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1 Introduction

The title refers to determining polynomials in one or moreiafales (e.g. with real or complex
coefficients) which satisfy some given relation(s).
The following example illustrates some basic methods:

1. Determine the polynomiaR for which 16P(x?) = P(2x)2.

e First method: evaluating at certain points and reducing reegy
Pluggingx = 0 in the given relation yields F§0) = P(0)?, i.e. P(0) = 0 or 16.

(i) Suppose thaP(0) = 0. ThenP(x) = xQ(x) for some polynomiaR and 162Q(x?) =
4x2Q(2x)?, which reduces to @(x?) = Q(2x)>. Now setting Q(x) = R(x) gives us
16R(x?) = R(2x)2. Hence P(x) = xR(x), with R satifying the same relation &

(i) Suppose thaP(0) = 16. PuttingP(x) = xQ(x) + 16 in the given relation we obtain
4xQ(x?) = xQ(2x) 4 16Q(2x); henceQ(0) =0, i.e. Q(x) = xQy (x) for some polynomial
Qi. Furthermorex?Q(x%) = x2Q1(2x)% 4 8Q1(2x), implying thatQy (0) = 0, soQ; too
is divisible byx. ThusQ(x) = x*Q1(x). Now suppose that” is the highest degree
of x dividing Q, andQ(x) = x"R(x), whereR(0) # 0. ThenR satisfies £ R(x?) =
220 H1R(2x)2 4- 2"4R(2x), which implies thaR(0) = 0, a contradiction. It follows that
Q= 0andP(x) = 16.

We conclude thal(x) = 16(1x)" for somen € No.

e Second method: investigating coefficients.
We start by proving the following lemma (to be used frequéntl

Lemma 1. If P(x)? is a polynomial in %, then so is either i) or P(x)/x.

Proof. Let P(x) = anX" +a,_1X"" 14 --- +ag, an # 0. The coefficient ax®"~ 1 is 2ana 1,
from which we geta,_1 = 0. Now the coefficient at>"3 equals 2na,_3; hencea,_3 = 0,
and so on. Continuing in this manner we conclude thatx 1 =0 fork=0,1,2,..., i.e.
P(X) = anX" +an oX" 2+ aq aX" 4+ A

SinceP(x)2 = 16P(x?/4) is a polynomial inx?, we haveP(x) = Q(x?) or P(x) = xQ(x?). In
the former case we get @x*) = Q(4x?)? and therefore 1Q(x?) = Q(4x)?; in the latter case
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we similarly get Q(x?) = Q(4x)2. In either caseQ(x) = R(x?) or Q(x) = xR(x?) for some
polynomialR, soP(x) = XR(x*) for somei € {0,1,2,3}. Proceeding in this way we find that

P(x) = x'S(x2) for eachk € N and somé € {0,1,...,2¢}. Now it is enough to také with
2> degP and to conclude th&&must be constant. ThLlE{x) — cX for somec € R. A simple
verification gives us the general solutiB(x) = 16(1x)" for n € No.

Investigating zeroes of the unknown polynomial is also ¢edmnder the first method.
A majority of problems of this type can be solved by one of thewe two methods (although
some cannot, making math more interesting!).

2 Problemswith Solutions

1.

Find all polynomials such thaP(x)? + P(£)? = P(x*)P(s5 ).

X

Solution. By the introducing lemma there exists a polynon@kuch thatP(x) = Q(x?)
or P(x) = xQ(x?). In the former cas®(x*)?+ Q(5) = Q(x*)Q(s;) and thereford(x)? +
Q(3) = Q(x*)Q(33) (which is precisely the relation fulfilled bfy), whereas in the latter case

X
(similarly) xQ(x)? + £Q(£)? = Q(x*)Q(;) which is impossible for the left and right hand
side have odd and even degrees, respectively. We conclat(#) = Q(x%), whereQ is also
a solution of the considered polynomial equation. Congidethe solution of the least degree
we find thatP must be constant.

. Do there exist non-linear polynomidsaandQ such thaP(Q(x)) = (x—1)(x—2) --- (x—15)?

Solution. Suppose there exist such polynomials. ThenRladpgQ = 15, so de®® =k €
{3,5}. PuttingP(x) = c(x—ar) - (x— &) We getc(Q(x) —ay) - (Q(X) — a) = (X— 1)(X—
2)---(x—15). Thus the roots of polynomiaD(x) — & are distinct and comprise the set
{1,2,...,15}. All these polynomials mutually differ at the last coefficieonly. Now, in-
vestigating parity of the remaining (three or five) coeffitgewe conclude that each of them
has the equally many odd roots. This is impossible, sinceédtad number of odd roots is 8,
not divisible by 3 or 5.

. Determine all polynomialB for which P(x)? — 2 = 2P(2x* — 1).

Solution. DenoteP(1) = a. We havea? —2a—2=0. SubstitutingD( ) = (Xx—1)Pi(x)+ain
the initial relation and simplifying yield&x — 1)Py(x)2 + 2aPy(x) = 4(x+ 1)P1(2x? — 1). For
x =1 we have 2P, (1) = 8Py(1), which (sincea # 4) gives usP;(1) =0, i.e. Pi(x) = (x—
1)P2(x), SOP(X) = (x— 1)?Py(x) +a. Suppose tha®(x) = (x— 1)"Q(x )+a whereQ(1) # 0.
Substituting in the initial relation and simplifying yieddx — 1)"Q(x)2 + ZaQ( ) = 2(2x+
2)"Q(2x? — 1), giving usQ(1) = 0, a contradiction. It follows tha®(x) =

. Determine all polynomialB for which P(x)2 — 1 = 4P(x? — 4x+ 1).

Solution. Suppose thaP is not constant. Fixing ddgg= n and comparing coefficients of
both sides we deduce that the coefficients of polynomiatust be rational. On the other
hand, settingx = a with a = a®> — 4a+ 1, that is,a = &T\/z_l we obtainP(a) = b, where
b>—4b—-1=0, i.e. b= 2+ /5. However, this is impossible becauBg) must be of the
form p+qgv/21 for some rationap, g for the coefficients oP are rational. It follows thalP(x)

is constant.

. For which real values o& does there exist a rational functidiix) that satisfiesf (x?) =

f(x)?—a?

Solution. Write f asf = P/Qwith P andQ coprime polynomials an@ monic. By comparing
leading coefficients we obtain th& too is monic. The condition of the problem became
P(x?)/Q(x?) = P(x)?/Q(x)?> — a. SinceP(x?) andQ(x?) are coprime (if, to the contrary, they
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had a zero in common, then soB@andQ), it follows thatQ(x?) = Q(x)2. ThereforeQ(x) =
for somen € N. Now we haveP(x?) = P(x)? — ax".

Let P(x) = ag+aiX+ - -- 4+ am_1x™ 1 4+ x™. Comparing coefficients ¢?(x)? andP(x?) gives
usan-1=-=amnt1 =0, 8mn=2a/2,8 =--- =an_1 =0 andap = 1. This is only
possible ifa=2and 2Zn—n=0, ora=0.

6. Find all polynomiald satisfyingP(x? + 1) = P(x)? + 1 for all x.
Solution. By the introducing lemma, there is a ponnom@lsuch thaP(x) = Q(x® +1) or
P(X) = XxQ(+1). ThenQ((x¥+1)2+1) = Q¥ +1)2—1 or (¥ +1)Q((x¥+1)2+1) =
x?Q(x% +1)? 4 1, respectively. Substituting? 4+ 1 =y yields Q(y? 4+ 1) = Q(y)?
yQ(Y*+1) = (y— 1)Q(y)* + 1, respectively.
Suppose thatQ(y?+1) = (y—1)Q(y)2 + 1. Settingy = 1 we obtain thaQ(2) = 1. Note that,
if a0 andQ(a) = 1, then als@Q(a®? + 1) = (a— 1)+ 1 and henc&(a® + 1) = 1. We thus
obtain an infinite sequence of points at whighakes value 1, namely the sequence given by
ap =2 andap, 1 = a2+ 1. ThereforeQ = 1.
It follows that if Q # 1, thenP(x) = Q(x?+ 1). Now we can easily list all solutions: these are
the polynomials of the forr® (T(--- (T (x))---)), whereT (x) = x>+ 1.

o

)
+1 an

7. If a polynomialP with real coefficients satisfies for &l
P(cosx) = P(sinx),

prove that there exists a polynom@isuch that for alk, P(x) = Q(x* — x?).

Solution. It follows from the condition of the problem th&(— sinx) = P(sinx), soP(—t) =
P(t) for infinitely manyt; hence the polynomiaB(x) andP(—x) coincide. Therefor®(x) =
S(x?) for some polynomia. Now S(co€x) = S(sirfx) for all x, so S(l—t) S(t) for
infinitely manyt, which gives usS(x) = S(1—x). This is equivalent tiR(x— 3) = R(3 — x),
i.e. R(y) = R(—y), whereRis the polynomial such th&(x) = R(x— —) Now R(x) = ( 2)
for some polynomial , and finally,P(x) = S(x?) = R(x® — 3) = T(x* -2+ 1) = Q(x* —x?)
for some polynomiaQ.

8. Find all quadruples of polynomialB, P,, Ps, Py) such that, whenever natural numbeng z, t
satisfyxy— zt =1, it holds thaPy (X)Px(y) — Ps(2)Ps(t) = 1.

Solution. Clearly P (x)P(y) = Po(x)Py(y) for all natural numberg andy. This implies that
P»(x) /P1(x) does not depend on HenceP, = cP, for some constart AnalogouslyP, =dP;
for some constard. Now we havecP; (x)Pi(y) — dPs(2)Ps(t) = 1 for all naturalx,y,z t with
xy—zt= 1. Moreover, we see th& (x)Pi(y) depends only omy, i.e. f(x) = Pi(X)P1(n/x)
is the same for all positive divisossof natural numben. Sincef(x) is a rational function
and the number of divisopsof n can be arbitrarily large, it follows thdtis constant irx, i.e.
a polynomial inn. It is easily verified that this is possible only whBp(x) = x" for somen.
Similarly, P3(x) = x™ for somem andc(xy)" —d(zt)™ = 1. Thereforen=nandc=d =1,
and finallym=n=1. So,Pi(x) = P2(X) = P3(x) = P4(X) = X

9. Find all polynomial$(x) with real coefficients that satisfy the equality
P(a—b)+P(b—c)+P(c—a)=2P(a+b+c)

for all triplesa, b, ¢ of real numbers such thab+ bc+ ca= 0. (IMO 2004.2)

Solution. Let P(x) = ag+aix+ - - - +anX". For everyx € R the triple(a, b, c) = (6x, 3x, —2x)
satisfies the conditioab+ bc+ ca= 0. Then the condition oR gives usP(3x) + P(5x) +
P(—8x) = 2P(7x) for all x, implying that for alli = 0,1,2,...,n the following equality holds:

(3+5+(-8)'-2-7)a =0.
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Suppose that; # 0. ThenK (i) = 3' +5' + (—8)' — 2.7 = 0. ButK(i) is negative foii odd
and positive foii =0 ori > 6 even. Only foii = 2 andi = 4 do we haveé(i) = 0. It follows
that P(x) = apx? + azx* for some real number, ay. It is easily verified that all sucR(x)
satisfy the required condition.

(a) If areal polynomidP(x) satisfiesP(x) > 0 for all x, show that there exist real polynomi-
alsA(x) andB(x) such thaP(x) = A(x)2 + B(x)2.

(b) If a real polynomialP(x) satisfiesP(x) > 0 for all x > 0, show that there exist real
polynomialsA(x) andB(x) such thaP(x) = A(x)2 + xB(x)?.

Solution. PolynomialP(x) can be written in the form
P(X) = (x—ap)--- (x—aK) % (X2 — byX+C1) - - - (X% — byX + Cr), (%)
wherea;, bj, cj are real numbers such tratare distinct and the polynomiaté— bix+ ¢ have

no real roots.

It follows from the conditiorP(x) > O for all x that all thea; are even, and from the condition
P(x) > 0 for all x > 0 that (Vi) eithera; is even org; < 0. This ensures that each linear
or quadratic factor ir(x) can be written in the required ford? + B? and/orA? + xB?. The
well-known formula(a? + yb?)(c? + yd?) = (ac+ ybd)2 + y(ad — bc)2 now gives a required
representation for their produletx).

Prove that if the polynomialR andQ have a real root each and
P(1+x+Q(X)?) = Q(1+x+P(x)?),

thenP = Q.

Solution. Note that there exists= afor whichP(a)? = Q(a)?. This follows from the fact that,
if pandq are the respective real rootsPfndQ, thenP(p)? — Q(p)? < 0 < P(9)? — Q(q)?,
and moreoveP? — Q? is continuous. NowP(b) = Q(b) for b= 1+a+ P(a)?. Takingato be
the largest real number for whi¢k(a) = Q(a) leads to an immediate contradiction.

If P andQ are monic polynomials witfP(P(x)) = Q(Q(X)), prove thaP = Q.
Solution. Suppose thaR=P — Q # 0 and that < k < n— 1 is the degree dR(x). Then

P(P() — Q(Q(X)) = [Q(P(x)) — QIQ(X))] + R(P(x)).

Putting Q(x) = X"+ --- + a;x+ ap we haveQ(P(x)) — Q(Q(x)) = [P(X)" — Q(X)"] +--- +
a1[P(x) — Q(x)], where all summands but the first have a degree at nfesn, while the first
summand equaR(x) - (P(x)" 1+ P(x)"2Q(x) + - -- + Q(x)"~1) and therefore has the degree
n? —n+ k with the leading coefficiem. Hence the degree @¥(P(x)) — Q(Q(x)) isn?> —n+k.
The degree oR(P(x)) is equal tokn < n? —n+-k, from what we conclude that the degree of
the differenceP(P(x)) — Q(Q(X)) is n?> — n+k, a contradiction.

In the remaining case wheR = c is constant, the conditioR(P(x)) = Q(Q(x)) gives us
Q(Q(x) +¢) = Q(Q(x)) — ¢, so the equalitfQ(y+ c) = Q(y) — ¢ holds for infinitely manyy,
implying Q(y+ ¢) = Q(y) — c. But this is only possible foc = 0.

Assume that there exist complex polynomR®, R such that
Pa_|_ Qb — RC,

wherea, b, c are natural numbers. Show tha# £ + 1 > 1.
Solution. We use the following auxilliary statement.
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14.

Lemma 2. If A,B and C are pairwise coprime polynomials witht"8 = C, then the degree
of each of them is less than the number of different zerodseqddlynomial ABC.

Proof. Let
k

A =[]0x-P)®, B9 =

Moc-a. co0= o=

Writing the conditionA+ B = C asA(X)C(x) 1 4 B(x)C(x) ! = 1 and differentiating it with
respect tx gives us

et (3 20528 ) - mwe (5,00 - 5 o)

from which we see thak(x)/B(x) can be written as a quotient of two polynomials od degrees
not exceeding+1+m— 1. Our statement now follows from the fact tifeandB are coprime.
Apply this statement on polynomiai&, Q°, R¢. Each of their degreesdegP, bdegQ, cdegR

is less than delg+ degQ+ degR and hence}1 > degPerdem, etc. Summing up yields the
desired inequality.

Corollary. “The Last Fermat's theorem” for polynomials.

The lateral surface of a cylinder is dividedy 1 planes parallel to the base amagneridians
into mncells (1> 1, m> 3). Two cells are called neighbors if they have a common $tdeve
that it is possible to write real numbers in the cells, notzallo, so that the number in each

cell equals the sum of the numbers in the neighboring cédd only if there exisk, | with

2 krm 1
n+ 11k such that cos +eos——— = 5.
m nti 2

Solution. Denote bya;jj the number in the intersection oth parallel andj-th meridian.
We assign to thé-th parallel the polynomiap;(x) = a1 + apx+ --- + amx™ 1 and define
po(X) = pnr1(X) = 0. The property that each number equals the sum of its neigldam be
written aspi (x) = pi_1(X) + pir1(X) + (XML 4 x) pi(x) modulox™— 1, i.e.

P10 = (L=x=x"Hpi(x) = pi-1(X) (Modx™—1).

This sequence of polynomials is entirely determined by tpfiix). The numbersy; can be
written in the required way if and only if a polynomip] (x) # 0 of degree less than can be
chosen so thabp;1(x) = 0.

Consider the sequence of polynomialéx) given byro =0, r; =1 andriy; = (1—x—
X™ Ui —ri_1. Clearly, pni1(X) = rnea(X)pr(x) (modx™ — 1). Polynomialp; # O of de-
gree< mfor which pn.1 = 0 exists if and only ifr,,1(x) andx™ — 1 are not coprime, i.e. if
and only if there exists such that™ = 1 andrp,1(g) = 0. Now consider the sequente)
given byxo=0,x; =l andx;1 = (1—&— ™ 1)x —x_1. Letus writec=1—¢—&e™ ! and
denote byu, u, the zeroes of polynomiaf — cx+ 1. The general term of the above recurrent
| |
sequence i = 31 uz if ug # Up andx = iu} if u; = up. The latter case is clearly impos-
1— U2
sible. In the former casel{ # up) equalityx, 1 = O is equivalent tmT’l = ug+1 and hence
to w"! = 1, whereu; = upw, which holds if and only if Ju,) ugw =1andu;(1+ w) =c.
Therefore(1+ w)? = cw, so

24w+ w=(1-g—¢)

Now if w = cosZT +isin2% ande = cos2” +isin2™, the above equality becomes the

. n+1 n+1
desired one.



