# About Surányi's Inequality 

Mihály Bencze

Str. Harmanului 6, 505600 Sacele, Jud Brasov, Romania
Abstract. In the Miklós Schweitzer Mathematical Competition (Hungary) Professor János Surányi proposed the following problem, which is interesting and presents an aspect of a theorem. In this paper we present a new demonstration, some interesting applications and a generalization.

Theorem 1. (János Surányi). If $x_{k}>0(k=1,2, \ldots, n)$ then the following inequality holds:

$$
(n-1) \sum_{k=1}^{n} x_{k}^{n}+n \prod_{k=1}^{n} x_{k} \geq\left(\sum_{k=1}^{n} x_{k}\right)\left(\sum_{k=1}^{n} x_{k}^{n-1}\right)
$$

Proof. Using mathematical induction, for $n=2$ we obtain $x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2} \geq$ $\left(x_{1}+x_{2}\right)^{2}$, which is true.

We suppose that is true for $n$ and we prove for $n+1$.
Because the inequality is symmetric and homogeneous we can suppose that $x_{1} \geq$ $x_{2} \geq \ldots \geq x_{n+1}$ and $x_{1}+x_{2}+\ldots+x_{n}=1$, so we must prove the following inequality:

$$
n \sum_{k=1}^{n+1} x_{k}^{n+1}+(n+1) \prod_{k=1}^{n+1} x_{k} \geq\left(\sum_{k=1}^{n+1} x_{k}\right)\left(\sum_{k=1}^{n+1} x_{k}^{n}\right)
$$

which can be written in the form

$$
n \sum_{k=1}^{n} x_{k}^{n+1}+n x_{n+1}^{n+1}+n x_{n+1} \prod_{k=1}^{n} x_{k}+x_{n+1} \prod_{k=1}^{n} x_{k}-\left(1+x_{n+1}\right)\left(\sum_{k=1}^{n} x_{k}^{n}+x_{n+1}^{n}\right) \geq 0
$$

From the inductive condition holds

$$
n x_{n+1} \prod_{k=1}^{n} x_{k} \geq x_{n+1} \sum_{k=1}^{n} x_{k}^{n-1}-(n-1) x_{n+1} \sum_{k=1}^{n} x_{k}^{n}
$$

It remains to prove that:

$$
\begin{aligned}
\left(n \sum_{k=1}^{n} x_{k}^{n+1}-\sum_{k=1}^{n} x_{k}^{n}\right)-x_{n+1} & \left(n \sum_{k=1}^{n} x_{k}^{n}-\sum_{k=1}^{n} x_{k}^{n-1}\right) \\
& +x_{n+1}\left(\prod_{k=1}^{n} x_{k}+(n-1) x_{n+1}^{n}-x_{n+1}^{n-1}\right) \geq 0
\end{aligned}
$$

but this inequality can be decomposed in two inequalities in the following manner:
First, from the Chebyshev inequality we have:

$$
n \sum_{k=1}^{n} x_{k}^{n}-\sum_{k=1}^{n} x_{k}^{n-1} \geq 0
$$

Second, because

$$
n x_{k}^{n+1}+\frac{1}{n} x_{k}^{n-1} \geq 2 x_{k}^{n} \quad(k=1,2, \ldots, n)
$$

then after addition we have:

$$
\begin{aligned}
& \prod_{k=1}^{n} x_{k}+(n-1) x_{n+1}^{n}-x_{n+1}^{n-1} \\
& =\prod_{k=1}^{n}\left(x_{k}-x_{n+1}+x_{n+1}\right)+(n-1) x_{n+1}^{n}-x_{n+1}^{n-1} \\
& \geq x_{n+1}^{n}+x_{n+1}^{n-1} \sum_{k=1}^{n}\left(x_{k}-x_{n+1}\right)+(n-1) x_{n+1}^{n}-x_{n+1}^{n-1}=0
\end{aligned}
$$

or

$$
n \sum_{k=1}^{n} x_{k}^{n+1}-\sum_{k=1}^{n} x_{k}^{n} \geq \frac{1}{n}\left(n \sum_{k=1}^{n} x_{k}^{n}-\sum_{k=1}^{n} x_{k}^{n-1}\right)
$$

but from $x_{n+1} \leq \frac{1}{n}$ holds the desired inequality.
If in Theorem 1 we take $n=3$, then we obtain:.
Application 1. If $x_{1}, x_{2}, x_{3} \geq 0$, then

$$
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+3 x_{1} x_{2} x_{3} \geq x_{1}^{2}\left(x_{2}+x_{3}\right)+x_{2}^{2}\left(x_{3}+x_{1}\right)+x_{3}^{2}\left(x_{1}+x_{2}\right)
$$

which is the well known Schur's inequality. Therefore, the inequality of Surányi has generalized the Schur inequality.

Application 2. If $a, b, c$ denote the sides of triangle $A B C, s$ the semiperimeter, $R$ the radius of the circumcircle, $r$ the radius of the incircle, then:.
1). $R \geq 2 r$ (the inequality of Euler)
2). $s^{2} \geq r^{2}+16 R r$
3). $(4 R+r)^{3} \geq s^{2}(16 R-5 r)$.

Proof. In Application 1 we take:
1). $x_{1}=a, x_{2}=b, x_{3}=c$
2). $x_{1}=s-a, x_{2}=s-b, x_{3}=s-c$
3). $x_{1}=r_{a}, x_{2}=r_{b}, x_{3}=r_{c}$
where $r_{a}, r_{b}, r_{c}$ are the radii of exinscribed circles.
If In Theorem 1 we take $n=4$, then we obtain the following:.
Application 3. If $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$, then

$$
2\left(\sum_{k=1}^{4} x_{k}^{4}+2 \prod_{k=1}^{4} x_{k}\right) \geq \sum_{1 \leq i<j \leq 4} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right)
$$

Remark. Because $x_{i}^{2}+x_{j}^{2} \geq 2 x_{i} x_{j}$, then

$$
\sum_{k=1}^{4} x_{k}^{4}+2 \prod_{k=1}^{4} x_{k} \geq \sum_{1 \leq i<j \leq 4} x_{i}^{2} x_{j}^{2}
$$

but this is the Turkevici inequality. Therefore the inequality of Surányi gives a refinement and a generalization of Turkevici's inequality..

Application 4. Denote $r_{a}, r_{b}, r_{c}, r_{d}$ and $h_{a}, h_{b}, h_{c}, h_{d}$ the radii of exinscribed spheres and the altitudes in tetrahedron $A B C D$, then
1).

$$
3 \sum \frac{1}{h_{a}^{4}}+\frac{4}{\prod h_{a}} \geq \frac{1}{r} \sum \frac{1}{h_{a}^{3}}
$$

2).

$$
3 \sum \frac{1}{r_{a}^{4}}+\frac{4}{\prod r_{a}} \geq \frac{2}{r} \sum \frac{1}{r_{a}^{3}}
$$

where $r$ is the radius of inscribed sphere..
Proof. In Application 3 we take:
1). $x_{1}=\frac{1}{h_{a}}, x_{2}=\frac{1}{h_{b}}, x_{3}=\frac{1}{h_{c}}, x_{4}=\frac{1}{h_{d}}$ and $\sum \frac{1}{h_{a}}=\frac{1}{r}$
2). $x_{1}=\frac{1}{r_{a}}, x_{2}=\frac{1}{r_{b}}, x_{3}=\frac{1}{r_{c}}, x_{4}=\frac{1}{r_{d}}$ and $\sum \frac{1}{r_{a}}=\frac{2}{r}$

The inequality of Turkevici can be generalized in following way:.
Theorem 2. If $x_{k}>0(k=1,2, \ldots, n)$, then

$$
\sum_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2}+n \sqrt[n]{\prod_{k=1}^{n} x_{k}^{2}} \geq \sum_{k=1}^{n} x_{k}^{2}
$$

Finally, we generalize the inequality of Surányi in following way:
Theorem 3. If $a_{k} \in I(I \subseteq R)(k=1,2, \ldots, n), f: I \rightarrow R$ and $f$ and $f^{\prime}$ are convex functions, then:

$$
(n-1) \sum_{k=1}^{n} f\left(a_{k}\right)+n f\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right) \geq \sum_{i, j=1}^{n} f\left(\frac{(n-1) a_{i}+a_{j}}{n}\right)
$$

Proof. We suppose that $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$, so the desired inequality can be discomposed in the following two inequalities:
(1).
$\sum_{k=1}^{n-1}(n-1-k) f\left(a_{k}\right)+\sum_{k=1}^{n-1} f\left(\frac{k a_{k}+a_{k+1}+\ldots+a_{n}}{n}\right) \geq \sum_{1 \leq i<j \leq n} f\left(\frac{(n-1) a_{i}+a_{j}}{n}\right)$
and
(2).

$$
\begin{aligned}
\sum_{k=1}^{n-1}(k-1) f & \left(a_{k}\right)+(n-2) f\left(a_{n}\right)+n f\left(\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}\right) \\
& \geq \sum_{k=1}^{n-1} f\left(\frac{k a_{k}+a_{k+1}+\ldots+a_{n}}{n}\right)+\sum_{1 \leq i<j \leq n} f\left(\frac{(n-1) a_{i}+a_{j}}{n}\right)
\end{aligned}
$$

The inequality (1) is the consequence of inequalities

$$
(n-1-k) f\left(a_{k}\right)+f\left(\frac{k a_{k}+a_{k+1}+\ldots+a_{n}}{n}\right) \geq \sum_{j=k+1}^{n} f\left(\frac{(n-1) a_{k}+a_{j}}{n}\right)
$$

where $k \in\{1,2, \ldots, n-1\}$ but this holds from Karamata's inequality using for

$$
\left(a_{k}, a_{k}, \ldots, a_{k}, \frac{k a_{k}+a_{k+1}+\ldots+a_{n}}{n}\right)
$$

and

$$
\left(\frac{(n-1) a_{k}+a_{k+1}}{n}, \frac{(n-1) a_{k}+a_{k+2}}{n}, \ldots, \frac{(n-1) a_{k}+a_{n}}{n}\right)
$$

The inequality of Karamata says that: If $f: I \rightarrow R$ is convex $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $y_{1} \geq y_{2} \geq \ldots \geq y_{n}, x_{1} \geq y_{1}, x_{1}+x_{2} \geq y_{1}+y_{2}, \ldots, x_{1}+x_{2}+\ldots+x_{n-1} \geq$ $y_{1}+y_{2}+\ldots+y_{n-1}, x_{1}+x_{2}+\ldots+x_{n}=y_{1}+y_{2}+\ldots+y_{n}$, then

$$
f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right) \geq f\left(y_{1}\right)+f\left(y_{2}\right)+\ldots+f\left(y_{n}\right) .
$$

In our case

$$
\left(x_{1}, x_{2}, \ldots, x_{n-k}\right)=\left(a_{k}, a_{k}, \ldots, a_{k}, \frac{k a_{k}+a_{k+1}+\ldots+a_{n}}{n}\right)
$$

and

$$
\left(y_{1}, y_{2}, \ldots, y_{n-k}\right)=\left(\frac{(n-1) a_{k}+a_{k+1}}{n}, \frac{(n-1) a_{k}+a_{k+2}}{n}, \ldots, \frac{(n-1) a_{k}+a_{n}}{n}\right) .
$$

Now we prove the inequality (2).
Denote

$$
\begin{aligned}
F\left(a_{1}, a_{2}, \ldots, a_{n}\right) & =\sum_{i=1}^{n-1}(i-1) f\left(a_{i}\right)+(n-2) f\left(a_{n}\right)+n f\left(\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}\right) \\
& -\sum_{i=1}^{n-1} f\left(\frac{i a_{i}+a_{i+1}+\ldots+a_{n}}{n}\right)-\sum_{1 \leq i<j \leq n} f\left(\frac{(n-1) a_{i}+a_{j}}{n}\right),
\end{aligned}
$$

for which we prove that:

$$
\begin{aligned}
F\left(a_{1}, a_{2}, \ldots, a_{n}\right) & \geq F\left(a_{2}, a_{2}, a_{3}, \ldots, a_{n}\right) \geq \ldots \\
& \geq F\left(a_{n-1}, a_{n-1}, \ldots, a_{n-1}, a_{n}\right) \geq F\left(a_{n}, a_{n}, \ldots, a_{n}\right)=0
\end{aligned}
$$

In $F\left(a_{k}, a_{k}, \ldots, a_{k}, a_{k+1}, a_{k+2}, \ldots, a_{n}\right)$, contain $a_{k}$ the following expression

$$
\begin{aligned}
\sum_{i=1}^{n}(i- & 1) f\left(a_{k}\right) \\
& +n f\left(\frac{k a_{k}+a_{k+1}+\ldots+a_{n}}{n}\right)-\sum_{i=1}^{k} f\left(\frac{k a_{k}+a_{k+1}+\ldots+a_{n}}{n}\right) \\
& -\sum_{1 \leq i<j \leq k} f\left(\frac{(n-1) a_{k}+a_{k}}{n}\right)-\sum_{j=1}^{k} \sum_{i=k+1}^{n} f\left(\frac{(n-1) a_{i}+a_{k}}{n}\right) \\
& =(n-k) f\left(\frac{k a_{k}+a_{k+1}+\ldots+a_{n}}{n}\right)-k \sum_{i=k+1}^{n} f\left(\frac{(n-1) a_{i}+a_{k}}{n}\right) .
\end{aligned}
$$

Denote $G_{k}(a)=F\left(a, a, \ldots, a, a_{k+1}, a_{k+2}, \ldots, a_{n}\right)$, where $a \in\left[a_{k+1}, a_{k}\right]$, then

$$
\begin{aligned}
& G_{k}^{\prime}(a)=\frac{k(n-k)}{n}\left(f^{\prime}\left(\frac{k a+a_{k+1}+\ldots+a_{n}}{n}\right)\right. \\
&\left.-\frac{1}{n-k} \sum_{i=k+1}^{n} f^{\prime}\left(\frac{(n-1) a_{i}+a}{n}\right)\right) \geq 0,
\end{aligned}
$$

because

$$
\frac{k a+a_{k+1}+\ldots+a_{n}}{n} \geq \frac{1}{n-k} \sum_{i=k+1}^{n} \frac{(n-1) a_{i}+a}{n}
$$

or

$$
(n-k) a \geq \sum_{i=k+1}^{n} a_{i}
$$

which is true.
Sincee $f$ is convex, then $f^{\prime}$ is increasing but $f^{\prime}$ is convex, so

$$
\begin{aligned}
f^{\prime}\left(\frac{k a+a_{k+1}+\ldots+a_{n}}{n}\right) & \geq f^{\prime}\left(\frac{1}{n-k} \sum_{i=k+1}^{n} \frac{(n-1) a_{i}+a}{n}\right) \\
& \geq \frac{1}{n-k} \sum_{i=k+1}^{n} f^{\prime}\left(\frac{(n-1) a_{i}+a}{n}\right)
\end{aligned}
$$

which follows from Jensen's inequality.
Therefore $G$ is increasing and

$$
F\left(a_{k}, a_{k}, \ldots, a_{k}, a_{k+1}, a_{k+2}, \ldots, a_{n}\right) \geq F\left(a_{k+1}, a_{k+1}, \ldots, a_{k+1}, a_{k+2}, \ldots, a_{n}\right)
$$

which proves the affirmation..
Remark. If in Theorem 3 we take $f(a)=e^{n a}$ and $e^{a_{k}}=x_{k}(k=1,2, \ldots, n)$, then we obtain the inequality of Surányi..

Application 5. If $a_{k}>0(k=1,2, \ldots, n)$ and $\alpha \geq 2$, then

$$
(n-1) \sum_{k=1}^{n} a_{k}^{\alpha}+n\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{\alpha} \geq \sum_{i, j=1}^{n}\left(\frac{(n-1) a_{i}+a_{j}}{n}\right)^{\alpha}
$$

Proof. In Theorem 3 we take $f(a)=a^{\alpha}$.

## References.

[1]. Mihály Bencze: Inequalities (manuscript), 1982.
[2]. D.S. Mitrinović, J.E. Pečarić, A.M. Fink: Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
[3]. Octogon Mathematical Magazine (1993-2005).

