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Did Fermat prove Fermat’s Last Theorem? 

 
By Nguyễn Tri Phương 
For my parents, HP & KP 

 
Abstract  The aim of this paper is to try for Fermat’s lost proof. 

 

I. INTRODUCTION 

 In about 1637, Pierre de Fermat (1601-1665), a French mathematician, 

annotated the following statement in the margin of his copy of Bachet’s translation of 

Diophantus’ Arithmetica 

 “Cubum autem in duos cubos, aut quadratoquadratum in duos 

quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatum in 

duos ejusdem nominis fas est dividere: cujes rei demonstrationem mirabilem sane 

detexi. Hanc marginis exiguitas non caperet.” 

 Nowadays, the above comment is comprehended as follows:  

There are no nonzero integers , , ,a b c n  with 2n   such that n n na b c  .  

I have discovered a truly remarkable proof of this proposition, which the margin 

is too narrow to contain. 

 Unfortunately, they have not found the trace of his proof of this assertion and 

despite of many mathematicians’ attempts, over 350 years, the problem remained 

unsolved. Nevertheless, they have still called it Fermat’s Last Theorem (FLT), which 

has become a source of inspiration for progression of mathematics. It was not until in 

1994 Professor Andrew John Wiles proved successfully a special case of the 

Shimura-Taniyama conjecture that implies FLT. Due to complicatedness of Wiles' 

proof, most people in the world have believed that Fermat had a flaw in his proof. 

However, with a different viewpoint, we shall present an elegant proof of FLT in this 

paper. 

 
II. NECESSARY THEOREMS FOR THE PROOF 

We shall be using several theorems of elementary number theory as follows: 

THEOREM 2.1.  If , ,a b m  and n  are integers, and if c | a  and c |b , then c | ma nb  
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Proof.  Since c | a  and  c |b , there are integers k  and l  such that a kc  and b lc . 

Therefore, ( )ma nb mkc nlc mk nl c      i.e. c | ma nb  

THEOREM 2.2. If ,a b  and k  are integers, then  ( , ) ( , )GDC a kb b GDC a b    

Proof.  If m  is a common divisor of a kb  and b , by theorem 2.1, m  divides 

( )a kb kb a    so that m  is a common divisor of a  and b . Moreover, if l  be a 

common divisor of a  and b , by theorem 2.1, l | a kb  so that l  is a common divisor of 

a kb  and b . Therefore, ( , ) ( , )GDC a kb b GDC a b  . 

COROLLARY 2.2.1. If ( , ) 1GDC a b  , then ( , ) ( , ) 1GDC a b b GDC a b b    . 

THEOREM 2.3. If ( , ) 1GDC a b   and c | a , then ( , ) 1GDC c b   .  

Proof.  Let  ( , )GDC c b d . Then d | c , d |b , whence, in view of c | a , we obtain d |a . 

Consequently, d  is a common divisor of a  and b . But ( , ) 1GDC a b  , thus 1d  ,  
which proves that ( , ) 1GDC c b  . 

THEOREM 2.4..  If  ,a b  and c  are integers such that ( , ) 1GCD a b   and a | bc ,  

then a | c . 

Proof.  Since ( , ) 1GDC a b  , there are integers k  and l  such that 1ka lb  . Multiplying 

both sides of this expression by c , we have kca lbc c  . Since both a  and bc  are 

divisible by a , by theorem 2.1, a  divides kca lbc c  . Therefore, a | c . 

THEOREM 2.5. If ,a b  and c  are integers such that ( , ) ( , ) 1GDC a b GCD a c  ,  

then ( , ) 1GDC a bc  .  

Proof. Let ( , )d GDC a bc  and 1 ( , )d GDC b d . Then d | a , d |bc , 1d |b  and 1d | d , 

whence, we obtain 1d | a . From 1d | a , 1d |b  and ( , ) 1GDC a b   it follows that 1 1d  . 

Thus, ( , ) 1GDC b d  . From d | bc , by theorem 2.4, we have d | c . From d | a , d | c  and 

( , ) 1GDC a c  , we conclude that 1d   i.e. ( , ) 1GDC a bc  . 

COROLLARY 2.5.1. If ( , ) 1GDC a b   and n , m  are natural numbers, then 

( , ) 1n mGDC a b  . 

Proof.  By an easy induction. 

THEOREM 2.6.  If  ,a b  are positive integers such that a |b  and b | a  then a b . 

Proof.  Since a | b  and b | a , there are integers k  and l  such that a kb  and b la . 

This implies that a kla  so that 1kl  . Therefore, either 1k l   or 1k l   . It follows 

that either a b  or a b  . Since  , 0a b  , we have a b . 
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THEOREM 2.7. If ,a b  are of different parity and ( , ) 1GDC a b  , then 

( , ) 1GDC a b a b   . 

Proof.  Let ( , )d GDC a b a b   . Then d  is odd and there are integers k and l  such 

that ,a b kd  a b ld  , where ,k l  are both odd and ( , ) 1GDC k l  . From here, we get 

( ) ,
2

k la d
  ( )

2
k lb d

 . This implies that d  is a common divisor of a  and b . Since 

( , ) 1GDC a b  , we have d |1 i.e. ( , ) 1GDC a b a b   . 

THEOREM 2.8.  If ,a b  are both odd and ( , ) 1GDC a b  , then ( , ) 1
2 2

a b a bGDC  
 . 

Proof.  Let ( , )
2 2

a b a bd GDC  
 . Then there are integers k and l  such that ,

2
a b kd



2
a b ld

 , where ( , ) 1GDC k l  . From here, we get ( ) ,a k l d   ( )b k l d  . This 

implies that d  is a common divisor of a  and b . Since ( , ) 1GDC a b  , we have d |1  i.e. 

( , ) 1
2 2

a b a bGDC  
 . 

THEOREM 2.9.  If ,a b  are both odd and ( , ) 1
2 2

a b a bGDC  
 , then ( , ) 1GDC a b  . 

Proof.  Let ( , )d GDC a b . Then d  is odd and there are integers k and l  such that 

,a kd b ld , where ,k l  are both odd and ( , ) 1GDC k l  . From here, we get 

( ) ,
2 2

a b k l d 
  ( )

2 2
a b k l d 

 . This implies that d  is a common divisor of 
2

a b
 and 

2
a b . Since ( , ) 1

2 2
a b a bGDC  

 , we have d |1 i.e. ( , ) 1GDC a b  . 

THEOREM 2.10.  If ,a b  are both odd and ( , ) 1GDC a b  , then 
2 2

( , ) 1
2

a bGDC ab 
 . 

Proof. By theorem 2.8, we have ( , ) 1
2 2

a b a bGDC  
 . By corollary 2.5.1, we have  

2 2(( ) , ( ) ) 1
2 2

a b a bGDC  
   or  

2 2 2 2

2 2(( ), ( )) 1.
2 2

a b a bab ab
GDC

  
  By theorem 2.9, 

we conclude that
2 2

( , ) 1
2

a bGDC ab 
 . 

THEOREM 2.11.  If ( , ) 1GCD a b   and n , m  are natural numbers, then 

(( ) , ) 1n mGCD a b b    and  (( ) , ) 1n mGCD a b b  . 
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Proof. It follows directly from corollary 2.2.1 and corollary 2.5.1. 

THEOREM 2.12.  If ,a b  are of different parity and ( , ) 1GDC a b   and n  is a natural 

number, then ( , ) 1n n n nGDC a b a b   .     

Proof. It follows directly from corollary 2.5.1 and theorem 2.7 

THEOREM 2.13.  If n  is an odd natural number and m  is a natural number, then 
m ma b  is a divisor of  mn mna b . 

Proof.  Let k  be an arbitrary divisor of m ma b . Then there is an integer l  such that 
m ma b lk   or m ma b lk   . Raising both sides of this expression to the thmn  power, 

we have, by the binomial theorem, ( 1) 1 2 1( ... )mn mn m n m n n n na b b l b l k l k k         or
( 1) 1 2 1( ... )mn mn m n m n n n na b b l b l k l k k        . This means k  is a divisor of mn mna b . The 

theorem is proved.   

THEOREM 2.14.  If n  is an even natural number and m  is a natural number, then 
m ma b  is a divisor of  mn mna b . 

Proof.  as that of theorem 2.13. 

THEOREM 2.15.  Given equation 1
0 1 1... 0m m

m ma x a x a x a
      (1), where m  is a 

natural number and  0 1, .... ma a a  are integers with 0 0a   and 0ma  .  

If k
s

 is a rational root of equation (1), where s  is a natural number, k  an integer and 

( , ) 1GCD k s   then k  and  s  are respectively divisors of  ma  and 0a  

Proof.   From equation (1), for kx
s

  , we obtain 

 1 2 1
0 1 1( ... )m m m m

m ma k a k a ks a s s  
      

 1 2 1
0 1 1( ... )m m m m

m ma s a k a k s a s k  
      

The first of these equations proves that s  is a divisor of 0
ma k . From ( , ) 1GCD k s  , by 

corollary 2.5.1 and theorem 2.4, we have s  is a divisor of 0a . The second shows that 

k  is a divisor of m
ma s . Similarly, from ( , ) 1GCD k s  , we obtain k  is a divisor of ma .     

THEOREM 2.16. Given 2 2 2 2x y z m    with z  odd and ( , , ) 1GCD x y z  , there exist 

integers  , ,u v w  and  t  such that  
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2 2 2 2 2

2 2 2 2 2

2( )
2( )

x uw vt
y ut vw
z u v w t
m u v w t

 
 

   

   

 (2.1) 

Proof. We quote from [2].  

Set 1 2
xx   and 1 2

yy  . Then 

 2 2
1 1 ( )( )

2 2
m z m zx y  

   

 Set 1 1( , )f x y , 1 ( , )
2

m zf f 
  and 2 ( , )

2
m zf f 

 . By an easy argument one sees that 

1 2( , ) 1f f  , and  1 2f f f . Set 1
2

xx
f

 , 1
2

yy
f

 , 1 2
12

m zz
f


  and 2 2
22

m zz
f


 . Then  

 2 2
2 2 1 2x y z z   

where 2 2( , ) 1x y  . Note that 1z  and 2z  are not necessarily relatively prime.  

Let  

 2 2
1

n

j
j

x iy X


   

be a factorization into Gaussian primes. Note that 2 2x iy  cannot be divisible  

by a rational prime p . For if so, then 2 2( )x iy a ib
p


  , 2x pa , 2y pb , a con- 

tradiction, as 2 2( , ) 1x y  . Hence, none of the 'jX s  is a rational prime 3(mod 4) .  

Now 

 2 2
1

n

j
j

x iy X


   

and  1 2
1

( )
n

j j
j

z z X X


 , 1
1

( )
m

j j
j

z X X


 , 2
1

( )
n

j j
j m

z X X
 

   

if we write the 'jX s  in a suitable order. Set 

 1 1 1 1
1 1

,
m n

j j
j j m

u iv X w it X
  

      

Then  
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 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1( )( ) , ( )( ) , ( )( )z u iv u iv z w it w it x iy u iv w it           

Since, given any jX  dividing 1 1u iv , we cannot have 1 1( )jX u iv | 2 2( )x iy ,  

(for then a rational prime would divide 2 2x iy ), we have 1 1 1 2 2( , )u iv GDC z x iy    

Similarly, 1 1 2 2 2( , )w it GDC z x iy   .  

Setting 1 1u f u , 1 1v f v , 2 1w f w  and 2 1t f t , we now easily obtain equations (2.1) . 

 

III. RESTATING AND PROVING FLT     

Though Fermat stated his theorem in positive integers, we have believed that 

he constructed it from rational numbers. Therefore, our approach is the curve 

1 0n nx y     and  FLT  is  restated in the form  

THEOREM  

There are no nonzero rational points on the curve 1 0n nx y    for any integer 

exponent 2n  . 

Proof.  Obviously, if FLT is true for a particular n , then it is also true for all exponents 

that are multiples of n . Since every integer n  greater than 2 is divisible by either 4 or 

some odd integer, it shall suffice to demonstrate the validity of the theorem when n  is 

any odd number greater than 2 and when 4n  .  

We shall use proof by contradiction. That is, we shall assume that there exists a 

certain nonzero rational point. Then we show that this implies a quadratic equation 

both roots of which are omitted by their nonsensicality.  

Suppose that for any odd number n  greater than 2 or 4n  , there is a certain 

nonzero rational point 0 0 0( , )M x y  on the curve ( ) : 1 0n nL x y    There is no loss of 

generality in assuming that 0
ax
c

 , 0
by
c

  , where , ,a b c  are nonzero integers and 

relatively prime in pairs.  

Since ( , ) 1GCD a b  , there only exist the two following cases: 

Case 1: The numbers ,a b  are of different parity.  

Case 2: The numbers ,a b  are both odd. 

The following remark is worthwhile for case 2. 
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For any odd number n  greater than 2, if n n na b c  , then we get ( )n n na c b   .  Let 

A c , B b  , C a . Then n n nA B C  , where ,A B  are of different parity. This is 

case 1.  

If 4 4 4a b c   then c  is even. Let 2c u , where u  is a nonzero integer. Then 

4 4 4(2 )a b u   or 
4 4

48
2

a b u
 . This is impossible because 

4 4

2
a b  is odd but 48u  

even.  

 Therefore, we are only concerned case 1. From now on, we assume that the 

numbers ,a b  are of different parity and relatively prime.  

Let 0

0

x am
y b

  .  Then it is easy to see that 0, 1m m   and 1m   . 

In the plane Oxy , if we call ( )  the tangent  to ( )L  at 0 0 0( , )M x y , ( )C  the circle with 

center at the origin and passes through  0 0 0,M x y , ( )  the tangent  to ( )C  at 

0 0 0( , )M x y , then the equations of ( )  and ( )  are respectively 
1

0 0( )ny m x x y     
and 0 0( )y m x x y    . We shall examine the intersection of the straight line ( ) and 

the circle ( )C . 

If the straight line( ) coincides with the straight line ( ) , then 

 1nm m    (3.1) 

or 

 2 1 0nm     (3.2) 

By theorem 2.15, the rational solutions of equation (3.2)  may be 1m   or 1m   , if 

exist. For this reason, the straight line ( ) intersects the circle ( )C  at  two distinct 

points  0 0 0( , )M x y  and  1 1 1( , )M x y  such that  

 
2 2 1

0 0
1 2 2

( 1) 2
1

n n

n

m x m yx
m

 



 



 (3.3) 

 
1 2 2

0 0
1 2 2

2 (1 )
1

n n

n

m x m yy
m

 



 



 (3.4) 

From (3.3), (3.4)  and 0 0y  ,   

 
2 1 1

1
2 2

0

2
1

n n

n
x m m m
y m

 



 



 (3.5) 
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2 2

1
2 2

0

2 1
1

n n

n
y m m
y m





  



 (3.6) 

If 1 0x  , then 2 2 22 1 0n nm m    . 

If 1 0y  , then 2 2 2 1 0n nm m    . 

These equations have no rational solutions. Hence, 1 0x   and 1 0y  .  

Let 1

0

x d
y e

  and 1

0

y r
y s

 , where ,d ,e ,r s  are nonzero integers, ( , ) 1GCD d e   and 

( , ) 1GCD r s  .  Then from (3.5)  and (3.6) , we obtain the following system of equations: 

 2 1 2 2 12 0n n nem dm em em d        (3.7) 

 2 2( ) 2 0n nr s m sm r s      (3.8) 

Since am
b

  is a rational solution of equation(3.7) , by theorem 2.15, we have d pa  

and e qb , where ,p q  are nonzero integers and ( , ) 1GCD p q  . Thus, 

 
2 1 1

2 2

2
1

n n

n

d pa p m m mm
e qb q m

 



 
  


 (3.9) 

Cancelling 0m   on both sides of equation (3.9) ,  

 
2 2 2

2 2

2 1
1

n n

n

p m m
q m

 



 



 (3.10) 

or 

 2 2 2( ) 2 0n np q m qm p q       (3.11) 

If 0r s  , we get from (3.8)  

 1 0nm    (3.12) 

If 0r s  , we get from (3.8)  

 2 1 0nm     (3.13) 

If 0p q  , we get from (3.11)  

 1 0nm    (3.14) 

If 0p q  , we get from (3.11)  



Subjects: Number theory (math.NT)                          MSC classes: 11D41                         Comments: 16 pages 

Nguyễn Tri Phương - phuong.tringuyen@gmail.com 
54 Le Dai Hanh street, ward 7, district 11, Ho Chi Minh city, Viet Nam Page 9 
 

 2 1 0nm     (3.15) 

The rational solutions of these four equations may be 1m   or 1m   , if exist.  

Consequently, ,r s ,r s p q  and p q  are nonzero integers. 

From (3.8)  and (3.11) ,  

 2 22 ( )n nsm r s m r s     (3.16) 

 2 2 22 ( )n nqm p q m p q      (3.17) 

Multiplying two equations (3.16), (3.17) , 

   2 2 2 2 2 24 ( ) ( )n n nsqm r s m r s p q m p q          (3.18) 

Let 2 2nm t  . Then, by ( )( ) 0p q r s   , equation (3.18)  may be rewritten as a 

quadratic equation for t  

 2( )( ) 2( ) ( )( ) 0p q r s t pr qs t p q r s         (3.19) 

Two roots of equation (3.19) are  

 1 1t    (3.20) 

and 

 2
( )( )
( )( )
p q s rt
p q s r
 


 

 (3.21) 

If 1t t , this implies that 2 2 1 0nm    . Since this equation has no rational solutions, the 

first root is omitted.  

Next, we shall verify that the second root is also omitted by proving that it shall yield 

the fact that 1 1 2 24 ( )( )n n n n n na b a b a b      is not a nonzero integer. Indeed, if 2t t , from 

(3.16)  and (3.17) we deduce  

 ( )
( )

n q s rm
s p q





 (3.22) 

 2 ( )
( )

n s p qm
q s r

 



 (3.23) 

Dividing two equations (3.22), (3.23) ,  
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2 2 2

2
2 2 2

( )
( )

q s rm
s p q





 (3.24) 

Raising both sides of equation (3.24)  to the 2( 1)thn  power, 

 
2( 1) 1 1

2( 1)
2( 1) 1 1

( ) ( )
( ) ( )

n n n
n

n n n

q s r s rm
s p q p q

  


  

 


 
 (3.25) 

From (3.21)  and (3.25) , 

 
2( 1) 1 1

2( 1) 1 1

( )( ) ( ) ( )
( )( ) ( ) ( )

n n n

n n n

p q s r q s r s r
p q s r s p q p q

  

  

   


   
 (3.26) 

or 

 2( 1) 2 2( 1) 2( ) ( ) ( ) ( )n n n n n ns p q p q q s r s r         (3.27) 

From ( , ) 1GCD p q  , by theorem 2.11, we have 2 2(( ) , ) 1n nGCD p q q    and 
2 2 2(( ) , ) 1n nGCD p q q   . Hence, 2( 1)nq   is a divisor of 2( 1)ns 

 in view of theorem 2.4. 

Moreover, from ( , ) 1GCD s r  , we have 2( 1)ns   is a divisor of 2( 1)nq 
 in the same way. 

From these results, by theorem 2.6, we have 2( 1) 2( 1)n ns q  . Notice that we may always 

assume that ,p r  are nonzero integers and ,q s  positive integers for the fractions p
q

 

and r
s

  because the role of ,p r   are the same as the role of ,p r . Thus, we conclude 

that s q . Then, (3.21)  becomes 

 2 2 2 2( )( ) ( )( ) 0n na p q q r b p q q r         (3.28) 

Let 1 1n nb a f   , in which f  is a nonzero integer. Then (3.28)  becomes  

  2 1 2 2( )( ) 2 ( )( ) ( )( ) ( )( ) 0n np q q r f a p q q r f a p q q r p q q r              (3.29) 

Since ( )( ) 0p q q r   , expression (3.29)  may be considered as a quadratic equation 

for f . Since f  is a nonzero integer, the discriminant of equation (3.29) must be a 

perfect square. This means   

 2 2 2 2 2( )( )p q q r g    (3.30) 

where g  is a certain nonzero integer. 
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On the other hand, by substituting am
b

   in (3.10)  and  (3.6) , we get  

 
2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 1 2
1

n n n n n n

n n n

p m m a a b b
q m a b

    

  

   
 

 
 (3.31) 

 
2 2 2 2 2 2 2

2 2 2 2 2 2

2 1 2
1

n n n n n n

n n n

r m m a a b b
q m a b

   

  

     
 

 
 (3.32) 

Wherefrom follows, 

 
2 2 2 2

2 2 2 2

2 ( )n n

n n
a b a b qp r

a b

 

 


 


 (3.33) 

 
2 2

2 2 2 2

2( )( )n n n n

n n

a b a b qp r
a b

 

 

 
 


 (3.34) 

It is clear that p r  and p r  are nonzero integers. 

For any odd number n  greater than 2, since 2 2 2 2 2 2 2 2( , ) 1n n n nGCD a b a b       and, by 

theorem 2.14, 2 2a b  is a divisor of 2 2 2 2n na b  ,  we  have 2 2 2 2 2 2( , ) 1n nGCD a b a b   

in view of theorem 2.3. From (3.33)  it follows that 2 2 2 2n na b   is a divisor of q . 

Moreover, from (3.31)  and ( , ) 1GCD p q   we see q  is a divisor of 2 2 2 2n na b  . 

Therefore, by theorem 2.6, 

 2 2 2 2n nq a b    (3.35) 

From (3.33) , (3.34) and (3.35)  we find 

 2 2 2 22 ( )n np r a b a b     (3.36) 

 2 22( )( )n n n np r a b a b      (3.37) 

It is plain that  , ,p q r  and  
2 2

2
p r

 
are all odd. 

Besides, solving (3.28)  and (3.35)  as a system of two linear equations in two 

unknowns 2 2 ,na   2 2nb    

 2 2 ( )( )
2( )

n p q q ra
p r

  



 (3.38) 
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 2 2 ( )( )
2( )

n p q q rb
p r

  



 (3.39) 

Multiplying two expressions (3.38),(3.39) , 

 
2 2 2 2

2 2 2 2
2

( )( )
4( )

n n p q q ra b
p r

   



 (3.40) 

Multiplying both sides of expression (3.40)  by 24( ) 0p r   

  22 2 2 2 1 1( )( ) 2( ) n np q q r p r a b      (3.41) 

Substituting the value of p r  above in (3.41) ,  

  22 2 2 2 1 1 2 2( )( ) 4 ( )( )n n n n n np q q r a b a b a b         (3.42) 

Now, let us rewrite condition (3.30) as 

 
2 2 2 2

2 2 2 2 2( ) ( ) ( )
2 2

p r p rg q pr 
     (3.43) 

If 
2 2

2 0
2

p rq 
  , it means 2 2 2 2p q q r   , then from (3.24)  it follows that 2 1m  , 

which is contrary to the above assumption. 

If 
2 2

2 0
2

p rq 
  , then the quadruple 

2 2 2 2
2, , ,

2 2
p r p rg q pr

  
 

 
 is an integral 

solution of the equation 2 2 2 2x y z w   .  

Since 2 2a b , 2 2n na b   are respectively divisors of 2 4 2 4n na b  , 2 4 2 4n na b    and 
2 4 2 4 2 4 2 4( , ) 1n n n nGCD a b a b      , we have 2 2 2 2( , ) 1n nGCD a b a b    . Moreover,  

since 2 2a b , n na b  are respectively divisors of 2 2n na b , 
2 2n na b  and 

2 2 2 2( , ) 1n n n nGCD a b a b   , we see 2 2( , ) 1n nGCD a b a b   . Hence, 

( , ) 1
2 2

p r p rGCD  
 . This implies ( , ) 1GCD p r  , whence, by theorem 2.10, 

2 2

( , ) 1
2

p rGCD pr 
 . Therefore, by theorem 2.16, there exist integers , , ,i j k l  such that  

 2( )g jk il   (3.44) 



Subjects: Number theory (math.NT)                          MSC classes: 11D41                         Comments: 16 pages 

Nguyễn Tri Phương - phuong.tringuyen@gmail.com 
54 Le Dai Hanh street, ward 7, district 11, Ho Chi Minh city, Viet Nam Page 13 
 

 
2 2

2 2( )
2

p rq ik jl
    (3.45) 

 2 2 2 2pr i j k l     (3.46) 

 
2 2

2 2 2 2

2
p r i j k l

     (3.47) 

Adding two equations (3.46), (3.47)  and then dividing both sides of the result equation 

by 2, 

 2 2 2( )
2

p r i j
   (3.48) 

Solving (3.44)  and (3.45)  as a system of two linear equations in two unknowns ,k l   

 

2 2 2

2 2

2
4 2

q p r gi j
k

i j

 





 (3.49) 

 

2 2 2

2 2

2
2 4
g q p ri j

l
i j

 





 (3.50)  

From (3.36)  and (3.37) , we get 

 2 2 4 2 4 2 2 2( ) ( )
2

n np r a b a b 
   (3.51) 

 

2 2
2

2 2 2
2 2 2 2 2 2

( ) ( )2
22 ( )( )( )

4 4
n n n n n n

p r p rq
q p r a b a b a b a b   

     
         (3.52) 

From (3.30)  and (3.42) , we deduce 

   1 1 2 2 1 1 2 24 ( )( ) 4 ( )( ) 0n n n n n n n n n n n na b a b a b g a b a b a b g               (3.53) 

If 1 1 2 24 ( )( )n n n n n na b a b a b g      , then from (3.48), (3.49), (3.50)  (3.51)  and (3.52)  we 

find 

 
 2 2 2 2

2 2 2 2 2

( )( ) ( ) 2
( )

n n n n

n n

a b a b a b i abj
k

a b a b

 

 

   



 (3.54) 
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 2 2 2 2

2 2 2 2 2

( )( ) 2 ( )
( )

n n n n

n n

a b a b abi a b j
l

a b a b

 

 

   



 (3.55) 

Since 2 2 2 2 2 2 2(( )( ), ( ) ) 1n n n n n nGCD a b a b a b a b       , from (3.54), (3.55) , by theorem 
2.4, we have 

 2 2 2 2 2 2 2
1( ) 2 ( )n na b i abj h a b a b      (3.56) 

 2 2 2 2 2 2 2
22 ( ) ( )n nabi a b j h a b a b      (3.57) 

where 1h  and 2h  are nonzero integers. 

Squaring both sides of expression (3.56) , 

    22 2 2 2 2 2 2 4 2 4 2 2 4
1( ) 2(2 ) ( ) (2 ) ( )n na b i abj a b i abj h a b a b        (3.58) 

Squaring both sides of expression (3.57) , 

    22 2 2 2 2 2 2 4 2 4 2 2 4
2(2 ) 2(2 ) ( ) ( ) ( )n nabi abi a b j a b j h a b a b        (3.59) 

Adding two expressions (3.58),(3.59) , 

  2 2 2 2 2 2 2 2 2 4 2 4 2 2 4
1 2(2 ) ( ) ( ) ( ) ( )n nab a b i j h h a b a b        (3.60) 

From (3.48), (3.51)  and  (3.60) ,  it is easily seen that 

 2 2
1 2 1h h   (3.61) 

This is unreasonable.  

If 1 1 2 24 ( )( )n n n n n na b a b a b g       , then from (3.48), (3.49), (3.50)  (3.51)  and (3.52)  we 

find 

 
 2 2 2 2

2 2 2 2 2

( )( ) ( ) 2
( )

n n n n

n n

a b a b a b i abj
k

a b a b

 

 

   



 (3.62) 

 
 2 2 2 2

2 2 2 2 2

( )( ) 2 ( )
( )

n n n n

n n

a b a b abi a b j
l

a b a b

 

 

    



 (3.63) 

Since 2 2 2 2 2 2 2(( )( ), ( ) ) 1n n n n n nGCD a b a b a b a b       , from (3.62), (3.63) , by theorem 
2.4, we have 
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 2 2 2 2 2 2 2
3( ) 2 ( )n na b i abj h a b a b      (3.64) 

 2 2 2 2 2 2 2
42 ( ) ( )n nabi a b j h a b a b      (3.65) 

where 3h  and 4h  are nonzero integers. 

Squaring both sides of expression (3.64) , 

    22 2 2 2 2 2 2 4 2 4 2 2 4
3( ) 2(2 ) ( ) (2 ) ( )n na b i abj a b i abj h a b a b        (3.66) 

Squaring both sides of expression (3.65) , 

    22 2 2 2 2 2 2 4 2 4 2 2 4
4(2 ) 2(2 ) ( ) ( ) ( )n nabi abi a b j a b j h a b a b        (3.67) 

Adding two expressions (3.66), (3.67) , 

  2 2 2 2 2 2 2 2 2 4 2 4 2 2 4
3 4(2 ) ( ) ( ) ( ) ( )n nab a b i j h h a b a b        (3.68) 

From (3.48), (3.51)  and  (3.68) ,  it is easily seen that 

 2 2
3 4 1h h   (3.69) 

This is absurd. 

For 4n  , (3.31) , (3.33)  and  (3.34)  become, 

 
6 2 4 6

6 6

2p a a b b
q a b

 



 (3.70) 

 
2 2 2 2

6 6

2 ( )a b a b qp r
a b


 


 (3.71) 

 
2 2 4 4

6 6

2( )( )a b a b qp r
a b

 
 


 (3.72) 

Since 2 2a b  is a divisor of 6 6a b  and 6 6 6 6( , ) 1GCD a b a b   , we have 
2 2 6 6( , ) 1GCD a b a b   . Furthermore, since 4 4a b ,  6 6a b  are respectively divisors 

of 12 12a b , 12 12a b  and 12 12 12 12( , ) 1GCD a b a b   , we have 4 4 6 6( , ) 1GCD a b a b    . 

From (3.72)  it follows that 6 6a b  is a divisor of q . In addition, from (3.70)  and 
( , ) 1GCD p q  , we see q  is a divisor of 6 6a b . Therefore, by theorem 2.6, we 

conclude that  

 6 6q a b   (3.73) 
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From (3.71) , (3.72)  and (3.73)  we find 

 2 2 2 22 ( )p r a b a b    (3.74) 

 2 2 4 42( )( )p r a b a b     (3.75) 

It is evident that ( , ) 1
2 2

p r p rGCD  
 . This implies ( , ) 1GCD p r  , whence, by theorem 

2.10, 
2 2

( , ) 1
2

p rGCD pr 
 . Similarly, this case also yields a contradiction by the same 

reasoning used in the proof of the previous case. The theorem has been proved. 
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