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Polynomial Equations
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1 Introduction

The title refers to determining polynomials in one or more variables (e.g. with real or complex
coefficients) which satisfy some given relation(s).

The following example illustrates some basic methods:

1. Determine the polynomialsP for which 16P(x2) = P(2x)2.

• First method: evaluating at certain points and reducing degree.

Pluggingx = 0 in the given relation yields 16P(0) = P(0)2, i.e. P(0) = 0 or 16.

(i) Suppose thatP(0) = 0. ThenP(x) = xQ(x) for some polynomialQ and 16x2Q(x2) =
4x2Q(2x)2, which reduces to 4Q(x2) = Q(2x)2. Now setting 4Q(x) = R(x) gives us
16R(x2) = R(2x)2. Hence,P(x) = 1

4xR(x), with R satifying the same relation asP.

(ii) Suppose thatP(0) = 16. PuttingP(x) = xQ(x) + 16 in the given relation we obtain
4xQ(x2) = xQ(2x)2+16Q(2x); henceQ(0) = 0, i.e.Q(x) = xQ1(x) for some polynomial
Q1. Furthermore,x2Q1(x2) = x2Q1(2x)2 +8Q1(2x), implying thatQ1(0) = 0, soQ1 too
is divisible by x. ThusQ(x) = x2Q1(x). Now suppose thatxn is the highest degree
of x dividing Q, andQ(x) = xnR(x), whereR(0) 6= 0. ThenR satisfies 4xn+1R(x2) =
22nxn+1R(2x)2+2n+4R(2x), which implies thatR(0) = 0, a contradiction. It follows that
Q≡ 0 andP(x) ≡ 16.

We conclude thatP(x) = 16
(

1
4x
)n

for somen∈ N0.

• Second method: investigating coefficients.

We start by proving the following lemma (to be used frequently):

Lemma 1. If P(x)2 is a polynomial in x2, then so is either P(x) or P(x)/x.

Proof. Let P(x) = anxn + an−1xn−1 + · · ·+ a0, an 6= 0. The coefficient atx2n−1 is 2anan−1,
from which we getan−1 = 0. Now the coefficient atx2n−3 equals 2anan−3; hencean−3 = 0,
and so on. Continuing in this manner we conclude thatan−2k−1 = 0 for k = 0,1,2, . . . , i.e.
P(x) = anxn +an−2xn−2 +an−4xn−4 + · · · . △

SinceP(x)2 = 16P(x2/4) is a polynomial inx2, we haveP(x) = Q(x2) or P(x) = xQ(x2). In
the former case we get 16Q(x4) = Q(4x2)2 and therefore 16Q(x2) = Q(4x)2; in the latter case
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we similarly get 4Q(x2) = Q(4x)2. In either case,Q(x) = R(x2) or Q(x) = xR(x2) for some
polynomialR, soP(x) = xiR(x4) for somei ∈ {0,1,2,3}. Proceeding in this way we find that

P(x) = xiS(x2k
) for eachk ∈ N and somei ∈ {0,1, . . . ,2k}. Now it is enough to takek with

2k > degP and to conclude thatSmust be constant. ThusP(x) = cxi for somec∈ R. A simple
verification gives us the general solutionP(x) = 16

(1
4x
)n

for n∈ N0.

Investigating zeroes of the unknown polynomial is also counted under the first method.
A majority of problems of this type can be solved by one of the above two methods (although

some cannot, making math more interesting!).

2 Problems with Solutions

1. Find all polynomialsP such thatP(x)2 +P(1
x)

2 = P(x2)P( 1
x2 ).

Solution. By the introducing lemma there exists a polynomialQ such thatP(x) = Q(x2)
or P(x) = xQ(x2). In the former caseQ(x2)2 + Q( 1

x2 ) = Q(x4)Q( 1
x4 ) and thereforeQ(x)2 +

Q(1
x) = Q(x2)Q( 1

x2 ) (which is precisely the relation fulfilled byP), whereas in the latter case

(similarly) xQ(x)2 + 1
xQ(1

x)2 = Q(x2)Q( 1
x2 ) which is impossible for the left and right hand

side have odd and even degrees, respectively. We conclude thatP(x) = Q(x2), whereQ is also
a solution of the considered polynomial equation. Considering the solution of the least degree
we find thatP must be constant.

2. Do there exist non-linear polynomialsP andQ such thatP(Q(x)) = (x−1)(x−2) · · · (x−15)?

Solution. Suppose there exist such polynomials. Then degP · degQ = 15, so degP = k ∈
{3,5}. PuttingP(x) = c(x−a1) · · · (x−ak) we getc(Q(x)−a1) · · · (Q(x)−ak) = (x−1)(x−
2) · · ·(x− 15). Thus the roots of polynomialQ(x)− ai are distinct and comprise the set
{1,2, . . . ,15}. All these polynomials mutually differ at the last coefficient only. Now, in-
vestigating parity of the remaining (three or five) coefficients we conclude that each of them
has the equally many odd roots. This is impossible, since thetotal number of odd roots is 8,
not divisible by 3 or 5.

3. Determine all polynomialsP for whichP(x)2−2 = 2P(2x2−1).

Solution. DenoteP(1) = a. We havea2−2a−2= 0. SubstitutingP(x) = (x−1)P1(x)+a in
the initial relation and simplifying yields(x−1)P1(x)2 +2aP1(x) = 4(x+1)P1(2x2−1). For
x = 1 we have 2aP1(1) = 8P1(1), which (sincea 6= 4) gives usP1(1) = 0, i.e. P1(x) = (x−
1)P2(x), soP(x) = (x−1)2P2(x)+a. Suppose thatP(x) = (x−1)nQ(x)+a, whereQ(1) 6= 0.
Substituting in the initial relation and simplifying yields (x− 1)nQ(x)2 + 2aQ(x) = 2(2x+
2)nQ(2x2−1), giving usQ(1) = 0, a contradiction. It follows thatP(x) = a.

4. Determine all polynomialsP for whichP(x)2−1 = 4P(x2−4x+1).

Solution. Suppose thatP is not constant. Fixing degP = n and comparing coefficients of
both sides we deduce that the coefficients of polynomialP must be rational. On the other

hand, settingx = a with a = a2 − 4a+ 1, that is,a = 5±
√

21
2 , we obtainP(a) = b, where

b2− 4b− 1 = 0, i.e. b = 2±
√

5. However, this is impossible becauseP(a) must be of the
form p+q

√
21 for some rationalp,q for the coefficients ofP are rational. It follows thatP(x)

is constant.

5. For which real values ofa does there exist a rational functionf (x) that satisfiesf (x2) =
f (x)2−a?

Solution. Write f as f = P/Qwith P andQ coprime polynomials andQmonic. By comparing
leading coefficients we obtain thatP too is monic. The condition of the problem became
P(x2)/Q(x2) = P(x)2/Q(x)2−a. SinceP(x2) andQ(x2) are coprime (if, to the contrary, they
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had a zero in common, then so doP andQ), it follows thatQ(x2) = Q(x)2. ThereforeQ(x) = xn

for somen∈ N. Now we haveP(x2) = P(x)2−ax2n.

Let P(x) = a0 +a1x+ · · ·+am−1xm−1 +xm. Comparing coefficients ofP(x)2 andP(x2) gives
us an−1 = · · · = a2m−n+1 = 0, a2m−n = a/2, a1 = · · · = am−1 = 0 anda0 = 1. This is only
possible ifa = 2 and 2m−n= 0, ora = 0.

6. Find all polynomialsP satisfyingP(x2 +1) = P(x)2 +1 for all x.

Solution. By the introducing lemma, there is a polynomialQ such thatP(x) = Q(x2 + 1) or
P(x) = xQ(x2 + 1). ThenQ((x2 + 1)2 + 1) = Q(x2 + 1)2− 1 or (x2 + 1)Q((x2 + 1)2 + 1) =
x2Q(x2 + 1)2 + 1, respectively. Substitutingx2 + 1 = y yields Q(y2 + 1) = Q(y)2 + 1 and
yQ(y2 +1) = (y−1)Q(y)2+1, respectively.

Suppose thatyQ(y2+1) = (y−1)Q(y)2+1. Settingy= 1 we obtain thatQ(2) = 1. Note that,
if a 6= 0 andQ(a) = 1, then alsoaQ(a2 +1) = (a−1)+1 and henceQ(a2 +1) = 1. We thus
obtain an infinite sequence of points at whichQ takes value 1, namely the sequence given by
a0 = 2 andan+1 = a2

n +1. ThereforeQ≡ 1.

It follows that if Q 6≡ 1, thenP(x) = Q(x2 +1). Now we can easily list all solutions: these are
the polynomials of the formT(T(· · · (T(x)) · · · )), whereT(x) = x2 +1.

7. If a polynomialP with real coefficients satisfies for allx

P(cosx) = P(sinx),

prove that there exists a polynomialQ such that for allx, P(x) = Q(x4−x2).

Solution. It follows from the condition of the problem thatP(−sinx) = P(sinx), soP(−t) =
P(t) for infinitely manyt; hence the polynomialsP(x) andP(−x) coincide. ThereforeP(x) =
S(x2) for some polynomialS. Now S(cos2x) = S(sin2x) for all x, so S(1− t) = S(t) for
infinitely manyt, which gives usS(x) ≡ S(1−x). This is equivalent toR(x− 1

2) = R(1
2 −x),

i.e. R(y) ≡ R(−y), whereR is the polynomial such thatS(x) = R(x− 1
2). Now R(x) = T(x2)

for some polynomialT, and finally,P(x) = S(x2) = R(x2− 1
2) = T(x4−x2 + 1

4) = Q(x4−x2)
for some polynomialQ.

8. Find all quadruples of polynomials(P1,P2,P3,P4) such that, whenever natural numbersx,y,z,t
satisfyxy−zt = 1, it holds thatP1(x)P2(y)−P3(z)P4(t) = 1.

Solution. ClearlyP1(x)P2(y) = P2(x)P1(y) for all natural numbersx andy. This implies that
P2(x)/P1(x) does not depend onx. HenceP2 = cP1 for some constantc. Analogously,P4 = dP3

for some constantd. Now we havecP1(x)P1(y)−dP3(z)P3(t) = 1 for all naturalx,y,z,t with
xy− zt = 1. Moreover, we see thatP1(x)P1(y) depends only onxy, i.e. f (x) = P1(x)P1(n/x)
is the same for all positive divisorsx of natural numbern. Since f (x) is a rational function
and the number of divisorsx of n can be arbitrarily large, it follows thatf is constant inx, i.e.
a polynomial inn. It is easily verified that this is possible only whenP1(x) = xn for somen.
Similarly, P3(x) = xm for somem andc(xy)n−d(zt)m = 1. Thereforem= n andc = d = 1,
and finallym= n = 1. So,P1(x) = P2(x) = P3(x) = P4(x) = x.

9. Find all polynomialsP(x) with real coefficients that satisfy the equality

P(a−b)+P(b−c)+P(c−a)= 2P(a+b+c)

for all triplesa,b,c of real numbers such thatab+bc+ca= 0. (IMO 2004.2)

Solution. Let P(x) = a0 +a1x+ · · ·+anxn. For everyx∈ R the triple(a,b,c) = (6x,3x,−2x)
satisfies the conditionab+ bc+ ca= 0. Then the condition onP gives usP(3x)+ P(5x)+
P(−8x) = 2P(7x) for all x, implying that for alli = 0,1,2, . . . ,n the following equality holds:

(

3i +5i +(−8)i −2 ·7i)ai = 0.



4 Olympiad Training Materials, www.imomath.com

Suppose thatai 6= 0. ThenK(i) = 3i + 5i +(−8)i −2 ·7i = 0. But K(i) is negative fori odd
and positive fori = 0 or i ≥ 6 even. Only fori = 2 andi = 4 do we haveK(i) = 0. It follows
thatP(x) = a2x2 + a4x4 for some real numbersa2,a4. It is easily verified that all suchP(x)
satisfy the required condition.

10. (a) If a real polynomialP(x) satisfiesP(x)≥ 0 for all x, show that there exist real polynomi-
alsA(x) andB(x) such thatP(x) = A(x)2 +B(x)2.

(b) If a real polynomialP(x) satisfiesP(x) ≥ 0 for all x ≥ 0, show that there exist real
polynomialsA(x) andB(x) such thatP(x) = A(x)2 +xB(x)2.

Solution. PolynomialP(x) can be written in the form

P(x) = (x−a1)
α1 · · · (x−ak)

αk · (x2−b1x+c1) · · · (x2−bmx+cm), (∗)

whereai ,b j ,c j are real numbers such thatai are distinct and the polynomialsx2−bix+ci have
no real roots.

It follows from the conditionP(x) ≥ 0 for all x that all theαi are even, and from the condition
P(x) ≥ 0 for all x ≥ 0 that (∀i) either αi is even orai < 0. This ensures that each linear
or quadratic factor in(∗) can be written in the required formA2 + B2 and/orA2 + xB2. The
well-known formula(a2 + γb2)(c2 + γd2) = (ac+ γbd)2 + γ(ad−bc)2 now gives a required
representation for their productP(x).

11. Prove that if the polynomialsP andQ have a real root each and

P(1+x+Q(x)2) = Q(1+x+P(x)2),

thenP≡ Q.

Solution. Note that there existsx= a for whichP(a)2 = Q(a)2. This follows from the fact that,
if p andq are the respective real roots ofP andQ, thenP(p)2−Q(p)2 ≤ 0≤ P(q)2−Q(q)2,
and moreoverP2−Q2 is continuous. NowP(b) = Q(b) for b = 1+a+P(a)2. Takinga to be
the largest real number for whichP(a) = Q(a) leads to an immediate contradiction.

12. If P andQ are monic polynomials withP(P(x)) = Q(Q(x)), prove thatP≡ Q.

Solution. Suppose thatR= P−Q 6= 0 and that 0< k≤ n−1 is the degree ofR(x). Then

P(P(x))−Q(Q(x)) = [Q(P(x))−Q(Q(x))]+R(P(x)).

Putting Q(x) = xn + · · ·+ a1x+ a0 we haveQ(P(x))− Q(Q(x)) = [P(x)n − Q(x)n] + · · ·+
a1[P(x)−Q(x)], where all summands but the first have a degree at mostn2−n, while the first
summand equalsR(x) ·

(

P(x)n−1 +P(x)n−2Q(x)+ · · ·+Q(x)n−1
)

and therefore has the degree
n2−n+k with the leading coefficientn. Hence the degree ofQ(P(x))−Q(Q(x)) is n2−n+k.
The degree ofR(P(x)) is equal tokn< n2−n+k, from what we conclude that the degree of
the differenceP(P(x))−Q(Q(x)) is n2−n+k, a contradiction.

In the remaining case whenR≡ c is constant, the conditionP(P(x)) = Q(Q(x)) gives us
Q(Q(x)+c) = Q(Q(x))−c, so the equalityQ(y+c) = Q(y)−c holds for infinitely manyy,
implying Q(y+c) ≡ Q(y)−c. But this is only possible forc = 0.

13. Assume that there exist complex polynomialsP,Q,Rsuch that

Pa +Qb = Rc,

wherea,b,c are natural numbers. Show that1
a + 1

b + 1
c > 1.

Solution. We use the following auxilliary statement.
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Lemma 2. If A,B and C are pairwise coprime polynomials with A+ B = C, then the degree
of each of them is less than the number of different zeroes of the polynomial ABC.

Proof. Let

A(x) =
k

∏
i=1

(x− pi)
ai , B(x) =

l

∏
i=1

(x−qi)
bi , C(x) =

m

∏
i=1

(x− r i)
ci .

Writing the conditionA+B = C asA(x)C(x)−1 +B(x)C(x)−1 = 1 and differentiating it with
respect tox gives us

A(x)C(x)−1

(

k

∑
i=1

ai

x− pi
−

m

∑
i=1

ci

x− r i

)

= −B(x)C(x)−1

(

l

∑
i=1

bi

x−qi
−

m

∑
i=1

ci

x− r i

)

,

from which we see thatA(x)/B(x) can be written as a quotient of two polynomials od degrees
not exceedingk+ l +m−1. Our statement now follows from the fact thatA andB are coprime.
Apply this statement on polynomialsPa,Qb,Rc. Each of their degreesadegP, bdegQ, cdegR
is less than degP+degQ+degRand hence1a > degP

degP+degQ+degR, etc. Summing up yields the
desired inequality.

Corollary. “The Last Fermat’s theorem” for polynomials.

14. The lateral surface of a cylinder is divided byn−1 planes parallel to the base andmmeridians
into mncells (n≥ 1,m≥ 3). Two cells are called neighbors if they have a common side.Prove
that it is possible to write real numbers in the cells, not allzero, so that the number in each
cell equals the sum of the numbers in the neighboring cells, if and only if there existk, l with

n+1 ∤ k such that cos
2lπ
m

+cos
kπ

n+1
=

1
2
.

Solution. Denote byai j the number in the intersection ofi-th parallel andj-th meridian.
We assign to thei-th parallel the polynomialpi(x) = ai1 + ai2x+ · · ·+ aimxm−1 and define
p0(x) = pn+1(x) = 0. The property that each number equals the sum of its neighbors can be
written aspi(x) = pi−1(x)+ pi+1(x)+ (xm−1 +x)pi(x) moduloxm−1, i.e.

pi+1(x) = (1−x−xm−1)pi(x)− pi−1(x) (modxm−1).

This sequence of polynomials is entirely determined by termp1(x). The numbersai j can be
written in the required way if and only if a polynomialp1(x) 6= 0 of degree less thanmcan be
chosen so thatpn+1(x) = 0.

Consider the sequence of polynomialsr i(x) given by r0 = 0, r1 = 1 and r i+1 = (1− x−
xm−1)r i − r i−1. Clearly, pn+1(x) ≡ rn+1(x)p1(x) (mod xm− 1). Polynomialp1 6= 0 of de-
gree< m for which pn+1 = 0 exists if and only ifrn+1(x) andxm−1 are not coprime, i.e. if
and only if there existsε such thatεm = 1 andrn+1(ε) = 0. Now consider the sequence(xi)
given byx0 = 0, x1 = 1 andxi+1 = (1− ε− εm−1)xi −xi−1. Let us writec= 1− ε− εm−1 and
denote byu1,u2 the zeroes of polynomialx2−cx+1. The general term of the above recurrent

sequence isxi =
ui

1−ui
2

u1−u2
if u1 6= u2 andxi = iui

1 if u1 = u2. The latter case is clearly impos-

sible. In the former case (u1 6= u2) equalityxn+1 = 0 is equivalent toun+1
1 = un+1

2 and hence
to ωn+1 = 1, whereu1 = u2ω , which holds if and only if(∃u2) u2

2ω = 1 andu2(1+ ω) = c.
Therefore(1+ ω)2 = c2ω , so

2+ ω + ω̄ = (1− ε − ε̄)2.

Now if ω = cos2kπ
n+1 + i sin 2kπ

n+1 andε = cos2lπ
m + i sin 2lπ

m , the above equality becomes the
desired one.


