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Abstract. In the Miklós Schweitzer Mathematical Competition (Hungary)
Professor János Surányi proposed the following problem, which is interesting and
presents an aspect of a theorem. In this paper we present a new demonstration,
some interesting applications and a generalization.

Theorem 1. (János Surányi). If xk > 0 (k = 1, 2, ..., n) then the following
inequality holds:
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Proof. Using mathematical induction, for n = 2 we obtain x2
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, which is true.

We suppose that is true for n and we prove for n + 1.
Because the inequality is symmetric and homogeneous we can suppose that x1 ≥

x2 ≥ ... ≥ xn+1 and x1+x2+ ...+xn = 1, so we must prove the following inequality:
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which can be written in the form
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From the inductive condition holds
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It remains to prove that:(
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but this inequality can be decomposed in two inequalities in the following manner:
First, from the Chebyshev inequality we have:
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but from xn+1 ≤ 1
n holds the desired inequality.

If in Theorem 1 we take n = 3, then we obtain:.

Application 1. If x1, x2, x3 ≥ 0, then

x3
1 + x3

2 + x3
3 + 3x1x2x3 ≥ x2

1 (x2 + x3) + x2
2(x3 + x1) + x2

3 (x1 + x2)

which is the well known Schur’s inequality. Therefore, the inequality of Surányi has
generalized the Schur inequality.

Application 2. If a, b, c denote the sides of triangle ABC, s the semiperimeter,
R the radius of the circumcircle, r the radius of the incircle, then:.

1). R ≥ 2r (the inequality of Euler)
2). s2 ≥ r2 + 16Rr

3). (4R + r)3 ≥ s2 (16R− 5r).

Proof. In Application 1 we take:
1). x1 = a, x2 = b, x3 = c
2). x1 = s− a, x2 = s− b, x3 = s− c
3). x1 = ra, x2 = rb, x3 = rc

where ra, rb, rc are the radii of exinscribed circles.
If In Theorem 1 we take n = 4, then we obtain the following:.

Application 3. If x1, x2, x3, x4 ≥ 0, then
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but this is the Turkevici inequality. Therefore the inequality of Surányi gives a
refinement and a generalization of Turkevici‘s inequality..

Application 4. Denote ra, rb, rc, rd and ha, hb, hc, hd the radii of exinscribed
spheres and the altitudes in tetrahedron ABCD, then
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where r is the radius of inscribed sphere..

Proof. In Application 3 we take:
1). x1 = 1
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, x2 = 1
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, x3 = 1

hc
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The inequality of Turkevici can be generalized in following way:.

Theorem 2. If xk > 0 (k = 1, 2, ..., n) , then
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Finally, we generalize the inequality of Surányi in following way:

Theorem 3. If ak ∈ I (I ⊆ R) (k = 1, 2, ..., n) , f : I → R and f and f ′ are
convex functions, then:
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Proof. We suppose that a1 ≥ a2 ≥ ... ≥ an, so the desired inequality can be
discomposed in the following two inequalities:
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The inequality (1) is the consequence of inequalities
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where k ∈ {1, 2, ..., n− 1} but this holds from Karamata‘s inequality using for(
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The inequality of Karamata says that: If f : I → R is convex x1 ≥ x2 ≥ ... ≥ xn

and y1 ≥ y2 ≥ ... ≥ yn, x1 ≥ y1, x1 + x2 ≥ y1 + y2, ..., x1 + x2 + ... + xn−1 ≥
y1 + y2 + ... + yn−1, x1 + x2 + ... + xn = y1 + y2 + ... + yn, then
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Now we prove the inequality (2).
Denote
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for which we prove that:
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Denote Gk (a) = F (a, a, ..., a, ak+1, ak+2, ..., an), where a ∈ [ak+1, ak] , then
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Sincee f is convex, then f ′ is increasing but f ′ is convex, so
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which follows from Jensen‘s inequality.
Therefore G is increasing and

F (ak, ak, ..., ak, ak+1, ak+2, ..., an) ≥ F (ak+1, ak+1, ..., ak+1, ak+2, ..., an)

which proves the affirmation..

Remark. If in Theorem 3 we take f (a) = ena and eak = xk (k = 1, 2, ..., n) ,
then we obtain the inequality of Surányi..

Application 5. If ak > 0 (k = 1, 2, ..., n) and α ≥ 2, then
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.

Proof. In Theorem 3 we take f (a) = aα.
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