About Surányi's Inequality

Mihály Bencze

Str. Harmanului 6, 505600 Sacele, Jud Brasov, Romania

Abstract. In the Miklós Schweitzer Mathematical Competition (Hungary) Professor János Surányi proposed the following problem, which is interesting and presents an aspect of a theorem. In this paper we present a new demonstration, some interesting applications and a generalization.

Theorem 1. (János Surányi). If $x_k > 0$ (k = 1, 2, ..., n) then the following inequality holds:

$$(n-1)\sum_{k=1}^{n} x_{k}^{n} + n\prod_{k=1}^{n} x_{k} \ge \left(\sum_{k=1}^{n} x_{k}\right) \left(\sum_{k=1}^{n} x_{k}^{n-1}\right).$$

Proof. Using mathematical induction, for n = 2 we obtain $x_1^2 + x_2^2 + 2x_1x_2 \ge (x_1 + x_2)^2$, which is true.

We suppose that is true for n and we prove for n + 1.

Because the inequality is symmetric and homogeneous we can suppose that $x_1 \ge x_2 \ge ... \ge x_{n+1}$ and $x_1 + x_2 + ... + x_n = 1$, so we must prove the following inequality:

$$n\sum_{k=1}^{n+1} x_k^{n+1} + (n+1)\prod_{k=1}^{n+1} x_k \ge \left(\sum_{k=1}^{n+1} x_k\right) \left(\sum_{k=1}^{n+1} x_k^n\right)$$

which can be written in the form

$$n\sum_{k=1}^{n} x_{k}^{n+1} + nx_{n+1}^{n+1} + nx_{n+1} \prod_{k=1}^{n} x_{k} + x_{n+1} \prod_{k=1}^{n} x_{k} - (1 + x_{n+1}) \left(\sum_{k=1}^{n} x_{k}^{n} + x_{n+1}^{n}\right) \ge 0$$

From the inductive condition holds

$$nx_{n+1}\prod_{k=1}^{n}x_k \ge x_{n+1}\sum_{k=1}^{n}x_k^{n-1} - (n-1)x_{n+1}\sum_{k=1}^{n}x_k^n$$

It remains to prove that:

$$\left(n\sum_{k=1}^{n} x_{k}^{n+1} - \sum_{k=1}^{n} x_{k}^{n}\right) - x_{n+1} \left(n\sum_{k=1}^{n} x_{k}^{n} - \sum_{k=1}^{n} x_{k}^{n-1}\right) + x_{n+1} \left(\prod_{k=1}^{n} x_{k} + (n-1)x_{n+1}^{n} - x_{n+1}^{n-1}\right) \ge 0,$$

but this inequality can be decomposed in two inequalities in the following manner: First, from the Chebyshev inequality we have:

$$n\sum_{k=1}^{n} x_k^n - \sum_{k=1}^{n} x_k^{n-1} \ge 0.$$

Second, because

$$nx_k^{n+1} + \frac{1}{n}x_k^{n-1} \ge 2x_k^n \quad (k = 1, 2, ..., n),$$

then after addition we have: n_{\cdot}

$$\prod_{k=1}^{n} x_k + (n-1) x_{n+1}^n - x_{n+1}^{n-1}$$

=
$$\prod_{k=1}^{n} (x_k - x_{n+1} + x_{n+1}) + (n-1) x_{n+1}^n - x_{n+1}^{n-1}$$

\ge x_{n+1}^n + x_{n+1}^{n-1} \sum_{k=1}^{n} (x_k - x_{n+1}) + (n-1) x_{n+1}^n - x_{n+1}^{n-1} = 0

or

$$n\sum_{k=1}^{n} x_{k}^{n+1} - \sum_{k=1}^{n} x_{k}^{n} \ge \frac{1}{n} \left(n\sum_{k=1}^{n} x_{k}^{n} - \sum_{k=1}^{n} x_{k}^{n-1} \right),$$

but from $x_{n+1} \leq \frac{1}{n}$ holds the desired inequality. If in Theorem 1 we take n = 3, then we obtain:.

Application 1. If $x_1, x_2, x_3 \ge 0$, then

$$x_1^3 + x_2^3 + x_3^3 + 3x_1x_2x_3 \ge x_1^2(x_2 + x_3) + x_2^2(x_3 + x_1) + x_3^2(x_1 + x_2)$$

which is the well known Schur's inequality. Therefore, the inequality of Surányi has generalized the Schur inequality.

Application 2. If a, b, c denote the sides of triangle ABC, s the semiperimeter, R the radius of the circumcircle, r the radius of the incircle, then:.

- 1). $R \ge 2r$ (the inequality of Euler) 2). $s^2 \ge r^2 + 16Rr$ 3). $(4R+r)^3 \ge s^2 (16R-5r).$

Proof. In Application 1 we take:

1). $x_1 = a, x_2 = b, x_3 = c$ 2). $x_1 = s - a, x_2 = s - b, x_3 = s - c$ 3). $x_1 = r_a, x_2 = r_b, x_3 = r_c$

where r_a, r_b, r_c are the radii of exinscribed circles.

If In Theorem 1 we take n = 4, then we obtain the following:.

Application 3. If $x_1, x_2, x_3, x_4 \ge 0$, then

$$2\left(\sum_{k=1}^{4} x_k^4 + 2\prod_{k=1}^{4} x_k\right) \ge \sum_{1 \le i < j \le 4} x_i x_j \left(x_i^2 + x_j^2\right)$$

Remark. Because $x_i^2 + x_j^2 \ge 2x_i x_j$, then

$$\sum_{k=1}^{4} x_k^4 + 2 \prod_{k=1}^{4} x_k \ge \sum_{1 \le i < j \le 4} x_i^2 x_j^2,$$

but this is the Turkevici inequality. Therefore the inequality of Surányi gives a refinement and a generalization of Turkevici's inequality.

Application 4. Denote r_a, r_b, r_c, r_d and h_a, h_b, h_c, h_d the radii of exinscribed spheres and the altitudes in tetrahedron ABCD, then

 $\mathbf{2}$

3)
$$\frac{1}{h_a^4} + \frac{4}{\prod h_a} \ge \frac{1}{r} \sum \frac{1}{h_a^3}$$

2).

$$3\sum_{r=1}^{\infty} \frac{1}{r_a^4} + \frac{4}{\prod r_a} \ge \frac{2}{r} \sum \frac{1}{r_a^3}$$

where r is the radius of inscribed sphere..

Proof. In Application 3 we take: 1). $x_1 = \frac{1}{h_a}, x_2 = \frac{1}{h_b}, x_3 = \frac{1}{h_c}, x_4 = \frac{1}{h_d} \text{ and } \sum \frac{1}{h_a} = \frac{1}{r}$ 2). $x_1 = \frac{1}{r_a}, x_2 = \frac{1}{r_b}, x_3 = \frac{1}{r_c}, x_4 = \frac{1}{r_d} \text{ and } \sum \frac{1}{r_a} = \frac{2}{r}$ The inequality of Turkevici can be generalized in following way:.

Theorem 2. If $x_k > 0 (k = 1, 2, ..., n)$, then

1

$$\sum_{\leq i < j \le n} (x_i - x_j)^2 + n \sqrt[n]{\prod_{k=1}^n x_k^2} \ge \sum_{k=1}^n x_k^2$$

Finally, we generalize the inequality of Surányi in following way:

Theorem 3. If $a_k \in I$ $(I \subseteq R)$ (k = 1, 2, ..., n), $f : I \to R$ and f and f' are convex functions, then:

$$(n-1)\sum_{k=1}^{n} f(a_k) + nf\left(\frac{1}{n}\sum_{k=1}^{n} a_k\right) \ge \sum_{i,j=1}^{n} f\left(\frac{(n-1)a_i + a_j}{n}\right)$$

Proof. We suppose that $a_1 \ge a_2 \ge ... \ge a_n$, so the desired inequality can be discomposed in the following two inequalities: (1).

$$\sum_{k=1}^{n-1} (n-1-k) f(a_k) + \sum_{k=1}^{n-1} f\left(\frac{ka_k + a_{k+1} + \dots + a_n}{n}\right) \ge \sum_{1 \le i < j \le n} f\left(\frac{(n-1)a_i + a_j}{n}\right)$$

and
(2).

$$\sum_{k=1}^{n-1} (k-1) f(a_k) + (n-2) f(a_n) + nf\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$
$$\geq \sum_{k=1}^{n-1} f\left(\frac{ka_k + a_{k+1} + \dots + a_n}{n}\right) + \sum_{1 \le i < j \le n} f\left(\frac{(n-1)a_i + a_j}{n}\right)$$

The inequality (1) is the consequence of inequalities

$$(n-1-k) f(a_k) + f\left(\frac{ka_k + a_{k+1} + \dots + a_n}{n}\right) \ge \sum_{j=k+1}^n f\left(\frac{(n-1)a_k + a_j}{n}\right),$$

where $k \in \{1,2,...,n-1\}$ but this holds from Karamata's inequality using for

$$\left(a_k, a_k, \dots, a_k, \frac{ka_k + a_{k+1} + \dots + a_n}{n}\right)$$

and

$$\left(\frac{(n-1)a_k + a_{k+1}}{n}, \frac{(n-1)a_k + a_{k+2}}{n}, ..., \frac{(n-1)a_k + a_n}{n}\right)$$

The inequality of Karamata says that: If $f: I \to R$ is convex $x_1 \ge x_2 \ge ... \ge x_n$ and $y_1 \ge y_2 \ge ... \ge y_n$, $x_1 \ge y_1$, $x_1 + x_2 \ge y_1 + y_2$, ..., $x_1 + x_2 + ... + x_{n-1} \ge y_1 + y_2 + ... + y_{n-1}$, $x_1 + x_2 + ... + x_n = y_1 + y_2 + ... + y_n$, then

$$f(x_1) + f(x_2) + \dots + f(x_n) \ge f(y_1) + f(y_2) + \dots + f(y_n)$$

In our case

$$(x_1, x_2, \dots, x_{n-k}) = \left(a_k, a_k, \dots, a_k, \frac{ka_k + a_{k+1} + \dots + a_n}{n}\right)$$

and

$$(y_1, y_2, \dots, y_{n-k}) = \left(\frac{(n-1)a_k + a_{k+1}}{n}, \frac{(n-1)a_k + a_{k+2}}{n}, \dots, \frac{(n-1)a_k + a_n}{n}\right)$$

Now we prove the inequality (2). Denote

 $F(a_1, a_2, ..., a_n) = \sum_{i=1}^{n-1} (i-1) f(a_i) + (n-2) f(a_n) + nf\left(\frac{a_1 + a_2 + ... + a_n}{n}\right) - \sum_{i=1}^{n-1} f\left(\frac{ia_i + a_{i+1} + ... + a_n}{n}\right) - \sum_{1 \le i < j \le n} f\left(\frac{(n-1)a_i + a_j}{n}\right),$

for which we prove that:

$$F(a_1, a_2, ..., a_n) \ge F(a_2, a_2, a_3, ..., a_n) \ge ...$$

$$\ge F(a_{n-1}, a_{n-1}, ..., a_{n-1}, a_n) \ge F(a_n, a_n, ..., a_n) = 0.$$

In $F(a_k, a_k, ..., a_k, a_{k+1}, a_{k+2}, ..., a_n)$, contain a_k the following expression

$$\sum_{i=1}^{n} (i-1) f(a_k) + nf\left(\frac{ka_k + a_{k+1} + \dots + a_n}{n}\right) - \sum_{i=1}^{k} f\left(\frac{ka_k + a_{k+1} + \dots + a_n}{n}\right) - \sum_{1 \le i < j \le k} f\left(\frac{(n-1)a_k + a_k}{n}\right) - \sum_{j=1}^{k} \sum_{i=k+1}^{n} f\left(\frac{(n-1)a_i + a_k}{n}\right) = (n-k) f\left(\frac{ka_k + a_{k+1} + \dots + a_n}{n}\right) - k \sum_{i=k+1}^{n} f\left(\frac{(n-1)a_i + a_k}{n}\right)$$

Denote $G_k(a) = F(a, a, ..., a, a_{k+1}, a_{k+2}, ..., a_n)$, where $a \in [a_{k+1}, a_k]$, then

$$G'_{k}(a) = \frac{k(n-k)}{n} \left(f'\left(\frac{ka+a_{k+1}+\ldots+a_{n}}{n}\right) - \frac{1}{n-k} \sum_{i=k+1}^{n} f'\left(\frac{(n-1)a_{i}+a}{n}\right) \right) \ge 0,$$

4

because

or

$$\frac{ka + a_{k+1} + \dots + a_n}{n} \ge \frac{1}{n-k} \sum_{i=k+1}^n \frac{(n-1)a_i + a_i}{n}$$
$$(n-k)a \ge \sum_{i=k+1}^n a_i,$$

which is true.

Since f is convex, then f' is increasing but f' is convex, so

$$f'\left(\frac{ka+a_{k+1}+\ldots+a_n}{n}\right) \ge f'\left(\frac{1}{n-k}\sum_{i=k+1}^n \frac{(n-1)a_i+a}{n}\right)$$
$$\ge \frac{1}{n-k}\sum_{i=k+1}^n f'\left(\frac{(n-1)a_i+a}{n}\right),$$

which follows from Jensen's inequality.

Therefore G is increasing and

 $F(a_k, a_k, \dots, a_k, a_{k+1}, a_{k+2}, \dots, a_n) \ge F(a_{k+1}, a_{k+1}, \dots, a_{k+1}, a_{k+2}, \dots, a_n)$

which proves the affirmation..

Remark. If in Theorem 3 we take $f(a) = e^{na}$ and $e^{a_k} = x_k$ (k = 1, 2, ..., n), then we obtain the inequality of Surányi..

Application 5. If $a_k > 0$ (k = 1, 2, ..., n) and $\alpha \ge 2$, then

$$(n-1)\sum_{k=1}^{n} a_{k}^{\alpha} + n\left(\frac{1}{n}\sum_{k=1}^{n} a_{k}\right)^{\alpha} \ge \sum_{i,j=1}^{n} \left(\frac{(n-1)a_{i} + a_{j}}{n}\right)^{\alpha}.$$

Proof. In Theorem 3 we take $f(a) = a^{\alpha}$.

References.

•

[1]. Mihály Bencze: Inequalities (manuscript), 1982.

[2]. D.S. Mitrinović, J.E. Pečarić, A.M. Fink: Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.

[3]. Octogon Mathematical Magazine (1993-2005).