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Abstract. In the Miklés Schweitzer Mathematical Competition (Hungary)
Professor Janos Surdnyi proposed the following problem, which is interesting and
presents an aspect of a theorem. In this paper we present a new demonstration,
some interesting applications and a generalization.

Theorem 1. (Jdnos Surdnyi). If xx > 0 (k=1,2,...,n) then the following
inequality holds:

Proof. Using mathematical induction, for n = 2 we obtain % + 23 + 2z129 >
(z1 + x2)2 , which is true.

We suppose that is true for n and we prove for n + 1.

Because the inequality is symmetric and homogeneous we can suppose that z; >
Lo > ... > Tpy1 and 1 4+22+ ...+, = 1, so we must prove the following inequality:

n+1 n+1 n+1 n+1
anZ'H +(n+1) ka > (Zxk> <Zmﬁ>
k=1 k=1 k=1 k=1
which can be written in the form

n n n n

1 1

n E e 4 nal T+ nag g H Th+ Tnt1 H 2 —(1+ zpt1) ( g Ty + 5'32+1> >0
k=1 k=1 k=1 k=1

From the inductive condition holds
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It remains to prove that:
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+ Tpi1 (H o+ (n—1)x,, , — xﬁ_ﬁ) >0,
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but this inequality can be decomposed in two inequalities in the following manner:
First, from the Chebyshev inequality we have:
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Second, because
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then after addition we have:
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but from ;41 S % holds the desired inequality.
If in Theorem 1 we take n = 3, then we obtain:.

Application 1. If x1, 29,23 > 0, then
o3+ 23 + 23+ 3wy wony > 2% (w2 + 3) + 23 (23 + 1) + 23 (21 + T2)

which is the well known Schur’s inequality. Therefore, the inequality of Surdnyi has
generalized the Schur inequality.

Application 2. If a, b, c denote the sides of triangle ABC, s the semiperimeter,
R the radius of the circumcircle, r the radius of the incircle, then:.

1). R > 2r (the inequality of Euler)

2). 2 > 1?2+ 16Rr

3). (AR +7)* > s2 (16R — 5r).

Proof. In Application 1 we take:

1). z1 =a,z0 =b,z3=c

2. z1=8—a,xa=8—b,xg=8—c¢

3). ¥y =714, T =1y, T3 =T¢

where r,, 7y, 7. are the radii of exinscribed circles.

If In Theorem 1 we take n = 4, then we obtain the following:.

Application 3. If z1, 25, x3,24 > 0, then

4 4
2 (Zx% + 2 ka> > Z T (xf —i—x?)
k=1 k=1

1<i<j<4

Remark. Because :1:2 + £62 > 2xi:vj, then

Zxk+2nxk> Z

1<i<j<4

but this is the Turkevici inequality. Therefore the inequality of Surdnyi gives a
refinement and a generalization of Turkevici‘s inequality..

Application 4. Denote ry,7y,7:,7q and hg, hy, he, hg the radii of exinscribed
spheres and the altitudes in tetrahedron ABCD, then
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where 7 is the radius of inscribed sphere..

2).

Proof. In Application 3 we take:

1 1 1 1 1
1) mlzhf,xQ hb , L3 = ) 4:hfandzh :;
2). & = 1 ,Tg = 1 , T3 = 1 x4—Eandzl :7

The 1nequahty of Turkev1c1 ‘can be generalized in following way:.

Theorem 2. If z; >0(k=1,2,....,n), then

Y. (wi—x)*+ny ﬁxi > En:ﬁ
k=1 k=1

1<i<j<n
Finally, we generalize the inequality of Surdnyi in following way:

Theorem 3. If ar € I I CR) (k=1,2,....,n), f: I — R and f and f' are
convez functions, then:

(n—l)Zf(ak)-l-nf <izak> > Z f<(n—1)nai+aj>

k=1 ij=1

Proof. We suppose that a; > as > ... > a,, so the desired inequality can be
discomposed in the following two inequalities:

(1).
:Zi(n— -0 f 3 f (Potomtato), 5 op(lmlete)

k=1 1<i<j<n

and
(2).
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ay +az+ ...+ a,
n

anlf(k:ak—l—amr;l—i—...—i—an) Z f( al—i—aj)
k=1

1<i<j<n

ak>+<n—2>f<an>+nf<

k=1

The inequality (1) is the consequence of inequalities
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n
j=k+1

where k € {1,2,...,n — 1} but this holds from Karamata‘s inequality using for

kap + agsq + ... + an>
n

<ak7ak7 ceey Ay



and
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(n—1)ar+ags1 (n—1)ar + agsa (n—1)ax + an
n n n '

The inequality of Karamata says that: If f: I — R is convex x1 > a9 > ... > x,,
and y1 > Y2 = ... 2> Yn, T1 = Y1, T1+ T2 > Y1 + Y2, T1 F T2+ o+ Ty >
Yy1+y2+ ..+ Yn—1, 71+ T2+ .. + Ty = Y1 + Y2 + ... + Yn, then

fx1) + f(x2) + oo+ f@n) > fyr) + f(y2) + o+ f (yn) -

In our case

kag + a1 + ... + an)

(:cl,xg,...,a:n_k) = <ak,ak,...,ak, "

and

(n—1Dag+art1 (n—1)ar + axso (n—1)ax + an
n n n '

(y17y2a"'ayn—k) = ( ) [ERRS)

Now we prove the inequality (2).
Denote

— +as+...+a,
F(ay,ag,...,an) = Z (t—1) f(a;))+(n—2) f(an) +nf (a1 @ a )

n
=1
n—1
10; + @ir1 + ... +an a; + a;
I G D M L
i=1 1<i<j<n

for which we prove that:
F(ay,a9,....,an) > F (az,a9,as,...,a,) > ...
2 F(anflaanflwnaanflaan) 2 F(anaanw“yan) = 0.

In F (ak,Qky .., Gy Gkt1, Glt-2, -, Gn ) , cOntain ay the following expression

Z (i —1) f (ax)
i=1
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:(n_k)f(k“”‘””;*“'””) k Z f(‘“a’f).

i=k+1

Denote Gi, (a) = F (a,a, ...,a, k41, Gk+2, ..., Gy ), Where a € [agt1, ag], then

Gl (a) = k:(nn— k) (f/ (kza—i—akﬂ +...+an)

_n—k Z r (W)> 20,

i=k+1




because

ka+ak+1+...+an> 1 (n—1)a;+a
n “n—k n
1=k-+1
or .
(n—k)a> Z a;,
i=k+1

which is true.
Sincee f is convex, then f’ is increasing but f” is convex, so

f,<ka+ak+1n—|—...—|—an>2f, (nik Xn: (n—lglai—l—a)

i=k+1

Znik}z f,<(n—17)lai+a),

which follows from Jensen'‘s inequality.
Therefore G is increasing and

F(ak,ar, .o, Gy Qpg1, Qg2y ooy @) > F (Qpg1, Gty oy Qg1 Gty ooy Gp)

which proves the affirmation..

Remark. If in Theorem 3 we take f (a) = €™ and e** =z (k=1,2,...,n),
then we obtain the inequality of Surdnyi..

Application 5. If ay > 0(k=1,2,....,n) and o > 2, then
n n o n o
1 (n—1)a; +aj
-1 o — > ~ 7 I
Y O N S

k=1 ij=1

Proof. In Theorem 3 we take f (a) = a®.
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