercept of the graph. To find it, set y = 0 and solve
for x.

2. The y-coordinate of a point where the graph crosses the y-axis
is called the y-intercept of the graph. To find it, set x = 0 and solve
for y.

Example 4.3: In the previous example, the x-intercept of the graph is 10
since the graph crosses the x-axis at (10, 0). The y-intercept of the graph
is −5 since the graph crosses the y-axis at (0, −5).

Example 4.4: Find the intercepts of the graph of y = 4 − x2.

Set x = 0; then y = 4 − 02 = 4. Hence the y-intercept is 4.
Set y = 0; then 0 = 4 − x2, then x2 = 4; thus x = ±2. Hence 2 and −2 are the
x-intercepts.

Symmetry

A graph is symmetric with respect to the
1. y-axis if (− a, b) is on the graph whenever (a, b) is on the graph.
2. x-axis if (a, − b) is on the graph whenever (a, b) is on the graph.
3. origin if (− a, − b) is on the graph whenever (a, b) is on the graph.
4. line y = x if (b, a) is on the graph whenever (a, b) is on the graph.
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Tests for symmetry:
1. If substituting −x for x leads to the same equation, the graph has

symmetry with respect to the y-axis.
2. If substituting −y for y leads to the same equation, the graph has

symmetry with respect to the x-axis.
3. If simultaneously substituting − x for x and − y for y leads to the

same equation, the graph has symmetry with respect to the ori-
gin.

Note: It is not possible for a graph to have exactly two of these
three symmetries. It must have none, one, or all three sym-
metries.

4. If interchanging the letters x and y leads to the same equation,
the graph has symmetry with respect to the line y = x.

Example 4.5: Test the equation y = 4 − x2 for symmetry and draw the
graph.

Substitute −x for x: y = 4 − ( −x)2 = 4 − x2. Since the equation is un-
changed, the graph has y-axis symmetry (see Figure 4-3).

Substitute −y for y: −y = 4 − x2. Since the equation is changed, the
graph does not have x-axis symmetry.

It is not possible for the graph to have origin symmetry (see note
above). Since the graph has y-axis symmetry, it is only necessary to find
points with nonnegative values of x, and then reflect the graph through
the y-axis.
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A circle with center C(h,k) and radius r > 0 is the set of all points in the
plane that are r units from C (Figure 4-4).
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The equation of a circle with center C(h,k) and radius r > 0 can be writ-
ten as (standard form) (x − h)2 + (y − k)2 = r2

If the center of the circle is the origin (0,0), this reduces to 
x2 + y2 = r2.

If r = 1 the circle is called a unit circle.

Functions

A function f from set D to set E is a rule or correspondence that assigns
to each element x of set D exactly one element y of set E. The set D is
called the domain of the function. The element y of E is called the image
of x under f, or the value of f at x, and is written f(x). The subset R of E
consisting of all images of elements of D is called the range of the func-
tion. The members of the domain D and range R are referred to as the in-
put and output values, respectively.

Example 4.6: Let D be the set of all words in English having fewer than
20 letters. Let f be the rule that assigns to each word the number of let-
ters in the word. Then E can be the set of all integers; R is the set {x ∈ N�
1 ≤ x < 20} (i.e., the set of natural numbers less than 20). f assigns to the
word “truth” the number 5; this would be written f(truth) = 5. Moreover,
f(a) = 1, f(right) = 5, and f(president) = 9.

Example 4.7: Let D be the set of real numbers and g be the rule given by



g(x) = x2 + 3. Find: g(4), g(− 4), g(a) + g(b), g(a + b). What is the range
of g?

g(4) = 42 + 3 = 16 + 3 = 19 g(− 4) = (− 4)2 + 3 = 16 + 3 = 19
g(a) + g(b) = a2 + 3 + b2 + 3 = a2 + b2 + 6
g(a + b) = (a + b)2 + 3 = a2 + 2ab + b2 + 3

The range of g is found by noting that the square of a number is always
greater than or equal to zero; hence g(x) = x2 + 3 ≥ 3. Thus, the range of
g is {y ∈ R � y ≥ 3}.

A function is indicated by the notation f: D → E. The effect of a func-
tion on an element of D is then written f: x → f (x). A picture of the type
shown in Figure 4-5 is often used to visualize the function relationship.
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The domain and range of a function are normally sets of real num-
bers. If a function is defined by an expression and the domain is not stat-
ed, the domain is assumed to be the set of all real numbers for which the
expression is defined. This set is called the implied domain, or the largest
possible domain, of the function.

Example 4.8: Find the (largest possible) domain for 

(a) The expression is defined for all real numbers x ex-

cept when x + 6 = 0, that is, when x = − 6. Thus the domain of f
is {x ∈ R � x ≠ − 6}.

(b) The expression is defined when x − 5 ≥ 0, that is,
when x ≥ 5. Thus the domain of g is {x ∈ R � x ≥ 5}.

(c) The expression x2 − 4 is defined for all real numbers. Thus the
domain of h is R.
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x

x

−
+

3

6

( )  ( )  ( )  a f b c( ) ( ) ( ) .x
x

x
g x x h x x= −

+
= − = −3

6
5 42



You Need to Know  ✔
The graph of a function f is the graph of all points
(x, y ) such that x is in the domain of f, and y = f (x ).

The Vertical Line Test

Since for each value of x in the domain of f there is exactly one value of
y such that y = f (x), a vertical line x = c can cross the graph of a function
at most once. Thus, if a vertical line crosses a graph more than once, the
graph is not the graph of a function.

Increasing, Decreasing, and Constant Functions

1. If, for all x in an interval, as x increases, the value of f(x) in-
creases; thus, the graph of the function rises from left to right,
then the function f is called an increasing function on the inter-
val. A function that is increasing throughout its domain is re-
ferred to as an increasing function. 

2. If, for all x in an interval, as x increases, the value of f(x) de-
creases; thus, the graph of the function falls from left to right,
then the function f is called a decreasing function on the inter-
val. A function that is decreasing throughout its domain is re-
ferred to as a decreasing function. 

3. If the value of a function does not change on an interval, thus,
the graph of a function is a horizontal line segment, then the
function is called a constant function on the interval. A function
that is constant throughout its domain is referred to as a constant
function. 

Example 4.9: Given the graph of f(x) shown in Figure 4-6, assuming the
domain of f is R, identify the intervals on which f is increasing or de-
creasing:
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Figure 4-6

As x increases through the domain of f, y decreases until x = 2, then in-
creases. Thus the function is decreasing on (− ∞, 2) and increasing on (2,
∞).

Even and Odd Functions

1. If, for all x in the domain of a function f, f(−x) = f(x), the func-
tion is called an even function. Since, for an even function, the
equation y = f(x) is not changed when − x is substituted for x, the
graph of an even function has y-axis symmetry.

2. If, for all x in the domain of a function f, f(−x) = − f(x), the func-
tion is called an odd function. Since, for an odd function, the
equation y = f(x) is not changed when −x is substituted for x and
− y is substituted for y, the graph of an odd function has origin
symmetry.

Remember

Most functions are neither even nor odd.

Example 4.10: Determine whether the following functions are even, odd,
or neither:

(a) f(x) = 7x2 (b) g(x) = 4x + 6 (c) ( )d F x
x

( ) =
−
4

6
h x x x( ) = −6 3
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(a) Consider f(−x). f(−x) = 7(−x)2 = 7x2. Since f(−x) = f(x),
f is an even function.

(b) Consider g(−x). g(−x) = 4(−x) + 6 = −4x + 6. Also −g(x) =
−(4x + 6) = −4x − 6. Since neither g(−x) = g(x) nor g
(−x) = −g(x) is the case, the function g is neither even nor odd.

(c) Consider h(−x). . Thus,
h(−x) = −h(x) and h is an odd function.

(d) Consider F(−x). . Since neither 

F(−x) = F(x) nor F(−x) = −F(x) is the case, the function F is neither
even nor odd.

In applications, if y = f(x), the language “y is a function of x” is used.
x is referred to as the independent variable, and y as the dependent vari-
able.

Example 4.11: In the formula A = πr2, the area A of a circle is written as
a function of the radius r. To write the radius as a function of the area,
solve this equation for r in terms of A, thus:

.

Since the radius is positive, gives r as a function of A.

Algebra of Functions

Algebraic combinations of functions can be obtained in several ways.
Given two functions f and g, the sum, difference, product, and quotient
functions can be defined as follows:
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Example 4.12: Given f(x) = x2 and , find ( f + g)(x) and 
( f/g)(x) and state the domains of the functions.

. Since the domain of f is R and
the domain of g is {x ∈ R � x ≥ 2} the domain of this function is also 
{x ∈ R � x ≥ 2}.

. The domain of this function is the same

as the domain of f + g, with the further restriction that g(x) ≠ 0, that is,
{x ∈ R � x > 2}.

The composite function f °g of two functions f and g is defined by:
f °g(x) = f(g(x)).

The domain of f°g is the set of all x in the domain of g such that g(x)
is in the domain of f.

Example 4.13: Given f(x) = x2 and , find f °g and state its
domain.

The domain of f °g is
not all of R. Since the domain of g is {x ∈ R � x ≥ 5}, the domain of f °g
is the set of all x ≥ 5 in the domain of f, that is, all of {x ∈ R � x ≥ 5}.

Figure 4-7 shows the relationship among f, g, and f °g.

f g x f g x f x x xo ( ) ( ( )) .= = −( ) = −( ) = −5 5 5
2

g x x( ) = − 5
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One-To-One Functions

A function with domain D and range R is called a one-to-one function if
exactly one element of set D corresponds to each element of set R.

A function with domain D and range R is one-to-one if either of the
following equivalent conditions is satisfied.



1. Whenever f(u) = f(v) in R, then u = v in D.
2. Whenever u ≠ v in D, then f(u) ≠ f(v) in R.

Example 4.14: Let f(x) = x2 and g(x) = 2x. Show that f is not a one-to-
one function and that g is a one-to-one function.
The domain of f is R. Since f(3) = f(−3) = 9, f is not one-to-one.

The domain and range of g are both R. Let k be an arbitrary real num-
ber. If 2x = k, then the only x that corresponds to k is x = k/2. Thus g is
one-to-one.

Since for each value of y in the domain of a one-to-one function f
there is exactly one x such that y = f(x), a horizontal line y = c can cross
the graph of a one-to-one function at most once. Thus, if a horizontal line
crosses a graph more than once, the graph is not the graph of a one-to-
one function. This is known as the horizontal line test.

Inverse Functions

Let f be a one-to-one function with domain D and range R. Since for each
y in R there is exactly one x in D such that y = f(x), define a function g
with domain R and range D such that g(y) = x. Then g reverses the cor-
respondence defined by f. The function g is called the inverse function of
f and is often denoted f −1.

Note!

f −1(f (x )) = x for every x in D
and

f(f −1(y )) = y for every y in R.

To find the inverse function for a given function f :
1. Verify that f is one-to-one.
2. Solve the equation y = f(x) for x in terms of y, if possible. This

gives an equation of form x = f −1(y).
3. Interchange x and y in the equation found in step 2. This gives

an equation of the form y = f −1(x).
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Example 4.15: Find the inverse function for .

First show that f is one-to-one. Assume f(u) = f(v). Then:

Thus, f is one-to-one. Now solve for x to obtain

Now interchange x and y to obtain .

The graphs of y = f(x) and y = f −1(x) are symmetric with respect to
the line y = x.

Transformations and Graphs

The graphs of many functions can be regarded as arising from more ba-
sic graphs as a result of one or more elementary transformations. The el-
ementary transformations considered here are: shifting, stretching and
compression, and reflection with respect to a coordinate axis.

Given a basic function y = f(x) with a graph shown in Figure 4-8, the
following transformations have easily identified effects on the graph.

Vertical Shifting

The graph of y = f(x) + k, for k > 0, is the same as the graph of y = f(x)
shifted up k units. The graph of y = f(x) − k, for k > 0, is the same as the
graph of y = f(x) shifted down k units.
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Example 4.16: For the basic function shown in Figure 4-8, graph y = f(x)
and y = f(x) + 2 on the same coordinate system (Figure 4-9) and y = f(x)
and y = f(x) − 2.5 on the same coordinate system (Figure 4-10).
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Figure 4-8

Figure 4-9 Figure 4-10

Vertical Stretching and Compression

The graph of y = af(x), for a > 1, is the same as the graph of y = f(x)
stretched, with respect to the y-axis, by a factor of a. The graph of y =
af(x), for 0 < a < 1, is the same as the graph of y = f(x) compressed, with
respect to the y-axis, by a factor of 1/a.

Example 4.17: For the basic function shown in Figure 4-8, graph y = f(x)
and y = 2f(x) on the same coordinate system (Figure 4-11); y = f(x) and y
= 1/3f(x) on the same coordinate system (Figure 4-12).



Figure 4-11 Figure 4-12

Horizontal Shifting

The graph of y = f(x + h), for h > 0, is the same as the graph of y = f(x)
shifted left h units. The graph of y = f(x − h), for h > 0, is the same as the
graph of y = f(x) shifted right h units.

Example 4.18: For the basic function shown in Figure 4-8, graph y = f(x)
and y = f(x + 2) on the same coordinate system (Figure 4-13); y = f(x) and
y = f(x − 1) on the same coordinate system (Figure 4-14).
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Figure 4-13 Figure 4-14

Horizontal Stretching and Compression

The graph of y = f(ax), for a > 1, is the same as the graph of y = f(x) com-
pressed, with respect to the x-axis, by a factor of a. The graph of y = f(ax),
for 0 < a < 1, is the same as the graph of y = f(x) stretched, with respect
to the x-axis, by a factor of 1/a.



Example 4.19: For the basic function shown in Figure 4-8, graph y = f(x)
and y = f(2x) on the same coordinate system (Figure 4-15); y = f(x) and y
= f(1/2x) on the same coordinate system (Figure 4-16).
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Figure 4-15 Figure 4-16

Reflection with Respect to a Coordinate Axis

The graph of y = − f(x) is the same as the graph of y = f(x) reflected across
the x-axis. The graph of y = f(−x) is the same as the graph of y = f(x) re-
flected across the y-axis.

Example 4.20: For the basic function shown in Figure 4-8, graph y = f(x)
and y = − f(x) on the same coordinate system (Figure 4-17); y = f(x) and
y = f(−x) on the same coordinate system (Figure 4-18).

Figure 4-17 Figure 4-18



Chapter 5

Algebraic
Functions and
Their Graphs

In This Chapter

✔ Linear Functions
✔ Quadratic Functions
✔ Polynomial Functions
✔ Division of Polynomials
✔ Rational Functions

Linear Functions

A linear function is any function specified by a
rule of the form f: x → mx + b, where m ≠ 0. If m
= 0, the function is not considered to be a linear
function; a function f (x) = b is called a constant
function. The graph of a linear function is always
a straight line. The graph of a constant function
is a horizontal straight line.

The slope of a line that is not parallel to the y-axis is defined as fol-
lows: Let (x1,y1) and (x2,y2) be distinct points on the line. Then the slope
of the line is given by

m
y y

x x

y

x
= −

−
= =2 1

2 1

change in 

change in 

rise

run
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Example 5.1: Find the slope of the lines through (a) (5,3) and (8,12) (b)
(3,− 4) and (−5,6).

(a) Identify (x1,y1) = (5,3) and (x2 ,y2) = (8,12). Then

(b) Identify (x1,y1) = (3,− 4) and (x2 ,y2) = (−5,6). Then

Horizontal and Vertical Lines

A horizontal line (a line parallel to the x-axis) has slope 0, since any two
points on the line have the same y coordinates. A horizontal line has an
equation of the form y = k.

A vertical line (a line parallel to the y-axis) has undefined slope, since
any two points on the line have the same x coordinates. A vertical line has
an equation of the form x = h.

The equation of a line can be written in several forms. Among the
most useful are:

1. Slope-Intercept Form: The equation of a line with slope m and
y-intercept b is given by y = mx + b.

2. Point-Slope Form: The equation of a line passing through (x0,y0)
with slope m is given by y − y0 = m(x − x0).

3. Standard Form: The equation of a line can be written as Ax + By
= C, where A, B, C are integers with no common factors; A and
B are not both zero.

Example 5.2: Find the equation of the line passing through (−6,4) with
slope 2/3.

Use the point-slope form of the equation: y − 4 = 2/3[x − (−6)]. This can
then be simplified to slope-intercept form: y = 2/3x + 8. In standard form
this would become 2x − 3y = −24.

Parallel and Perpendicular Lines

If two nonvertical lines are parallel, their slopes are equal. Conversely, if
two lines have the same slope, they are parallel; two vertical lines are also
parallel.
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Example 5.3: Find the equation of a line through (3, −8) parallel to 5x +
2y = 7.

First find the slope of the given line by isolating the variable y:

. Thus the given line has slope . Hence the desired line

has slope and passes through (3, −8). Use the point-slope form to ob-

tain , which is written in standard form as 5x +
2y = −1.

If a line is horizontal, any line perpendicular to it is vertical, and con-
versely. If two nonvertical lines, with slopes m1 and m2, are perpendicu-
lar, then their slopes satisfy m1m2 = −1 or m2 = −1/m1.

Example 5.4: Find the equation of a line through (3, −8) perpendicular
to 5x + 2y = 7.

The given line was found in the previous example to have slope .

Hence the desired line has slope and passes through (3, −8). Use  the

point-slope form to obtain , which is written in stan-
dard form as 2x − 5y = 46.

Quadratic Functions

A quadratic function is any function specified by a rule that can be writ-
ten as f : x → ax2 + bx + c, where a ≠ 0. The form ax2 + bx + c is called
standard form.

Example 5.5: f (x) = x2, and f (x) = 3x2 − 2x + 15 are examples of qua-
dratic functions. f (x) = 3x + 5 and f (x) = x3 are examples of nonquadrat-
ic functions.

The basic quadratic function is the function f (x) = x2. The graph of
f (x) is a parabola with vertex at the origin (0,0) and axis of symmetry the
y-axis (Figure 5-1). 
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Figure 5-1

Any quadratic function can be written in the form f (x) = a(x − h)2 +
k by completing the square. Therefore, any quadratic function has a graph
that can be regarded as the result of performing simple transformations
on the graph of the basic function f (x) = x2. Thus the graph of any qua-
dratic function is a parabola.

Example 5.6: The quadratic function f (x) = 2x2 − 12x + 4 can be rewrit-
ten as follows:

The graph of the function f (x) = a(x − h)2 + k, for positive a, is the
same as the graph of the basic quadratic function f (x) = x2 stretched by a
factor of a (if a > 1) or compressed by a factor of 1/a (if 0 < a < 1), and
shifted left, right, up, or down so that the point (0,0) becomes the vertex
(h,k) of the new graph. The graph of f (x) = a(x − h)2 + k is symmetric
with respect to the line x = h. The graph is referred to as a parabola 
opening up. The function has a minimum value of k attained when 
x = h.

If a is negative, the graph of the function f (x) = a(x − h)2 + k is the
same as the graph of the basic quadratic function f (x) = −x2 stretched by
a factor of �a� (if �a� > 1) or compressed by a factor of 1/�a� (if 0 < �a� < 1),
and shifted left, right, up, or down so that the point (0,0) becomes the ver-
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tex (h,k) of the new graph. The graph of f (x) = a(x − h)2 + k is symmet-
ric with respect to the line x = h. The graph is referred to as a parabola
opening down. The function has a maximum value of k attained when 
x = h.

Example 5.7: Consider the function f (x) = x2 + 4x − 7. By completing
the square, this can be written as

f (x) = x2 + 4x + 4 − 4 − 7 = (x + 2)2 − 11.

Thus the graph of the function is the same as the graph of f (x) shift-
ed left 2 units and down 11 units; see Figure 5-2.
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Figure 5-2

The graph is a parabola with vertex (− 2, −11), opening up. The function
has a minimum value of − 11. This minimum value is attained when x
= −2.

Example 5.8: Consider the function f (x) = 6x − x2. By completing the
square, this can be written as f (x) = x2 + 6x = −(x2 − 6x + 9) + 9 = −(x −
3)2 + 9. Thus the graph of the function is the same as the graph of f (x) =
−x2 shifted right 3 units and up 9 units. The graph is shown in Figure 5-
3.



Figure 5-3

The graph is a parabola with vertex (3,9), opening down. The function
has a maximum value of 9. This value is attained when x = 3.

Polynomial Functions

A polynomial function is any function specified by a rule that can be writ-

ten as , where an ≠ 0. n is the de-
gree of the polynomial function. The domain of a polynomial function,
unless otherwise specified, is R.

Special polynomial functions such as constant functions ( f (x) = a0),
linear functions ( f (x) = a1x + a0) and quadratic functions ( f (x) = a2x2 +
a1x + a0) have already been discussed.

If f has degree n and all coefficients except an are zero then f (x) =
axn, where a = an ≠ 0. Then if n is an odd integer, the function is an odd
function. If n is an even integer, the function is an even function. 

Example 5.9: Draw graphs of (a) f (x) = x3; (b) f (x) = x5; (c) f (x) = x4;
(d ) f (x) = x6.

f x a x a x a x an
n

n
n: → + + + +−

−
1

1
1 0L
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Figure 5-4 Figure 5-5
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Figure 5-6 Figure 5-7

(a) Figure 5-4; (b) Figure 5-5; (c) Figure 5-6; (d) Figure 5-7.



Division of Polynomials

If a polynomial g(x) is a factor of another polynomial f (x), then f (x) is
said to be divisible by g(x). Thus x3 − 1 is divisible both by x − 1 and x2

+ x + 1. If a polynomial is not divisible by another, it is possible to apply
the technique of long division to find a quotient and remainder, as in the
following example:

Example 5.10: Find the quotient and remainder for (2x4 − x2 − 2)/(x2

+ 2x − 1).

(1) Divide the first term of the dividend by the first term of the di-
visor.

(2) Multiply the divisor by 2x2 and subtract.
(3) Bring down the next term; repeat the division step.
(4) Multiply the divisor by −4x and subtract.
(5) Bring down the next term and repeat the division step.
(6) Multiply the divisor by 9 and subtract.
(7) The remainder; the degree is less than the degree of the divisor.

2x2    −    4x    +    9
x2 + 2x − 1 2x4         +     0x3     − x2    +    0x    −    2 (1)

−(2x4         +     4x3     −     2x2) (2)
−     4x3     +       x2    +    0x (3)
− (−4x3     −     8x2    +    4x) (4)

9x2    −    4x   −    2 (5)
−(9x2    +    18x  −    9) (6)

−    22x  +    7 (7)

The quotient is 2x2 − 4x + 9 and the remainder is −22x + 7. Thus:

If f (x) and g(x) are polynomials, with g(x) ≠ 0, then there exist unique
polynomials q(x) and r(x) such that

Either r (x) = 0 ( f (x) is divisible by g(x)) or the degree of r(x) is less
than the degree of g(x). 
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Note!

When the polynomial f(x ) is divided by x − c, the
remainder is f (c ).

Synthetic Division

Division of a polynomial f(x) by a polynomial of form x − c is accom-
plished efficiently by the synthetic division scheme. Arrange coefficients
of the dividend f(x) in descending order in the first row of a three-row
array.

c � an an−1 … a1 a0

The third row is formed by bringing down the first coefficient of f(x),
then successively multiplying each coefficient in the third row by c, plac-
ing the result in the second row, adding this to the corresponding coeffi-
cient in the first row, and placing the result in the next position in the third
row.

c � an an−1 … a1 a0
can cb1 … cbn−2 cbn−1

an b1 … bn−1 r

The last coefficient in the third row is the constant remainder; the other
coefficients are the coefficients of the quotient, in descending order.

Example 5.11: Use synthetic division to find the quotient and remainder
when x3 − 5x2 + 7x − 9 is divided by x − 4. In this case, c = 4. Arrange the
coefficients of x3 − 5x2 + 7x − 9 in the first row of a three-row array; pro-
ceed to bring down the first coefficient, 1, then multiply by 4, place result
in second row, add to −5, place result in third row. Continue to the last co-
efficient of the array.

4 � 1 −5 7 −9
4 −4 12

1 −1 3 3
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The quotient is x2 − x + 3 and the remainder is the constant 3. Thus 

Theorems about Zeros

If f (c) = 0, c is called a zero of the polynomial f (x).
1. A polynomial f (x) has a factor of x − c if and only if f (c) = 0.

Thus, x − c is a factor of a polynomial if and only if c is a zero
of the polynomial.

2. If P(x) is a polynomial with real coefficients, and if z is a com-
plex zero of P(x), then the complex conjugate z̄ is also a zero of
P(x). That is, complex zeros of polynomials with real coeffi-
cients occur in complex conjugate pairs.

3. Any polynomial of degree n > 0 with real coefficients has a com-
plete factorization using linear and quadratic factors, multiplied
by the leading coefficient of the polynomial. However, it is not
necessarily possible to find the factorization using exact alge-
braic methods.

4. If P(x) = anxn + an − 1xn − 1 + … + a1x + a0 is a polynomial with
integral coefficients and r = p/q is a rational zero of P(x) in low-
est terms, then p must be a factor of the constant term a0 and q
must be a factor of the leading coefficient an.

Example 5.12: Find a polynomial of least degree with real coefficients
and zeros 2 and 1 − 3i.

By theorem 1 above, c is a zero of a polynomial only if x − c is a fac-
tor. By theorem 2 on zeros of polynomials with real coefficients, if 1 − 3i
is a zero of this polynomial, then so is 1 + 3i. Hence the polynomial can
be written as 

P(x) = a(x − 2)[(x − (1 − 3i)][(x − (1 + 3i)]

Simplifying yields:
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Example 5.13: List the possible rational zeros of 3x2 + 5x − 8.

From the theorem on rational zeros of polynomials with integer coeffi-
cients, the possible rational zeros are:

Note that the actual zeros are 1 and .

Theorems Used in Locating Zeros

1. Intermediate Value Theorem: Given a polynomial f (x) with a <
b, if f (a) ≠ f (b), then f (x) takes on every value c between a and
b in the interval (a,b).

2. Corollary: For a polynomial f (x), if f (a) and f (b) have opposite
signs, then f (x) has at least one zero between a and b.

3. Descartes’s Rule of Signs: If f (x) is a polynomial with terms
arranged in descending order, then the number of positive real
zeros of f (x) is either equal to the number of sign changes be-
tween successive terms of f (x) or is less than this number by an
even number. The number of negative real zeros of f (x) is found
by applying this rule to f (− x).

4. If the third line of a synthetic division of f (x) by x − r is all pos-
itive for some r > 0, then r is an upper bound for the zeros of f
(x); that is, there are no zeros greater than r. If the terms in the
third line of a synthetic division of f (x) by x − r alternate signs
for some r < 0, then r is a lower bound for the zeros of f (x); that
is, there are no zeros less than r. (0 may be regarded as positive
or negative for the purpose of this theorem.)

− 8

3

Factors of 

Factors of 

− = ± ± ± ±
± ±

= ± ± ± ± ± ± ± ±8

3

1 2 4 8

1 3
1 2 4 8

1

3

2

3

4

3

8

3

, , ,

,
, , , , , , ,

64 PRECALCULUS

The following statements are equivalent:
1. c is a zero of P(x).
2. c is a solution of the equation P(x) � 0.
3. x � c is a factor of P(x).
4. For real c, the graph of y � P(x) has an 

x-intercept at c.



To graph a polynomial function for which all factors can be found:
1. Write the polynomial in factored form.
2. Determine the sign behavior of the polynomial from the signs of

the factors.
3. Enter the x-intercepts of the polynomial on the x-axis.
4. If desired, form a table of values.
5. Sketch the graph of the polynomial as a smooth curve.

Example 5.14: Sketch a graph of y = 2x(x − 3)(x + 2).

The polynomial is already in factored form. Use the methods of
Chapter 2 to obtain the sign chart shown in Figure 5-8.

CHAPTER 5: Algebraic Functions and Their Graphs 65

Figure 5-8

The graph has x-intercepts − 2, 0, 3 and is below the x-axis on the inter-
vals (−∞, −2) and (0,3) and above the x-axis on the intervals (−2,0) and
(3, ∞). Form a table of values as shown and sketch the graph as a smooth
curve (Figure 5−9).

Figure 5-9



Rational Functions

A rational function is any function which can be specified by a rule writ-

ten as , where P(x) and Q(x) are polynomial functions. The

domain of a rational function is the set of all real numbers for which Q(x) 
≠ 0. The assumption is normally made that the rational expression P(x)/
Q(x) is in lowest terms, that is, P(x) and Q(x) have no factors in common.

Example 5.15:

are examples of rational functions. The domains are, respectively, for f,
{x ∈ R � x ≠ 0} , for g, {x ∈ R � x ≠ ± 3} , for h, {x ∈ R � x ≠ 0,2,−3} , and
for k, R (since the denominator polynomial is never 0).

The graph of a rational function is analyzed in terms of the symme-
try, intercepts, asymptotes, and sign behavior of the function.

1. If Q(x) has no real zeros, the graph of P(x)/Q(x) is a smooth
curve for all real x.

2. If Q(x) has real zeros, the graph of P(x)/Q(x) consists of smooth
curves on each open interval that does not include a zero. The
graph has vertical asymptotes at each zero of Q(x).

The line x = a is a vertical asymptote for the graph of a function f if,
as x approaches a through values that are greater than or less than a, the
value of the function grows beyond all bounds, either positive or nega-
tive. The cases are shown in the following table, along with the notation
generally used:
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The line y = a is a horizontal asymptote for the graph of a function f
if, as x grows beyond all bounds, either positive or negative, f (x) ap-
proaches the value a. The cases are shown in the following table, along
with the notation generally used:
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To find horizontal asymptotes, let

with an ≠ 0 and bm ≠ 0. Then
1. If n < m, the x-axis is a horizontal asymptote for the graph of f.
2. If n = m, the line y = an /bm is a horizontal asymptote for the

graph of f.
3. If n > m, there is no horizontal asymptote for the graph of f. In-

stead, as x → ∞ and as x → −∞, either f (x) → ∞ or f (x) → −∞.

Example 5.16: Find the horizontal asymptotes, if any, for .f x
x

x
( ) = +

−
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f x
P x

Q x
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b x b x b
n
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m
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1 0

1 0
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Since the numerator and denominator both have degree 1, the quotient
can be written as 

For large positive or negative values of x, this is very close to 2/1, the
ratio of the leading coefficients, thus f (x) → 2. The line y = 2 is a hori-
zontal asymptote.

To find oblique asymptotes, let 

with an ≠ 0 and bm ≠ 0. Then, if n = m + 1, f (x) can be expressed using
long division in the form:

where the degree of R(x) is less than the degree of Q(x). Then, as x → ∞
or x → −∞, f (x) → ax + b and the line y = ax + b is an oblique asymptote
for the graph of the function.

Example 5.17: Find the oblique asymptote for the graph of the function

.

Use long division to write . Hence, as x → ∞ or

x → −∞, f (x) → x − 1, and the line y = x − 1 is an oblique asymptote for
the graph of the function.

To sketch the graph of a rational function :

1. Find any x-intercepts for the graph [the real zeros of P(x)] and
plot the corresponding points. Find the y-intercept [ f (0), as-
suming 0 is in the domain of f ] and plot the point (0, f (0)). An-
alyze the function for any symmetry with respect to the axes or
the origin.

2. Find any real zeros of Q(x) and enter any vertical asymptotes for
the graph on the sketch.
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3. Find any horizontal or oblique asymptote for the graph and en-
ter this on the sketch.

4. Determine whether the graph intersects the horizontal or oblique
asymptotes. The graphs of y = f (x) and y = ax + b will intersect
at real solutions of f (x) = ax + b.

5. Determine, from a sign chart if necessary, the intervals in which
the function is positive and negative, then determine the behav-
ior of the function near the asymptotes.

6. Sketch the graph of f in each of the regions found in step 5.

Example 5.18: Sketch the graph of the function .

1. Since f (0) = −3/2, the y-intercept is −3/2. Since f (x) = 0 when
x = −3, the x-intercept is −3. The graph has no symmetry with
respect to the axes or origin.

2. Since x − 2 = 0 when x = 2, this line is the only vertical asymp-
tote.

3. Since the numerator and denominator both have degree 1, and
the ratio of leading coefficients is 1/1 or 1, the line y = 1 is the
horizontal asymptote.

4. Since f (x) = 1 has no solutions, the graph does not cross its hor-
izontal asymptote.

5. A sign chart shows that the values of the function are positive on
(−∞, −3) and (2, ∞) and negative on (−3, 2). Thus,

. See Figure 5-18.

Figure 5-18
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x x
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Chapter 6

Exponential and
Logarithmic

Functions
In This Chapter

✔ Exponential Functions
✔ Applications of Exponential

Functions
✔ Logarithmic Functions
✔ Applications of Logarithmic

Functions
✔ Exponential and Logarithmic

Equations
✔ Solved Problems

Exponential Functions

An exponential function is any function for which the rule specifies the
independent variable in an exponent. A basic exponential function has the
form F(x) = ax, a > 0, a ≠ 1. The domain of a basic exponential function
is considered to be the set of all real numbers, unless otherwise specified.

Example 6.1: The following are examples of exponential functions:
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The properties of exponents can be restated for convenience in terms
of variable exponents. Assuming a, b > 0, then for all real x and y:

The number e is called the natural exponential base. It is defined as 

. e is an irrational number with a value approximately

2.71828… .

Applications of Exponential Functions 

Applications generally distinguish between exponential growth and de-
cay. A basic exponential growth function is an increasing exponential
function; an exponential decay function is a decreasing exponential func-
tion.
Compound Interest: If a principal of P dollars is invested at an annual
rate of interest r, and the interest is compounded n times per year, then
the amount of money A(t) generated at time t is given by the formula:

Continuous Compound Interest: If a principal of P dollars is invested
at an annual rate of interest r, and the interest is compounded continu-
ously, then the amount of money A(t) available at any later time t is giv-
en by the formula:

A(t) = Pert

Unlimited Population Growth: If a population consisting initially of N0
individuals also is modeled as growing without limit, the population N(t)
at any later time t is given by the formula (k is a constant to be deter-
mined):

N(t) = N0ekt

Alternatively, a different base can be used.
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Logistic Population Growth: If a population consisting initially of N0
individuals is modeled as growing with a limiting population (due to lim-
ited resources) of P individuals, the population N(t) at any later time t is
given by the formula (k is a constant to be determined):

Radioactive Decay: If an amount Q0 of a radioactive substance is pres-
ent at time t = 0, then the amount Q(t) of the substance present at any lat-
er time t is given by the formula (k is a constant to be determined):

Q(t) = Q0e−kt

Alternately, a different base can be used.

Logarithmic Functions

A logarithmic function, f (x) = loga x, a > 0, a ≠
1, is the inverse function to an exponential func-
tion F(x) = ax. Thus, if y = loga x, then x = ay. That
is, the logarithm of x to the base a is the exponent
to which a must be raised to obtain x. Converse-
ly, if x = ay, then y = loga x. Therefore the relation
between logarithmic and exponential functions
can be described as:

Example 6.2: The function f (x) = log2 x is defined as f: y = log2 x if 2y =
x. Since 24 = 16, 4 is the exponent to which 2 must be raised to obtain 16,
and log2 16 = 4.

Example 6.3: The statement 103 = 1000 can be rewritten in terms of the
logarithm to the base 10. Since 3 is the exponent to which 10 must be
raised to obtain 1000, log10 1000 = 3.

Example 6.4:

Properties of logarithms: (M, N positive real numbers)

log log

log ( ) log log log ( ) log

log log log

a a

a a a a
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a a a

a

MN M N M p M
M

N
M N

1 0 1= =
= + =





 = −

log log . log
5 5

3 25125 5 3 5 255= = =   

log log
a

x xa x a xa= =and

N t
N P

N P N e kt( )
( )

=
+ − −

0

0 0

CHAPTER 6: Exponential and Logarithmic Functions 73



Example 6.5: (a) log5 1 = 0 (since 50 = 1) (b) log4 4 = 1 (since 41 = 4)
(c) log6 6x = log6 6 + log6 x = 1 + log6 x (d ) log6 x6 = 6 log6 x

There are two special logarithmic functions that have their own abbrevi-
ations:

1. log10 x is known as the common logarithm and is abbreviated as
log x.

2. loge x is known as the natural logarithm and is abbreviated as 
ln x.

Example 6.6: Write as one logarithm.

Applications of Logarithmic Functions

Working with numbers that range over very wide scales, for example,
from 0.000000000001 to 10,000,0000,000, can be very cumbersome.
The work can be done more efficiently by working with the logarithms
of the numbers (as in this example, where the common logarithms range
only from −12 to +10).

Some of examples of logarithmic scales are:

Sound Intensity: The decibel scale for measuring sound intensity is de-
fined as follows:
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Earthquake intensity: There is more than one logarithmic scale, called
a Richter scale, used to measure the destructive power of an earthquake.
A commonly used Richter scale is defined as follows:

where R is called the (Richter) magnitude of the earthquake, E is the en-
ergy released by the earthquake (measured in joules), and E0 is the ener-
gy released by a very small reference earthquake.

Exponential and Logarithmic Equations

Exponential equations are equations that involve a variable in an expo-
nent. The crucial step in solving exponential equations is generally to take
the logarithm of both sides to an appropriate base, commonly base 10 or
base e.

Example 6.7: Solve ex = 2.

Logarithmic equations are equations that involve the logarithm of a vari-
able or variable expression. The crucial step in solving logarithmic equa-
tions is generally to rewrite the logarithmic statement in exponential
form. If more than one logarithmic expression is present, these can be
combined into one by using properties of logarithms.

Example 6.8: Solve log2(x − 3) = 4

Logarithmic expressions can be rewritten in terms of other bases by
means of the change-of-base formula:
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Example 6.9: Find an expression, in terms of logarithms to base e, for
log5 10, and give an approximate value for the quantity.

From the change-of-base formula,

Solved Problems

Solved Problem 6.1: A certain amount of money P is invested at an an-
nual rate of interest of 4.5%. How many years (to the nearest tenth of a
year) would it take for the amount of money to double, assuming interest
is compounded quarterly?

Since the money is not compounded continuously use the compound in-

terest formula with n = 4 because it’s compounded

quarterly and r = 0.045 to find t when A(t) = 2P.

To isolate t, take logarithms of both sides to base e.

Solved Problem 6.2: In the previous example, how many years (to the
nearest tenth of a year) would it take for the amount of money to double,
assuming interest is compounded continuously?

Use the formula A(t) = Pert with r = 0.045, to find t when A(t) = 2P.

To isolate t, take logarithms of both sides to base e.

2

2

0 045

0 045

P Pe

e

t

t

=

=

.

.

ln ln .

ln ln( . )

ln

ln( . )

.

2 1 01125

2 4 1 01125

2

4 1 01125

15 5

4= ( )
=

=

≈

t

t

t

t  years

2 1
0 045

4

2 1 01125

4

4

P P
t

t

= +





= ( )

.

.

A t P
r

n

nt

( ) = +



1

log
ln

ln
.5 10

10

5
1 43= ≈

76 PRECALCULUS



Solved Problem 6.3: (a) Find the Richter scale magnitude of an earth-
quake that releases energy of 1000E0. (b) Find energy released by an
earthquake that measures 5.0 on the Richter scale, given that E0 = 104.40

joules.
(a) Use the formula with E = 1000E0. Then

.

(b) Set R = 5. Then . Solving for E yields:
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In This Chapter

✔ Loci
✔ Parabolas
✔ Ellipses
✔ Hyperbolas
✔ Conic Sections

Loci

The set of all points that satisfy specified conditions is called the locus
(plural: loci) of the point under the conditions.

Note!

locus is the Latin word for place or position.

Example 7.1: The locus of a point with positive coordinates is the first
quadrant (x > 0, y > 0).

Example 7.2: The locus of points with distance 3 from the origin is the
circle x2 + y2 = 9 with center at (0, 0) and radius 3.

Chapter 7

Conic Sections
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Distance formulas are often used in finding loci.
1. The distance between two points P1(x1,y1) and P2(x2,y2) is giv-

en by

2. The distance from a point P1(x1,y1) to a straight line Ax + By +C
= 0 is given by:

Example 7.3: Find the locus of points P(x,y) equidistant from P1(1,0)
and P2(3,0).

Set d(P,P1) = d(P, P2). Then

.

Simplifying yields:

The locus is a vertical line that forms the perpendicular bisector of P1P2.

Parabolas

A parabola is defined as the locus of points P equidistant from a given
point and a given line, that is, PF = PD, where F is the given point, called
the focus, and PD is the distance to the given line l, called the directrix.
A line through the focus perpendicular to the directrix is called the axis
(or axis of symmetry) and the point on the axis halfway between the di-
rectrix and the focus is called the vertex.

A parabola with axis parallel to one of the coordinate axes is said to
be in standard orientation. If, in addition, the vertex of the parabola is at
the origin, the parabola is said to be in one of four standard positions:
opening right, opening left, opening up, and opening down.

Graphs of parabolas in standard positions with their equations and
characteristics are shown in Figures 7-1 to 7-4.
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Replacing x by x − h has the effect of shifting the graph of an equa-
tion by �h� units, to the right if h is positive, to the left if h is negative. Sim-
ilarly, replacing y by y − k has the effect of shifting the graph by �k� units,
up if k is positive and down if k is negative. The equations and character-
istics of parabolas in standard orientation, but not necessarily in standard
position, are shown in the following table.
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Example 7.4: Show that y2 − 8x + 2y + 9 = 0 is the equation of a parabo-
la. Find the focus, directrix, vertex, and axis, and sketch a graph.

Complete the square on y to obtain:

y2 + 2y = 8x − 9

y2 + 2y + 1 = 8x − 8

(y + 1)2 = 8(x − 1)



Thus p = 2, h = 1, and k = −1. Hence the parabola is in standard orienta-
tion, with vertex (1, −1), opening right, and thus has focus at (h + p, k) =
(2 + 1, −1) = (3, −1). The directrix of the parabola is the line x = h − p = 1
− 2 = −1 and the axis is the line y = −1. The graph is shown in Figure 7-5.

Figure 7-5

Ellipses

The locus of points P such that the sum of the distances from P to two fixed
points is constant is called an ellipse. Thus, let F1 and F2 be the two points
(called foci, the plural of focus), then the defining relation for the ellipse is
PF1 + PF2 = 2a. The line through the foci is called the focal axis of the el-
lipse; the point on the focal axis halfway between the foci is called the cen-
ter; the points where the ellipse crosses the focal axis are called the ver-
tices. The line segment joining the two vertices is called the major axis, and
the line segment through the center, perpendicular to the major axis, with
both endpoints on the ellipse, is called the minor axis. (See Figure 7-6.)
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An ellipse with focal axis parallel to one of the coordinate axes is
said to be in standard orientation. If, in addition, the center of the ellipse
is at the origin, the ellipse is said to be in one of two standard positions:
with foci on the x-axis or with foci on the y-axis.

Graphs of ellipses in standard position with their equations and char-
acteristics are shown in the following table:
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Example 7.5: Analyze and sketch the graph of 4x2 + 9y2 = 36.

Written in standard form the equation becomes

Thus a = 3 and b = 2. Therefore . Hence the

ellipse is in standard position with foci at , x-intercepts (±3,0)
and y-intercepts (0,±2). The graph is shown in Figure 7-9.

±( )5 0,

c a b= − = − =2 2 9 4 5

x y2 2

9 4
1+ =



Figure 7-9

Hyperbolas

The locus of points P such that the absolute value of the difference of the
distances from P to two fixed points is a constant is called a hyperbola.
Thus, let F1 and F2 be the two points ( foci), then the defining relation for
the hyperbola is �PF1 − PF2� = 2a. The line through the foci is called the
focal axis of the hyperbola; the point on the focal axis halfway between
the foci is called the center; the points where the hyperbola crosses the
focal axis are called the vertices. The line segment joining the two ver-
tices is called the transverse axis. (See Figure 7-10.)

84 PRECALCULUS

Figure 7-10



A hyperbola with focal axis parallel to one of the coordinate axes is
said to be in standard orientation. If, in addition, the center of the hyper-
bola is at the origin, the hyperbola is said to be in one of two standard po-
sitions: with foci on the x-axis (Figure 7-11) or with foci on the y-axis
(Figure 7-12).

Graphs of hyperbolas in standard position with their equations and
characteristics are shown in the following table:
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A measure of the shape for an ellipse or hyperbola is the quantity ,

called the eccentricity. For an ellipse, 0 < e < 1; for a hyperbola e
> 1.

Conic Sections

The curves that result from the intersection of a plane with a cone are
called conic sections. Figure 7-13 shows the four major possibilities: cir-
cle, ellipse, parabola, and hyperbola.

e
c

a
=



Figure 7-13

The graph of a second-degree equation in two variables Ax2 + Bxy + Cy2

+ Dx + Ey + F = 0 is a conic section. Ignoring degenerate cases, the pos-
sibilities are as follows:

A. If no xy term is present (B = 0):
• If A = C the graph is a circle. Otherwise A ≠ C; then:
• If AC = 0 the graph is a parabola.
• If AC > 0 the graph is an ellipse.
• If AC < 0 the graph is a hyperbola.

B. In general:
• If B2 − 4AC = 0 the graph is a parabola.
• If B2 − 4AC < 0 the graph is an ellipse.
• If B2 − 4AC > 0 the graph is a hyperbola.
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Chapter 8

Trigonometric
Functions

In This Chapter

✔ Unit Circle
✔ Trigonometric Functions
✔ Trigonometric Identities
✔ Graphs of Sine and Cosine

Functions
✔ Graphs of the Other Trigonometric

Functions
✔ Angles

Unit Circle

The unit circle is the circle U with center (0,0) and radius 1. The equa-
tion of the unit circle is x2 + y2 = 1. The circumference of the unit circle
is 2π.

Example 8.1: Draw a unit circle (see Figure 8-1) and indicate its inter-
cepts.
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Figure 8-1
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A unique point P on a unit circle U can be associated with any given real
number t in the following manner:

1. Associated with t = 0 is the point (1,0).
2. Associated with any positive real number t is the point P(x,y)

found by proceeding a distance t along the circle in the coun-
terclockwise direction from the point (1,0) (see Figure 8-2).

3. Associated with any negative real number t is the point P(x,y)
found by proceeding a distance �t� along the circle in the clock-
wise direction from the point (1,0) (see Figure 8-3).



1. By the first rule given above, P(0) = (1,0).
2. Since π is half of the circumference of the unit

circle, P(π) is half of the way around the unit
circle in the counterclockwise direction from
(1,0); that is, P(π) = (−1,0).

3. Since π/2 is a quarter of the circumference of
the unit circle, P(π/2) is a quarter of the way
around the unit circle in the counterclockwise
direction from (1,0); that is, P(π/2) = (0,1).

4. P(−π/2) is a quarter of the way around the unit circle in the
clockwise direction from (1,0); that is, P(π/2) = (0,−1).

5. Since π/4 is one-half the way from 0 to π/2, the point P(π/4) =
(x,y) lies on the line y = x. Thus coordinates (x,y) satisfy both the
equations x2 + y2 = 1 and y = x. Substituting yields:

For any real number t the following relations can be shown to hold:
1. P(t + 2π) = P(t).
2. If P(t) = (x,y), then P(−t) = (x,−y).
3. If P(t) = (x,y), then P(t + π) = (−x,−y).
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Example 8.2: Find (a) P(0), (b) P(π) , (c) P(π/2), (d) P(−π/2), and (e)
P(π/4). (See Figure 8-4.)



Trigonometric Functions

If t is a real number and P(x,y) is the point, referred to as P(t), on the unit
circle U that corresponds to P, then the six trigonometric functions of t,
sine, cosine, tangent, cosecant, secant, and cotangent, abbreviated sin,
cos, tan, csc, sec, and cot, respectively, are defined as follows:

Example 8.3: If t is a real number such that is the point on

the unit circle that corresponds to t, find the six trigonometric functions
of t.

Since the x-coordinate of P is 3/5 and the y-coordinate of P is −4/5,
the six trigonometric functions of t are as follows:

Example 8.4: Determine the signs of the six trigonometric functions of
P(t) = (x,y) in each of the four quadrants.

1. In quadrant I, both x and y are positive. Therefore all trigono-
metric functions are positive in quadrant I

2. In quadrant II, the x value is negative and the y value is positive.
Therefore only sin t and csc t are positive while the other
trigonometric functions are negative.

3. In quadrant III, both x and y are negative. Therefore only tan t
and cot t are positive while the other trigonometric functions are
negative.

4. In quadrant IV, the x value is positive and the y value is negative.
Therefore only cos t and sec t are positive while the other
trigonometric functions are negative.

A function f is called periodic if there exists a real number p such
that f (t + p) = f (t) for every real number t in the domain of f. The small-
est such real number is called the period of the function.
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The trigonometric functions are all periodic. The following impor-
tant relations can be shown to hold:

The expressions for the squares of the trigonometric functions arise fre-
quently. (sin t)2 is generally written sin2 t, (cos t)2 is generally written cos2

t, and so on. Similarly, (sin t)3 is generally written sin3 t, and so on.

Trigonometric Identities

An identity is an equation that is true for all values of the variables it con-
tains, as long as both sides are meaningful.

There are several important trigonometric identities:
1. Pythagorean Identities. For all t for which both sides are defined:

2. Reciprocal Identities. For all t for which both sides are defined:

3. Quotient Identities. For all t for which both sides are defined:

4. Identities for Negatives. For all t for which both sides are de-
fined:

sin(− t) = −sin t cos(− t) = cos t tan(− t) = −tan t
csc(− t) = −csc t sec(− t) = sec t cot(− t) = −cot t

Note  

Since cos2 t � sin2 t � 1, it is also true that

cos2 t � 1 � sin2 t and sin2 t � 1 � cos2 t.
The same holds true for the other identities as well.
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t
t

t

t
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t
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t
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= = =1 1 1

cos sin tan sec cot csc2 2 2 2 2 21 1 1t t t t t t+ = + = + =

sin( ) sin cos( ) cos tan( ) tan

csc( ) csc sec( ) sec cot( ) cot
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t t t t t t
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π π π
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Graphs of Sine and Cosine Functions

The domains of f (t) = sin t and f (t) = cos t are identical: all real numbers,
R. The ranges of these functions are also identical: the interval [−1, 1].
The graph of u = sin t is shown in Figure 8-5.

Figure 8-5

The graph of u = cos t is shown in Figure 8-6.

Figure 8-6

The function f (t) = sin t is periodic with period 2π. Its graph repeats
a cycle, regarded as the portion of the graph for 0 ≤ t ≤ 2π. The graph is
often referred to as the basic sine curve. The amplitude of the basic sine
curve, defined as half the difference between the maximum and minimum
values of the function, is 1. The function f (t) = cos t is also periodic with
period 2π. Its graph, called the basic cosine curve, also repeats a cycle,
regarded as the portion of this graph for 0 ≤ t ≤ 2π. The graph can also be
thought of as a sine curve with amplitude 1, shifted left by an amount 
π/2.

The graphs of other sine and cosine functions can be obtained by us-
ing the transformations described in Chapter 4. The graphs of the trans-
formations of the sine function are described but the same descriptions
may be applied to transformations of the other trigonometric functions as
well. 

1. Graph of u = A sin t. The graph of u = A sin t for positive A is a
basic sine curve, but stretched by a factor of A, hence with am-
plitude A, referred to as a standard sine curve. The graph of u =
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A sin t for negative A is a standard sine curve with amplitude �A�,
reflected with respect to the vertical axis, called an upside-down
sine curve. 

2. Graph of u = sin bt (b positive). The graph of u = sin bt is a stan-
dard sine curve, compressed by a factor of b with respect to the
x-axis, hence with period 2π/b.

3. Graph of u = sin(t − c). The graph of u = sin(t − c) is a standard
sine curve shifted to the right �c� units if c is positive, shifted to
the left �c� units if c is negative. c is referred to as the phase shift.

4. Graph of u = sin t + d. The graph of u = sin t + d is a standard
sine curve shifted up �d� units if d is positive, shifted down �d�
units if d is negative.

5. Graph of u = A sin(bt − c) + d displays combinations of the above
features. In general, assuming A, b, c, d positive, the graph is a
standard sine curve with amplitude A, period 2π/b, phase shift
c/b, shifted up d units.

Example 8.5: Sketch .

The graph (Figure 8-7) is an upside-down cosine curve with amplitude
1/2, period 2π/3 and phase shift (−π/4) ÷ 3 = − π/12 . Divide the inter-
val from −π/12 to 7π/12 (= phase shift + one period) into four equal
subintervals and sketch the curve with maximum height 2 and minimum
height 1.

u t= − +



 +1

2
3

4

3

2
cos

π
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Graphs of the Other Trigonometric Functions

1. Tangent. The domain of the tangent function is {t ∈ R � t ≠ π/2
+ 2πn, 3π/2 + 2πn }, and the range is R. The graph is shown in
Figure 8-8.

Figure 8-8

2. Secant. The domain of the secant function is {t ∈ R � t ≠ π/2 +
2πn, 3π/2 + 2πn } and the range is (−∞, −1] ∪ [1, ∞). The graph
is shown in Figure 8-9.

Figure 8-9
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3. Cotangent. The domain of the cotangent function is {t ∈ R � t ≠
nπ} and the range is R. The graph is shown below in Figure 
8-10.

Figure 8-10

4. Cosecant. The domain of the cosecant function is {t ∈ R � t ≠
nπ} and the range is (−∞, −1] ∪ [1, ∞). The graph is shown be-
low in Figure 8-11.

Figure 8-11

Example 8.6: Sketch a graph of u = tan(t − π/3).
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The graph is the same as the graph of u = tan t shifted π/3 units to the
right, and has period π. Since tan T goes through one cycle in the inter-
val −π/2 < T < π/2, tan(t − π/3) goes through one cycle in the interval 
−π/2 < t − π/3 < π/2, that is, − π/6 < t < 5π/6. Sketch the graph in this in-
terval and repeat the cycle with period π. (See Figure 8-12.)
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Angles

A trigonometric angle is determined by rotating a ray about its endpoint,
called the vertex of the angle. The starting position of the ray is called the
initial side and the ending position is the terminal side. (See Figure 8-13.)

Figure 8-13

If the displacement of the ray from its starting position is in the coun-
terclockwise direction, the angle is assigned a positive measure, if in the
clockwise direction, a negative measure. A zero angle corresponds to zero
displacement; the initial and terminal sides of a zero angle are coincident.



An angle is in standard position in a Cartesian coordinate system if
its vertex is at the origin and its initial side is the positive x-axis. Angles
in standard position are categorized by their terminal sides: If the termi-
nal side falls along an axis, the angle is called a quadrantal angle; if the
terminal side is in quadrant n, the angle is referred to as a quadrant n 
angle.

In calculus, angles are normally measured in radian measure. One ra-
dian is defined as the measure of an angle that, if placed with vertex at
the center of a circle, subtends (intersects) an arc of length equal to the
radius of the circle. In Figure 8-14, angle q has measure 1 radian.
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Figure 8-14

Since the circumference of a circle of radius r has length 2πr, a pos-
itive angle of one full revolution corresponds to an arc length of 2πr and
thus has measure 2π radians. (See Figure 8-15).

Example 8.7: Draw examples of angles of measures π, and .
π
2

Figure 8-15



In applications, angles are commonly measured in degrees (°). A pos-
itive angle of one full revolution has a measure of 360°. Thus 2π radians
= 360°, or 180° = π radians. 

To transform radian measure into degrees, use this relation in the
form 180°/π = 1 radian and multiply the radian measure by 180°/π. To
transform degree measure into radians, use the relation in the form 1° =
π/180 radians and multiply the degree measure by π/180°. The follow-
ing table summarizes the measures of common angles:

Example 8.8: (a) Transform 210° into radians. (b) Transform 6π radians
into degrees.

(a)  ;

(b)  

An angle of measure between 0 and π/2 radians (between 0° and 90°)
is called an acute angle. An angle of measure π/2 radians (90°) is called
a right angle. An angle of measure between π/2 and π radians (between
90° and 180°) is called an obtuse angle. An angle of measure π radians
(180°) is called a straight angle.

You Need to Know  ✔
An angle is normally referred to by giving its measure;

thus q � 30° means that q has a measure of 30°.

If a and b are two angles such that a + b = π/2, a and b are called
complementary angles. If a and b are two angles such that a + b = π, a
and b are called supplementary angles.

Example 8.9: Find an angle complementary to q if 
(a) q = π/3; (b) q = 37.25°

6 6
180

1080π π
π

 radians = ⋅ =
o

o

210 210
180

7

6
o o

o= ⋅ =π π
 radians
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(a) The complementary angle to q is π/2 − q = π/2 − π/3 = π/6.
(b) The complementary angle to q is 90° − q = 90° − 37.25°

= 52.75°.

Two angles in standard position are coterminal if they have the same
terminal side. There are an infinite number of angles coterminal with a
given angle. To find an angle coterminal with a given angle, add or sub-
tract 2π (if the angle is measured in radians) or 360° (if the angle is mea-
sured in degrees).

Example 8.10: Find two angles that are coterminal with
(a) 2 radians; (b) −60°.

(a) Coterminal with 2 radians are 2 + 2π and 2 − 2π radians as well
as many other angles.

(b) Coterminal with −60° are −60° + 360° = 300° and −60° − 360°
= −420°, as well as many other angles. 

Let q be an angle in standard position, and P(x,y) be any point except the

origin on the terminal side of q. If is the distance from P to
the origin, then the six trigonometric functions of q are given by:

Example 8.11: Let q be an angle in standard position with P(−3,4) a point
on the terminal side of q (see Figure 8-16).

sin cos tan )

csc ) sec ) cot )

q q q

q q q

= = = ≠

= ≠ = ≠ = ≠
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r

y

x
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y
y
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x
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y
y

 (if 

 (if  (if  (if 

0

0 0 0

r x y= +2 2
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Figure 8-16

x = −3, y = 4, ; hencer x y= + = −( ) + ( ) =2 2 2 23 4 5



If q is an acute angle, it can be regarded as an angle of a right trian-
gle. Placing q in standard position, and naming the sides of the right tri-
angle as hypotenuse (hyp), opposite (opp), and adjacent (adj), the lengths
of the adjacent and opposite sides are the x- and y-coordinates, respec-
tively, of a point on the terminal side of the angle. The length of the hy-

potenuse is .r x y= +2 2

sin cos tan

csc sec cot

q q q

q q q

= = = = − = = −

= = = = − = = −

y

r

x

r

y

x
r

y

r

x

x

y

4

5

3

5

4

3
5

4

5

3

3

4
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For an acute angle q, the trigonometric functions of q are then as follows:

Example 8.12: Find the six trigonometric functions of q as shown in Fig-
ure 8-18.

sin cos tan

csc sec cot

q q q

q q q

= = = = = =

= = = = = =

y

r

x

r

y

x
r

y

r

x

x

y

opp

hyp

adj

hyp

opp

adj
hyp

opp

hyp

adj

adj

opp

Figure 8-18



For q as shown, opp = 5, adj = 12, hyp = 13, hence

The reference angle for q, a nonquadrantal angle in standard position,
is the acute angle qR between the x-axis and the terminal side of q. Figure
8-19 shows angles and reference angles for cases 0 < q < 2π. To find ref-
erence angles for other nonquadrantal angles, first add or subtract multi-
ples of 2π to obtain an angle coterminal with q that satisfies 0 < q < 2π.

sin cos tan

csc sec cot

q q q

q q q

= = = = = =

= = = = = =

opp

hyp

adj

hyp

opp

adj
hyp

opp

hyp
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5
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5
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13

5

13
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Trigonometric functions of angles in terms of reference angles: For
any nonquadrantal angle q, each trigonometric function of q has the same
absolute value as the same trigonometric function of qR. To find a trigono-
metric function of q, find the function of qR, then apply the correct sign
for the quadrant of q.

Example 8.13: Find .

The reference angle for , a second quadrant angle, is .

In quadrant II, the sign of the
cosine function is negative. Hence,

(see Examples 8.2 and 8.4).

Example 8.14: Form a table of the trigonometric functions of 0°, 30°,
45°, 60°, and 90°.

To find the trigonometric functions of 30° and 60°, draw a 30°–60°
right triangle. This can be formed by dividing an equilateral triangle in
half through one of its vertices (see Figure 8-20). To find the trigonomet-
ric functions of 45°, draw an isosceles right triangle (see Figure 8-21).

cos cos
3

4 4

1

2

π π= − = −

π π π− =3

4 4

3

4

π

cos
3

4

π
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These triangles and the trigonometric functions found in Example
8.2 yield the following table (U stands for undefined):
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Chapter 9

Trigonometric
Identities and
Trigonometric

Inverses

In This Chapter:

✔ Inverse Trigonometric Functions
✔ Trigonometric Identities
✔ Solving Trigonometric Equations
✔ Sum, Difference, Multiple, and 

Half-Angle Formulas
✔ Triangles
✔ Polar Coordinates

Inverse Trigonometric Functions

The trigonometric functions are periodic, hence they are not one-to-one,
and no inverses can be defined for the entire domain of a basic trigono-
metric function. By redefining each trigonometric function on a careful-
ly chosen subset of its domain, the new function can be specified one-to-
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one and therefore has an inverse function. The table below shows domains
chosen on which each function is one-to-one:
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Note that in each case, although the domain has been restricted, the
entire range of the original function is retained.

Note also that in each case the restricted domain (sometimes called
the principal domain) is the result of choice. Other choices might be pos-
sible, and in the case of the secant and cosecant functions no universal
agreement exists. The choice used here is the one most commonly made
in elementary calculus texts.

Definitions of inverse trigonometric functions:
1. Inverse sine f (x) = sin−1 x is defined by y = sin−1 x if and only if  

x = sin y with − 1 ≤ x ≤ 1 and . The values the func- 

tion takes on lie in quadrants I and IV.
2. Inverse cosine f (x) = cos−1 x is defined by y = cos−1 x if and

only if x = cos y with − 1 ≤ x ≤ 1 and 0 ≤ y ≤ π. The values the
function takes on lie in quadrants I and II.

3. Inverse tangent f (x) = tan−1 x is defined by y = tan−1 x if and only

if x = tan y with x ∈ R and . The values the func-

tion takes on lie in quadrants I and IV.
4. Inverse cosecant f (x) = csc−1 x is defined by y = csc−1 x if and

only if x = csc y with either x ≤ − 1 and or x ≥ 1 andπ < ≤y
3

2

p

− < <p p

2 2
y

− ≤ ≤p p

2 2
y



. The values the function takes on lie in quadrants I

and III.
5. Inverse secant f (x) = sec−1 x is defined by y = sec−1 x if and only

if x = sec y with either x ≤ −1 and or x ≥ 1 and

. The values the function takes on lie in quadrants I

and III.

6. Inverse cotangent f (x) = cot−1 x is defined by y = cot−1 x if and
only if x = cot y with x ∈ R and 0 < y < π. The values the func-
tion takes on lie in quadrants I and II.

Example 9.1: Evaluate (a) ; (b) .

(a) is equivalent to . The 

only solution of the equation on the interval is ; hence

.

(b) is equivalent to . The

only solution
of the equation on the interval is ; hence

.

Example 9.2: Evaluate (a) ; (b) .

(a) is equivalent to . The only so-

lution of the equation on the interval is ; hence .

(b) is equivalent to . The

only solution of the equation on the
interval is ; hence
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The inverse trigonometric functions are also referred to as the arc
functions. In this notation:

Example 9.3: Evaluate arctan 1.

y = arctan 1 is equivalent to tan y = 1, . The only solution of

the equation on the interval is ; hence arctan 1 = .

Trigonometric Identities

An identity is a statement that two quantities are equal that is true for all
values of the variables for which the statement is meaningful.

The basic trigonometric identities are repeated below for reference:
1. Pythagorean Identities. For all t for which both sides are defined:

2. Reciprocal Identities. For all t for which both sides are defined:

3. Quotient Identities. For all t for which both sides are defined:

4. Identities for Negatives. For all t for which both sides are de-
fined:

sin(− t) = −sin t cos(− t) = cos t tan(− t) = −tan t
csc(− t) = −csc t sec(− t) = sec t cot(− t) = −cot t

The basic trigonometric identities are used to reduce trigonometric
expressions to simpler form.

Example 9.4: Simplify .

From the Pythagorean identity 1 −
cos2 a = sin2 a. Hence,
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To verify that a given statement is an identity, show that one side can be
transformed into the other by using algebraic techniques, including sim-
plification and substitution, and trigonometric techniques, frequently in-
cluding reducing other functions to sines and cosines.

Example 9.5: Verify that is an identity.

Starting with the left side, the first step is to reduce to sines and cosines:

If a statement is meaningful yet not true for even only one value of
the variable or variables, it is not an identity. To show that it is not an iden-
tity, it is sufficient to find one value of the variable or variables that would
make it false.

Example 9.6: Show that sin t + cos t = 1 is not an identity.

Although this statement is true for some values of t, for example, t = 0, it
is not an identity. For example, choose t = π/4. Then

Solving Trigonometric Equations

Trigonometric equations can be solved by a mixture of algebraic and
trigonometric techniques, including reducing other functions to sines and
cosines, substitution from known trigonometric identities, algebraic sim-
plification, and so on.

Example 9.7: Find all solutions of .

First find all solutions in the interval [0,2π): Start with

Since cosine is positive in quadrants I and IV, there is also a solution in
quadrant IV with reference angle π/3, namely 2π − π/3 = 5π/3.
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Extending to the entire real line, since cosine is periodic with period
2π, all solutions can be written as π/3 + 2πn, 5π/3 + 2πn, n any integer.

Example 9.8: Find all solutions in the interval [0,2π) for 
5 tan t = 3 tan t − 2.

First reduce this to a basic trigonometric equation by isolating the quan-
tity tan t.

2 tan t = −2
tan t = −1

Now find all solutions of this equation in the interval [0, 2π). Start with
tan−1 1 = π/4. Since tangent is negative in quadrants II and IV, the solu-
tions are the angles in these quadrants with reference angle π/4. These
are π − π/4 = 3π/4 and 2π − π/4 = 7π/4.

Sum, Difference, Multiple,
and Half-Angle Formulas

Sum and Difference Formulas for sines, cosines and tangents: Let u and
v be any real numbers; then

Example 9.9: Calculate an exact value for .

Noting that , apply the difference formula for sines:

sin sin

sin cos cos sin

p p p

p p p p

12 3 4

3 4 3 4

3

2

1

2

1

2

1

2

3 1

2 2

6 2

4

= −





= −

= ⋅ − ⋅

= − = −

p p p

12 3 4
= −

sin
p

12

tan( )
tan tan

tan tan
   tan( )

tan tan

tan tan
u v

u v

u v
u v

u v

u v
+ = +

−
− = −

+1 1

sin( ) sin cos cos sin sin( ) sin cos cos sin

cos( ) cos cos sin sin cos( ) cos cos sin sin

u v u v u v u v u v u v

u v u v u v u v u v u v

+ = + − = −
+ = − − = +
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Cofunction Formulas for the trigonometric functions: Let q be any real
number; then 

Double-Angle Formulas for sines, cosines, and tangents: Let q be any
real number; then 

Half-Angle Identities for sine and cosine: Let u be any real number; then

Half-Angle Formulas for sine, cosine, and tangent: Let A be any real
number; then

The sign of the square root in these formulas cannot be specified in gen-
eral; in any particular case it is determined by the quadrant in which A/2
lies.

Example 9.10: Given , find and .

Use the half-angle formulas for sine and cosine. Since , di-

viding all sides of this inequality by 2 yields . Therefore

lies in quadrant II and the sign of is to be chosen positive, while

the sign of is to be chosen negative.cos
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A triangle that contains no right angles is called an oblique triangle.
The six parts of the triangle ABC are the three sides a, b, and c, together
with the three angles a, b, and g.

Solving a triangle is the process of determining all the parts of the
triangle. In general, given three parts of a trian-
gle, including at least one side, the other parts
can be determined. (Exceptions are cases where
two possible triangles are determined or where
no triangle can be shown to be consistent with
the given data.)

With right triangles one part is known from
the outset to be an angle of 90°. Given either
two sides, or one side and one of the acute an-
gles, the other parts can be determined using the
definitions of the trigonometric functions for acute angles, the Pythagore-
an Theorem, and the fact that the sum of the three angles in a plane tri-
angle is 180°.

Triangles

The conventional notation for a triangle ABC is shown in Figure 9-1.

Figure 9-1
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Example 9.11: Given a right triangle ABC with c = 20 and a = 30°, solve
the triangle.

Here it is assumed that g = 90°. 
Solve for b:

Since a + b + g = 180°, b = 180° − a − g = 180° − 30° − 90° = 60°.
Solve for a:

In the right triangle ABC, , hence a = c sin a = 20 sin 30° = 10.
Solve for b:

From the Pythagorean theorem, c2 = a2 + b2; hence 

Oblique triangles are solved using the law of sines and the law of
cosines. 

Law of Sines: In any triangle, the ratio of each side to the sine of the an-
gle opposite that side is the same for all three sides:

Law of Cosines: In any triangle, the square of any side is equal to the
sum of the squares of the other two sides, diminished by twice the prod-
uct of the other two sides and the cosine of the angle included between
them:

When solving triangles, the law of cosines is most often used when
one angle and two sides are known. Otherwise, the law of sines is usual-
ly more appropriate.

Example 9.12: Solve the triangle ABC, given a = 23.9°, b = 114°, and 
c = 82.8.

Since two angles are given the law of sines it is the most appropriate
formula to use.
Solve for g:
a + b + g = 180°, g = 180° − a − b = 180° − 23.9° − 114° = 42.1°.

a b c bc

b a c ac

c a b ab

2 2 2

2 2 2

2 2 2

2

2

2

= + −

= + −

= + −

cos

cos

cos

a

b

g

a b a c b c

sin sin sin sin sin sina b a g b g
= = =

b c a= − = − = =2 2 2 220 10 300 10 3

sin a = a

c
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For any point P, q is an angle formed by the po-
lar axis and the ray connecting the pole to P, and
r is the distance measured along this ray from the
pole to P. For any ordered pair (r,q), if r is posi-
tive, take q as an angle with vertex the pole and
initial side the polar axis, and measure r units
along the terminal side of q. If r is negative, mea-
sure �r� units along the ray directed opposite to
the terminal side of q. Any pair with r = 0 repre-
sents the pole. In this manner every ordered pair
(r,q) is represented by a unique point.

Solve for a (using the law of sines):

Solve for b (using the law of sines again):

Polar Coordinates

A polar coordinate system (Figure 9-2) specifies points in the plane in
terms of directed distances r from a fixed point called the pole and angles
q measured from a fixed ray (with initial point the pole) called the polar
axis. The polar axis is the positive half of a number line, drawn to the right
of the pole. 

b c
b

c

sin sin
;

sin

sin

. sin

sin .b g

b

g
= = = = hence 

82 8 114

42 1
113

o

o

a c
a

c

sin sin
;

sin

sin

. sin .

sin .
.

a g

a

g
= = = = hence 

82 8 23 9

42 1
50 0

o

o
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Example 9.13: Graph the points specified by (3,π/3) and (−3,π/3) (Fig-
ure 9-3).
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Figure 9-3

The polar coordinates of a point are not unique, however. Given point
P, there is an infinite set of polar coordinates corresponding to P, since there
are an infinite number of angles with terminal sides passing through P.

Example 9.14: List four alternative sets of polar coordinates corre-
sponding to the point P(3,π/3).
Adding any multiple of 2π yields an angle coterminal with a given angle;
hence (3,7π/3) and (3,13π/3) are two possible alternative polar coordi-
nates. Since π + π/3 = 4π/3 has terminal side the ray opposite to π/3, the
coordinates (−3,4π/3) and (−3,10π/3) are further alternative polar coor-
dinates for P.

If a polar coordinate system is superimposed upon a Cartesian coor-
dinate system, as in Figure 9-4, the transformation relationships below
hold between the two sets of coordinates.



If P has polar coordinates (r,q)
and
Cartesian coordinates (x,y), then

Figure 9-4

Example 9.15: Convert (6,2π/3) to Cartesian coordinates.

Since r = 6 and q = 2π/3, applying the transformation relationship yields

Thus the Cartesian coordinates are .

Example 9.16: Convert (−5, −5) to polar coordinates with r > 0 and 
0 ≤ q ≤ 2p.

Since x = −5 and y = −5, applying the transformation relationships
yields

Since r is required to be positive, . Since the given point
lies in quadrant III, q = 5π/4. The polar coordinates that satisfy the giv-
en conditions are .

Any equation in the variables r and q may be interpreted as a polar
coordinate equation. Often r is specified as a function of q.

5 2 5 4, p( )
r = =50 5 2

r x y
y

x
2 2 2 2 25 5 50

5

5
1= + = − + − = = = −

−
=( ) ( ) tanq

−( )3 3 3,

x r y r= = = − = = =cos cos sin sinq p q p6 2 3 3 6 2 3 3 3

x r y r

r x y

y

x
x

= =

= +

= ≠

cos sin

tan ( )

q q

q

2 2 2

0  
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In This Chapter

✔ Sequences
✔ Series
✔ Series Identities
✔ Arithmetic Sequences and Series
✔ Geometric Sequences and Series
✔ Binomial Theorem

Sequences

A sequence is a function with domain the natu-
ral numbers (infinite sequence) or some subset of
the natural numbers from 1 up to some larger
number ( finite sequence). The notation f(n) � an
is used to denote the range elements of the func-
tion: the a1, a2, a3, … are called the first, second,
third, etc., terms of the sequence, and an is re-
ferred to as the nth term. The independent vari-
able n is referred to as the index. Unless other-
wise specified a sequence is assumed to be an
infinite sequence.

Example 10.1: Write the first four terms of the sequence specified by 
an � 2n.

Chapter 10

Sequences
and Series
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a1 � 2 ⋅ 1, a2 � 2 ⋅ 2, a3 � 2 ⋅ 3, a4 � 2 ⋅ 4. The sequence would be writ-
ten 2 ⋅ 1, 2 ⋅ 2, 2 ⋅ 3, 2 ⋅ 4,… , or 2, 4, 6, 8, … .

Example 10.2: Write the first four terms of the sequence specified by 
an � (�1)n.
a1 � (�1)1, a2 � (�1)2, a3 � (�1)3, a4 � (�1)4. The sequence would
be written (�1)1, (�1)2, (�1)3, (�1)4…, or �1, 1, �1, 1,… .

Given the first few terms of a sequence, a common exercise is to de-
termine the nth term, that is, a formula which generates all the terms. In
fact such a formula is not uniquely determined, but in many cases a sim-
ple one can be developed.

Example 10.3: Find a formula for the nth term of the sequence 1, 4, 9,
16,… .
Notice that the terms are all perfect squares, and the sequence could be
written 12, 22, 32, 42, … . Thus the nth term of the sequence can be giv-
en as an � n2.

A sequence is defined recursively by specifying the first term and
defining later terms with respect to earlier terms. 

Example 10.4: Write the first four terms of the sequence defined by 
a1 � 3, an � an �1 � 7, n � 1.

For n � 1, a1 � 3.
For n � 2, a2 � a2�1 � 7 � a1 � 7 � 3 � 7 � 10.
For n � 3, a3 � a3�1 � 7 � a2 � 7 � 10 � 7 � 17.
For n � 4, a4 � a4�1 � 7 � a3 � 7 � 17 � 7 � 24.
The sequence can be written 3, 10, 17, 24, … .

Series

A series is the indicated sum of the terms of a sequence. Thus if a1, a2,
a3,… , am are the m terms of a finite sequence, then associated with the
sequence is the series given by a1 � a2 � a3 �… � am. Series are often
written using summation notation:

a a a a am k
k

m

1 2 3
1

+ + + + =
=

∑...
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Here Σ is called the summation symbol, and k is called the index of sum-
mation or just the index. The right-hand side of this definition is read, “the
sum of the ak, with k going from 1 to m.”

Example 10.5: Write in expanded form: .

Replace k, in turn, with the integers from 1 to 5 and add the results:

Series Identities

Arithmetic Sequences and Series

A sequence of numbers an is an arithmetic sequence if successive terms
dif-fer by the same constant, called the common difference. Thus an �
an�1 � d and an � an �1 � d for all terms of the sequence. It can be
proved that for any arithmetic sequence, an � a1 � (n � 1)d.

An arithmetic series is the indicated sum of the terms of a finite arith-

metic sequence. The notation Sn is often used, thus, . For an
arithmetic series,

Example 10.6: Write the first 6 terms of the arithmetic sequence 4, 9,….
Since the sequence is arithmetic, with a1 � 4 and a2 � 9, the com-

S
n

a a S
n

a n dn n n= +( ) = + −( )[ ]
2 2

2 11 1
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1
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n n
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n n n
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k k
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k
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k
k

n

k
k

n

k

n

k

n

k

n

k
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∑ ∑ ∑ ∑ ∑ ∑
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1 1 1 1 1 1

1 1 1

1

2

1

3

1

2
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2 2
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mon difference d is given by a2 � a1 � 9 � 4 � 5. Thus, each term can
be found from the previous term by adding 5, hence the first 6 terms are
4, 9, 14, 19, 24, 29.

Example 10.7: Find the sum of the first 20 terms of the sequence of the
previous example.

To find S20, either of the formulas for an arithmetic series may be
used. Since a1 � 4, n � 20, and d � 5 are known, the second formula is
more convenient:

Geometric Sequences and Series

A sequence of numbers an is called a geometric sequence if the quotient
of successive terms is a constant, called the common ratio. Thus an ÷ an

� 1 � r or an � ran � 1 for all terms of the sequence. It can be proved that
for any geometric sequence, an � a1r n � 1.

A geometric series is the indicated sum of the terms of a geometric

sequence. For a geometric series with r ≠ 1, .

Example 10.8: Write the first 6 terms of the geometric sequence 4, 6, … .
Since the sequence is geometric, with a1 � 4 and a2 � 6, the com-

mon ratio r is given by a2 ÷ a1 � 6 ÷ 4 � 3/2. Thus, each term can be
found from the previous term by multiplying by 3/2; hence the first 6
terms are 4, 6, 9, 27/2, 81/4, 243/8.

Example 10.9: Find the sum of the first 8 terms of the sequence of the
previous example.

Use the sum formula with a1 � 4, n � 8, r � 3/2:

S a
r

r

S

n

n

= −
−

= −
−

=

1

8

8

1

1

4
1 3 2

1 3 2

6305

32

( )

( )

S a
r

rn

n

= −
−1

1

1

S
n

a n d

S

n = + −[ ]

= ⋅ + −[ ] =

2
2 1

20

2
2 4 20 1 5 1030

1

20

( )

( )
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Binomial Theorem

Binomial expansions, that is, binomials or other two-term quantities
raised to integer powers, are of frequent occurrence. If the general bino-
mial expression is a � b, then the first few powers are given by:

Many patterns have been observed in the sequence of expansions of
(a � b)n. For example:

1. There are n � 1 terms in the expansion of (a � b)n.
2. The exponent of a starts in the first term as n, and decreases by

1 in each succeeding term down to 0 in the last term.
3. The exponent of b starts in the first term as 0, and increases by

1 in each succeeding term up to n in the last term.
The Binomial Theorem gives the expansion of (a � b)n. In its most

compact form this is written as follows:

The symbols are called the binomial coefficients, defined as:

:

For natural numbers n, n! (pronounced n factorial) is defined as the
product of the natural numbers from 1 up to n. Then

1! � 1 2! � 1 ⋅ 2 � 2 3! � 1 ⋅ 2 ⋅ 3 � 6 4! � 1 ⋅ 2 ⋅ 3 ⋅ 4 � 24

and so on. Separately, 0! is defined to equal 1.

Example 10.10: Find the fifth term in the expansion of (a � b)16.

Here n � 16 and j � 1 � 5, thus j � 4 and the term is given by 

n

j
a b a b a b a bn j j
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Like terms, 5
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