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1 General Properties

A Monomialin variablex is an expression of the foro¥, wherec is a constant ankda nonnegative
integer. Constart can be e.g. an integer, rational, real or complex number.

A Polynomialin x is a sum of finitely many monomials i In other words, it is an expression
of the form

P(x) = anX" +an 1+ -+ aix+ao. (*)
If only two or three of the above summands are nonzerig, said to be @inomialandtrinomial,
respectively.

The constantsy, ..., a, in (x) are thecoefficientof polynomialP. The set of polynomials with
the coefficients in seh is denoted byA[x] - for instanceR[x] is the set of polynomials with real
coefficients.

We can assume ifx) w.l.o.g. thata, # O (if an = 0, the summand,x" can be erased without
changing the polynomial). Then the exponans called thedegreeof polynomialP and denoted
by degP. In particular, polynomials of degree one, two and threecatkedlinear, quadraticand
cubic A nonzero constant polynomial has degree 0, while the petpromialP(x) = 0 is assigned
the degree-c for reasons soon to become clear.

Example 1. P(x) = x3(x+ 1) + (1 —x?)? = 2x* + x3 — 2x* 4 1 is a polynomial with integer coeffi-
cients of degree 4.
Q(x) = 0x%> — v/2x+ 3iis a linear polynomial with real coefficients.

R(X) = VX2 = |x, S(x) = L and T(x) = v/2x+ 1 are not polynomials.

Polynomials can be added, subtracted or multiplied, andethat will be a polynomial too:
AX) =ap+aix+---+anxX", B(X) =bg+bix+---+ bpx™
A(X) = B(x) = (ap — bp) + (a1 — by )x—+-- -,
A(X)B(x) = aghg + (aghy + a1bg)x+ - - - + anbmx™ ™.

The behavior of the degrees of the polynomials under theseatipns is clear:
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Theorem 1. If A and B are two polynomials then:
(i) degA+B) < maxdegA,degB), with the equality idegA # degB.
(i) degA-B)=degA+degB. O

The conventional equality degf —o actually arose from these properties of degrees, as else
the equality (ii) would not be always true.

Unlike a sum, difference and product, a quotient of two polpials is not necessarily a polyno-
mial. Instead, like integers, they can be divided with adesi

Theorem 2. Given polynomials A and B O, there are unique polynomials Q (quotient) and R
(residue) such that

A=BQ+R and degR< degB.

Proof. Let A(x) = anx" + - - - +ag andB(x) = bx* 4 - - - + by, whereagby # 0. Assumek is fixed and
use induction om. Forn < k the statement is trivial. Suppose timat N > k and that the statement
is true forn < N. ThenA;(x) = A(X) — Bﬁkx"‘kB(x) is a polynomial of degree less than(for its
coefficient ax” iz zero); hence by the inductive assumption there are umglgomialsQ; andR
such thath; = BQ; + Rand dedr. But this also implies

an

A=BQ+R, where Q(x)= b—kx'"’k +Qi(x). O

Example 2. The quotient upon division of(R) = x3 + x? — 1 by B(x) = x*> — x— 3 is x+ 2 with the
residuebx+ 5, as
XBHx2—1 5x+5
X2 —x—3 :X+2+x2—x—3'
We say that polynomiaA is divisible by polynomialB if the remaindeR whenA is divided by
B equal to 0, i.e. if there is a polynomi@ such thatA = BQ.

Theorem 3 (Bezout's theorem).Polynomial Rx) is divisible by binomial x-a if and only if Ra) =
0.

Proof. There exist a polynomi&) and a constartsuch thaP(x) = (x—a)Q(x) +c. HereP(a) =c,
making the statement obvious.

Numbera is azero (root)of a given polynomiaP(x) if P(a) =0, i.e.(x—a) | P(X).

To determine a zero of a polynomiimeans to solve the equatidx) = 0. This is not always
possible. For example, it is known that finding the exact @slaf zeros is impossible in general
when f is of degree at least 5. Nevertheless, the zeros can alwagsrbputed with an arbitrary
precision. Specificallyf (a) < 0 < f(b) implies thatf has a zero betweenandb.

Example 3. Polynomial ¥ — 2x — 1 has two real roots: x, = 1+ /2.
Polynomial ¥ — 2x+ 2 has no real roots, but it has two complex rootgpx= 1=+1.
Polynomial X — 5x+ 1 has a zero in the interval.44, 1.441 which cannot be exactly computed.

More generally, the following simple statement holds.

Theorem 4. If a polynomial P is divisible by a polynomial Q, then everyozef Q is also a zero of
P.O

The converse does not hold. Although every zerg?d$ a zero ofk, x* does not dividex.

Problem 1. For which n is the polynomial™ x — 1 divisible by a) ¥ —x+ 1, b)  — x+ 1?
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Solution. a) The zeros of polynomiaf — x+ 1 areg; » = 1i'T\/§ If x> —x+ 1 dividesx"+x—1,
theney » are zeros of polynomiad’ +x—1, sog'=1—¢ = sifl. Sinceek = 1 if and only if 6] k,
the answer i® = 6i — 1.

b) If f(x) = x3 —x+ 1 dividesx” +x— 1, then it also divides" + x3. This means that every zero
of f(x) satisfies<""2 = —1; in particular, each zero df has modulus 1. Howevef(x) has a zero
between-2 and—1 (for f(—2) < 0 < f(—1)) which is obviously not of modulus 1. Hence there is
no suchn. A

Every nonconstant polynomial with complex coefficients hasomplex root. We shall prove
this statement later; until then we just believe.

The following statement is analogous to the unique facidion theorem in arithmetics.

Theorem 5. Polynomial Rx) of degree n> 0 has a unique representation of the form
P(X) =c(X—X1)(X—X2) - -+ (X— Xn),

not counting the ordering, where£0 and x,. .., X, are complex numbers, not necessarily distinct.
Therefore, Bx) has at mostlegP = n different zeros.

Proof. First we show the uniqueness. Suppose that
P(X) =c(X—X1)(X—X2) -+ (X—Xn) = d(X—y1)(X—V¥2) - - - (X— Yn)-

Comparing the leading coefficients yields= d. We may assume w.l.0.g. that there arel njofor
whichx; = y;j (otherwise the factox— x; can be canceled on both sides). ThH&mr;) = 0. On the
other handP(x1) = d(xg —y1)--- (X1 — ¥n) # 0, a contradiction.

The existence is shown by induction onThe caser =1 is clear. Lein > 1. The polynomial
P(x) has a complex root, say. By Bezout’s theoremP(x) = (x— x1)P1(x) for some polynomial
P, of degreen — 1. By the inductive assumption there exist complex numRegrs. ,x, for which
Pi(X) = c(X—X2) - - - (X— Xn), wWhich also implie®(x) = c(X—X1) - - - (X—Xn). O

Corollary. If polynomialsP and Q has degrees not exceedingand coincide ah+ 1 different
points, then they are equal.
Grouping equal factors yields tltanonical representatian

P(X) = c(x—ag) % (x— @) 92 - -+ (x — ay) %,

whereq; are natural numbers with; + - -- + ax = n. The exponenty; is called themultiplicity of
the roota;. It is worth emphasizing that:

Theorem 6. Polynomial of n-th degree has exactly n complex roots calmtth their multiplicities.
a

We say that two polynomiald andR arecoprimeif they have no roots in common; Equivalently,
there is no nonconstant polynomial dividing them both, ialagy with coprimeness of integers. The
following statement is a direct consequence of the previogsrem:

Theorem 7. If a polynomial P is divisible by two coprime polynomials &R, then it is divisible
by Q-R.O

Remark:This can be shown without using the existence of roots. B¥etiiidean algorithm applied
on polynomials there exist polynomigfsandL such thakKQ+ LR = 1. Now if P = QS= RT for
some polynomial®, S, thenR(KT — LS) = KQS— LRS= S, and therefor® | SandQR| QS= P.

If polynomial P(x) = x" + - - -+ a;x+ &g with real coefficients has a complex zerpthenP(&) =
&N+ +au& +ap=P(¢) = 0. Thus:

Theorem 8. If £ is a zero of a real polynomial (), then so is. O
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In the factorization of a real polynomi&(x) into linear factors we can group conjugated com-
plex zeros:

P(X) = (x—r1) - (X— 1) (X = &1) (X = &1) - (x— &) (x— &),
wherer; are the real zerog, complex, anck + 2| = n = degP. Polynomial(x— &)(x— &) = x? —
2R€E + |€|2 = x? — pix+ q; has real coefficients which satispf — 4q; < 0. This shows that:

Theorem 9. A real polynomial Px) has a unique factorization (up to the order) of the form
P(x) = (x—=r1) -+ (x=1) 0€ — pX+ ) --- (¢ — pix+ @),
where f and g, q; are real numbers with p<4g andk+2l=n.o

It follows that a real polynomial of an odd degree always ha®@d number of zeros (and at
least one).

2 Zeros of Polynomials

In the first section we described some basic properties gihpohials. In this section we describe
some further properties and at the end we prove that everplesrpolynomial actually has a root.

As we pointed out, in some cases the zeros of a given polyna@aabe exactly determined.
The case of polynomials of degree 2 has been known since dhagal. The well-known formula
gives the solutions of a quadratic equat#®d + bx+c= 0 (a# 0) in the form

—b++vb?2—4ac
2a ’

Whenf has degree 3 or 4, the (fairly impractical) formulas deseglthe solutions were given
by the Italian mathematicians Tartaglia and Ferrari in tBéticentury. We show Tartaglia’s method
of solving a cubic equation.

At first, substitutingx = y —a/3 reduces the cubic equatior + ax’ + bx+c = 0 with real
coefficients to

X12 =

a ab 2a’
y*+py+q=0, where pfb—g, g=c— 3+

Puttingy = u -+ v transforms this equation inte® + v3 + (3uv+ p)y+q = 0. But, sinceu andv
are variable, we are allowed to bind them by the conditiom-8p = 0. Thus the above equation

becomes the system

uv= —g, w+vi=—q

which is easily solvedu® andv® are the solutions of the quadratic equatiér- gt — g—i =0 and
uv= —p,/3 must be real. Thus we come to the solutions:

Theorem 10 (Cardano’s formula). The solutions of the equatioR ¥ py+ q= 0with p,q < R are

e, @ P A ¢ P
yi £\/ 2T\ gt Te 2 Vgt 17012

wheree is a primitive cubic root of unityd

A polynomial f (X) = a,x" + - - - + a1x+ ag is symmetridf a,_; = g; for alli. If degf = nis odd,
then—1 is a zero off and the polynomiaf (x)/(x+ 1) is symmetric. Ifn = 2k is even, then

f(x) /X< = ag (X +xK) + -+ a1 (x+x 1) +a

is a polynomial iny = x4 x 1, for so is each of the expressioxis- x ' (see problem 3 in section
7). In particularx® + x 2 = y? — 2,x3 + x~3 = y3 — 3y, etc. This reduces the equatibfx) = 0 to an
equation of degrer/2.
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Problem 2. Show that the polynomial(k) = x® — 2x54 x* — 2x3 4+ x2 — 2x+ 1 has exactly four zeros
of modulus 1.

Solution. Sety = x+x~L. Then

& =0y =y -2 -2y+2

Observe thak is of modulus 1 if and only ik = cos + i sint for somet, in which casey = 2coqg;
converselyy = 2cod implies thatx = cogt +isint. In other words|x| = 1 if and only ify is real
with —2 <y < 2, where to each sughcorrespond two values afif y # +2. Therefore it remains to
show thaig(y) has exactly two real roots in the interat2, 2). To see this, it is enough to note that
g(—2) = —10,9(0) = 2,9(2) = —2, and that thereforg has a zero in each of the intervéis2,0),
(0,2) and(2,00). A

How are the roots of a polynomial related to its coefficier@gnsider a monic polynomial
P(x) = X"+ apx™ -t an_ X+ an = (X—X1) (X—X2) - (X— Xn)

of degreen > 0. For example, comparing coefficients@t? on both sides gives ug +xp + --- +
Xp = —ay. Similarly, comparing the constant terms givesxys,---x, = (—1)"a,. The general
relations are given by the Vieta formulas below.

Definition 1. Elementary symmetric polynomiais x,,...,X, are the polynomial®+, 0», ..., 0n,
where

Ok = Ok(X1,X2,...,%n) = ZXilxi2 X

the sum being over all k-element substs. .. i} of {1,2,...,n}.

In particular,o1 = X3 + X2+ - - - + X, and o, = Xp%2 - - - Xn. Also, we usually setig = 1 andoy =
fork>n.

Theorem 11 (Vieta’s formulas). If ag,az, ..., an are the zeros of polynomial(®) = x" 4 a;x" 1 +
aX" 24 ... 4 an, then g = (—1)*ok(ay,...,an) fork=1,2,....n

Proof. Induction onn. The casen = 1 is trivial. Assume thamh > 1 and writeP(x) = (X —Xn)Q(X),
whereQ(x) = (Xx—x1) - -- (X—X_1). Let us compute the coefficieat of P(x) atxX. Since the coeffi-
cients ofQ(x) atx*~1 andxX areal, , = (—1)* 1ok 1(Xq,..., % 1) andaj, = (= 1)Kok (xq,. .., X1-1)
respectively, we have

A = —XnB_1+ 8 = Ok(Xt,-- ., Xn). O

Example 4. The roots x,xp,x3 of polynomial Fx) = x3 — ax® + bx— ¢ satisfy a= x; + X2 + X3,
b = X1 X0 + XoX3 + X3X1 and c= X1XoXs.

Problem 3. Prove that not all zeros of a polynomial of the forfx2nx" 1+ 2n?x"-2 4 ... can be
real.

Solution. Suppose that all its zerog, Xo, . . . , X, are real. They satisfy

X = —2n, XiXj = 2.
Iz | z 1]

<)
However, by the mean inequality we have
1 2
5003 (3¢) 332t (3) e

a contradiction/A
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Problem 4. Find all polynomials of the form@&" + a,_1x"" 1 + .- + ayx+ ag with aj € {-1,1}
(j=0,1,...,n), whose all roots are real.

Solution. Letxy,...,x, be the roots of the given polynomial. Then

X240+ 3= (3i%)? = 2FicjXiXj) = a2 — 2802 < 3;
X%x%x%:l

By the mean inequality, the second equality impt'(%sr ---+4+x2>n; hencen < 3. The cas@ = 3
is only possible ifx;, x>, x3 = +1. Now we can easily find all solutiong:+ 1, X2 +x—1,x% — x+
(X2 —-1). A

One contradiction is enough to show that not all zeros of argpolynomial are real. On the
other hand, if the task is to show that all zeros of a polynbeni@real, but not all are computable,
the situation often gets more complicated.

Problem 5. Show that all zeros of a polynomia{x) = x(x—2)(x—4)(x— 6) + (x— 1)(x— 3)(x—
5)(x—7) are real.

Solution. Sincef(—ow) = () = 4+, f(1) <0, f(3) > 0 andf(5) < 0, polynomialf has a real
zero in each of the intervals-«, 1), (1,3), (3,5), (5,), that is four in total.A

We now give the announced proof of the fact that every polyinbhras a complex root. This
fundamental theorem has many different proofs. The proopresent is, although more difficult
than all the previous ones, still next to elementary. All erfpctions in the proof are made on
purpose.

Theorem 12 (The Fundamental Theorem of Algebra).Every nonconstant complex polynomial
P(x) has a complex zero.

Proof. Write P(x) = X"+ an_1X""1+ ... + ap. Suppose tha®(0) = ap # 0. For eactr > 0, letC,
be the circle in the complex plane with the center at point® rdliusr. Consider the continuous
curveyr = P(C) = {P(X) | [X| =r}. The curve described by the monomid] i.e. {x" | x € C;}
rounds point h times. Ifr is large enough, for exampte> 1+ |ag| + - - - + |an—1|, we havelx"| >
lan_1x"" 1+ 4 ag| = |[P(x) — x|, which means that the reBfx) — x" in the expression d?(x) can
not “reach” point 0. Thus for suahthe curvey also rounds point @ times; hence, it contains point
0 in its interior.

For very small the curvey is close to poinP(0) = ap and leaves point 0 in its exterior. Thus,
there exists a minimum= rg for which point 0 isnotin the exterior of;. Since the curvg; changes
continuously as a function of it cannot jump over the point 0, so point 0 must lie on the eyry.
Therefore, there is a zero of polynomRix) of modulusrg. O

3 Polynomials with Integer Coefficients

Consider a polynomid(x) = anx" + - - - + a;X+ ap with integer coefficients. The differen&gx) —
P(y) can be written in the form

an(X" —y") 4+ @ —y?) +a(x—y),

in which all summands are multiples of polynonmiat y. This leads to the simple though important
arithmetic property of polynomials froff[x|:

Theorem 13. If P is a polynomial with integer coefficients, the(elP— P(b) is divisible by a- b for
any distinct integers a and b.
In particular, all integer roots of P divide @®). O

There is a similar statement about rational roots of polyiabR(x) € Z|x].
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Theorem 14. If a rational number gq (p,d € Z, q# 0, nzdp,q) = 1) is a root of polynomial
P(x) = anx"+ - - - + ap with integer coefficients, then|@y and q| ay.

Proof. We have
p

q'P (5) = anp"+an-1p" g+ -+ aod.
All summands but possibly the first are multiplesgpfand all but possibly the last are multiples of
p. Henceq | a,p" andp | apq" and the claim followsn

Problem 6. Polynomial Rx) € Z[X] takes valuest1 at three different integer points. Prove that it
has no integer zeros.

Solution. Suppose to the contrary, thatb,c,d are integers wittP(a), P(b),P(c) € {—1,1} and
P(d) = 0. Then by the previous statement the integersd, b —d andc—d all divide 1, a contra-
diction. A

Problem 7. Let P(x) be a polynomial with integer coefficients. Prove that(PR--P(x)---)) = x
for some integer x (where P is iterated n times), théR(R)) = x.

Solution. Consider the sequence givenxy= x andxx 1 = P(x) for k > 0. Assume = Xo. We
know that
di =X%i+1—X% | P(Xi+1) —P(X) = Xiy2 — Xip1 = diy1
for all i, which together withdy = dg implies|dp| = |d1| = - -- = |dk].
Suppose that; = dg = d # 0. Thend, = d (otherwisexz = x; andxgy will never occur in the
sequence again). Similarlgg = d etc, and hence = xg + kd # Xg for all k, a contradiction. It
follows thatd; = —dp, SOX2 = Xg. AA

Note that a polynomial that takes integer values at all ietgmints does not necessarily have
integer coefficients, as seen on the polynorﬁ(i?é}ﬁ).

Theorem 15. If the value of the polynomial R) is integral for every integer x, then there exist
integers g, ...,Cy such that

P(x) —Cn<::> +Cn1(nil) +~~~+co<é).

The converse is true, also.

Proof. We use induction om. The casen = 1 is trivial; Now assume that > 1. Polynomial
Q(x) = P(x+ 1) — P(x) is of degreen — 1 and takes integer values at all integer points, so by the
inductive hypothesis there exig, . ..,a,_1 € Z such that

Q(x) =an_1<nf1> +---+ao<g).

For every integex > 0 we haveP(x) = P(0) + Q(0) + Q(1) + - -- + Q(x—1). Using the identity

Q+@++*H= (3,) for every integek we obtain the desired representatiorPoK):

P(x) =an_1<§) +---+ao<)l() +P(0).0

Problem 8. Suppose that a natural number m and a real polynomi{a) R anx" +an_1x" 14+
ap are such that RX) is an integer divisible by m whenever x is an integer. Proeg¢tha, is divisible
by m.

Solution. Apply the previous theorem on ponnomiﬁR(x) (with the same notation). The leading
coefficient of this polynomial equats + nc,_1+ - - - + nlcy, and the statement follows immediately.
A
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4 Irreducibility

PolynomialP(x) with integer coefficients is said to lirreducibleoverZ[x] if it cannot be written as
a product of two nonconstant polynomials with integer coeffits.

Example 5. Every quadratic or cubic polynomial with no rational rootsirreducible ovetZ. Such
are e.g. ¥ —x—1and2x® — 4x+ 1.

One analogously defines (ir)reducibility over the sets dfpomials with e.g. rational, real or
complex coefficients. However, of the mentioned, only rélility over Z[X| is of interest. Gauss’
Lemma below claims that the reducibility ov@xx| is equivalent to the reducibility oveZ[x]. In
addition, we have already shown that a real polynomial imgswreducible into linear and quadratic
factors oveiR[x], while a complex polynomial is always reducible into linéaetors overC|x].

Theorem 16 (Gauss’ Lema).If a polynomial Rx) with integer coefficients is reducible ov@¥x],
then it is reducible oveZ[x], also.

Proof. Suppose tha(x) = anx" +--- 4+ ap = Q(X)R(x) € Z[x], whereQ(x) andR(x) nonconstant
polynomials with rational coefficients. Letandr be the smallest natural numbers such that the
polynomialsqQ(x) = qX< + - -- + g andrR(x) = rmx™+ - -- + ro have integer coefficients. Then
grP(x) = gQ(x) - rR(x) is a factorization of the polynomiajrP(x) into two polynomials fronZ[x].
Based on this, we shall construct such a factorizatiofPfa.

Let p be an arbitrary prime divisor @f. All coefficients ofP(x) are divisible byp. Leti be such
thatp| go,d1,-..,0i—1, butpt di. We havep|a = qori + - -+ + difo = giro (mod p), which implies
thatp | ro. Furthermorep| @1 = dofit1+---+Gif1+Gir1ro = giry (modp), sop | r1. Continuing
in this way, we deduce that | r; for all j. HencerR(x)/p has integer coefficients. We have thus
obtained a factorization O[EP(X) into two polynomials fron%[x]. Continuing this procedure and
taking other values fop we shall eventually end up with a factorizationR(k) itself. O

From now on, unless otherwise specified, by “irreducibite mean irreducibility ovefZ[x].

Problem 9. If a;, &, ..., a, are integers, prove that the polynomiab® = (x—az)(x—ap) - (X—
an) — lis irreducible.

Solution. Suppose thaP(x) = Q(X)R(x) for some nonconstant polynomia@ R € Z[x]. Since
Q(a)R(@)=—-1fori=1,....n, we haveQ(a) = 1 andR(g) = —1 or Q(a) = —1 andR(&) =
1; either way, we hav€)(a) + R(a) = 0. It follows that the polynomiaQ(x) + R(x) (which is
obviously nonzero) haszerosay, . .., a, which is impossible for its degree is less tham\

Theorem 17 (Extended Eisenstein’s Criterion).Let P(X) = anx" + - - - + a1x+ ap be a polynomial
with integer coefficients. If there exist a prime number p andnteger ke {0,1,...,n—1} such
that

p|ao,au,...,a Ptaxi1 and [F1ao,

then Rx) has an irreducible factor of a degree greater than k.
In particular, if p can be taken so thatk n— 1, then Rx) is irreducible.

Proof. Like in the proof of Gauss’s lemma, suppose tRét) = Q(x)R(x), whereQ(x) = qx* +
--++qo andR(x) = rmx™+ - -- 41 are polynomials fron¥[x]. Sinceag = qorg is divisible by p
and not byp?, exactly one ofg,ro is a multiple ofp. Assume thatp | go and p{ro. Further,

p | a1 = qor1+ Oiro, implying thatp | giro, i.e. p| g1, and so on. We conclude that all coefficients
Jo,d1, - - -,k are divisible byp, but p1 gy 1. It follows that de@Q > k+1. O

Problem 10. Given an integer n> 1, consider the polynomial (k) = x” +5x"~! + 3. Prove that
there are no nonconstant polynomialsy h(x) with integer coefficients such thafx) = g(x)h(x).
(IMO93-1)
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Solution. By the (extended) Eisenstein criteridnhas an irreducible factor of degree at least1.
Sincef has no integer zeros, it must be irreducihte.

Problem 11. If p is a prime number, prove that the polynomig(x) = xP Ly 4y x4 1isirre-
ducible.

Solution. Instead of®p(x), we shall conside®,(x+ 1) and show that it is irreducible, which will
clearly imply that so isby. We have

p_
Pp(x+1) = W —xp‘1+< P )xp‘2+~~+ <g>x+ p.

This polynomial satisfies all the assumptions of Eisen&airiterion, based on which it is irre-
ducible.A

In investigating reducibility of a polynomial, it can be figeto investigate its zeros and their
modules. The following problems provide us an illustration

Problem 12. Prove that the polynomial ) = x" + 4 is irreducible overZ|[x| if and only if n is a
multiple of 4.

Solution. All zeros of polynomialP have the modulus equal t&/2. If Q andR are polynomials
from Z[x] and ded = k, then|Q(0)| is the product of the modules of the zeros@fand equals
2%/n: since this should be an integer, we deduce that2k.

If kis odd, polynomialQ has a real zero, which is impossible sifRe) has none. Therefore,
2|kand 4| n. A

If the zeros cannot be exactly determined, one should findoal gaough bound. Estimating
complex zeros of a polynomial is not always simple. Our mail ts the triangle inequality for
complex numbers:

X = Iy < IX+yl < X+ ]yl

Consider a polynomid?(x) = a,x" + an_kxn— k+ - - - +a1x+ ag with complex coefficientsg, #
0). Leta be its zero. IfM is a real number such thig;| < M|ay| for all i, it holds that

M
0= P(1)] > [anlla|"~ Mlan|(ja"* -+ |a] +1) > [a|a|" (1—_—),
aF (o]~ 1)

which yields|a|<"1(|a] — 1) < M. We thus come to the following estimate:

Theorem 18. Let P(X) = anX" + - - - + ap be a complex polynomial with,a 0 and M= max

Ja
Ifap_1="---=an_k.1 =0, then all roots of the polynomial P are less thas v/M in modulus
In particular, for k= 1, each zero of EX) is of modulus less than M 1. O

Problem 13. If ap---azag is a decimal representation of a prime number apd-al, prove that the
polynomial Rx) = apX"+ - - - + ayx+ g is irreducible. BMO 1989.2

Solution. Suppose tha andR are nonconstant polynomials frafix] with Q(X)R(x) = P(x). Let
X1,...,X be the zeros of) andx,1,...,X, be the zeros oR. The condition of the problem means
thatP(10) = Q(10)R(10) is a prime, so we can assume w.l.0.g. that

[Q(10)| = (10—x1)(10—x2) - (10—x) = 1.

On the other hand, by the estimate in 18, each xehas a modulus less thant19/2 = 11/2 < 9;
hence|10— x;| > 1 for all i, contradicting the above inequalits

Problem 14. Let p> 2 be a prime number and(R) = x° — x+ p.
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1
1. Prove that all zeros of polynomial P are less thanpin modulus.
2. Prove that the polynomial(R) is irreducible.
Solution.

1. Lety be a zero oP. Thenly|? —|y| < |yP —y| = p. If we assume thay| > pﬁ, we obtain

p_ _1
[P =yl > (p—1)pPt > p,

a contradiction. Here we used the mequaptlyl 1 which follows for example from the
binomial expansion op?1 = ((p—1) +1)P~L.

2. Suppose tha®(x) is the product of two nonconstant polynomigléx) andR(x) with integer
coefficients. One of these two polynomials, €ayhas the constant term equaHg. On the
1
other hand, the zeros, ..., x of Q satisfy|x|,..., || < pP-I by part (a), ancky - - - xx = £p,
so we conclude th&t > p, which is impossibleA

5 Interpolating polynomials

A polynomial of n-th degree is uniquely determined, given its values-&tl points. So, suppose
thatP is ann-th degree polynomial and thB(x;) = y; in different pointsxg, X1, ..., Xn. There exist
unique polynomial&g, Ey, . .., En of n-th degree such thé; (x) = 1 andE;j(x;) = 0 for j #i. Then
the polynomial

P(X) = YoEo(X) 4+ Y1E1(X) + - - - 4 YnEn(X)

has the desired properties: inde®dx) = 5 ;y;Ej(x) = YiEi(x) = yi. It remains to find the poly-
nomialsEy, ..., En. A polynomial that vanishes at tiepointsx;, j # i, is divisible by[7; . (X—X;),

from which we easily obtaif; (x) = |‘|J;,éI o X‘ . This shows that:

Theorem 19 (Newton’s interpolating polynomial). For given numbersy...,y, and distinct ,
.., X there is a unique polynomial(R) of n-th degree such that(R) =y; fori =0, 1, ...,n. This
polynomial is given by the formula

(X—X;)

Z)yl JI;I. —Xj)’

Example 6. Find the cubic polynomial Q such that(ip= 2' fori =0,1,2,3.

Solution. Q(x) = (X*l)(xjg)(xfB) + ZX(foZ)(xfB) I 4x(x771)2(x73) " 8x(x—%)(x—2) _ X3+2X+6. A

In order to compute the value of a polynomial given in this imgome point, sometimes we
do not need to determine its Newton’s polynomial. In factwiém’s polynomial has an unpleasant
property of giving the answer in a complicated form.

Example 7. If the polynomial P of n-th degree takes the value 1 in pong4,...,2n, compute
P(-1).

Solution. P(x) is of course identically equal to 1, $&(—1) = 1. But if we apply the Newton
polynomial, here is what we get:

n 1 2| n —1- 21 _(ntynnE (™

Z) 'Z)J # 2n i; (2i+2)it(n—i)” o
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Instead, it is often useful to consider tfieite differenceof polynomialP, defined byP!! (x) =
P(x+ 1) — P(x), which has the degree by 1 less than thaPofFurther, we define thk-th finite
difference PK = (Pk—1)[1) which is of degrea — k (where de@ = n). A simple induction gives a

general formula
k 7k
P = § (—1)ki (_)P(x+ i).
i;) !

In particular,P" is constant an®" = 0, which leads to

Theorem 20. P(x+n+1) = _i(—l)”i (nT l) P(x+i). O

Problem 15. Polynomial P of degree n satisfie$iP= ("Tl)*1 fori=0,1,...,n. Evaluate Pn+1).
Solution. We have

0= ni (”*1) (|)—(—1)”+1P(n+1)+{é: ;m

1L 2|m

0, 2tn. o

It follows thatP(n+1) = {

Problem 16. If P(x) is a polynomial of an even degree n witliOp= 1 and F(i) = 21 for i =
1,...,n, prove that Pn+2) = 2P(n+1) — 1.

Solution. We observe tha®l!l(0) = 0i P (i) = 21 fori = 1,...,n— 1; furthermoreP? (0) =
.,N— k

PP (i)=2-fori=1,...,n—2, etc. Ingeneral, itis easily seen tRdt (i) =2 fori=1,..
andP¥(0) is 0 fork odd and 1 fok even. Now

2 2|n

P(n+1)=P(n)+PYUn)=--. =P(n)+PU(n—1)+-..+P"(0) = {2" 1L 2n

Similarly, P(n+2) = 221 1. A

6 Applications of Calculus
The derivative of a polynomid(x) = apx" 4 an_1xX" 1+ --- 4+ a;x+ ag is given by
P'(x) = nanxX™ 14+ (n— Va1 X" 24 - 4 ay.

The inverse operation, the indefinite integral, is given by
an an—1
P(x)dx= ——x"*1 C.
/(x)x et = aoxt

If the polynomialP is not given by its coefficients but rather by its canonicaitdaization, as
P(X) = (x—x1)k--- (x— x,)*, @ more suitable expression for the derivative is obtainedding
the logarithmic derivative rule or product rule:

P’(x)—P(x)< |y >

X— X1 X—Xn

A similar formula can be obtained for the second derivative.
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Problem 17. Suppose that real numbebs= xg < X3 < -+ < Xy < Xp1-1 = 1 satisfy

n+1 1

=0 zai=12,...,n (1)
=034 X X

Prove thatx.; i=1—xfori=1,2,....n.
Solution. Let P(X) = (X—Xo)(X— X1) - - (X— Xn) (X— Xn+1). We have
n+1 n+1
p X Xj S0y (X= X)) (X=X

1= ]

Therefore 1

(X —Xj)

P"(x) = 2P'(x)
&

fori=0,1,...,n+ 1. Thus the condition of the problem is equivalen®t@x;) =0 fori =1,2,....n.
Therefore
X(x—1)P"(x) = (n+2)(n+ 1)P(x).

It is easy to see that there is a unique monic polynomial ofely+ 2 satisfying the above differ-
ential equation. On the other hand, the monic polyno@ia) = (—1)"P(1— x) satisfies the same
equation and has degrae- 2, so we must have-1)"P(1— x) = P(x), which implies the statement.
A

What makes derivatives of polynomials especially suitédbtbeir property of preserving multi-
ple zeros.

Theorem 21. If (x— a)¥| P(x), then(x— a)* 1 | P'(x).
Proof. If P(x) = (x— a)*Q(x), thenP’(x) = (x— a)*Q'(x) + k(x— a)* 1Q(x). O

Problem 18. Determine a real polynomial ®) of degree at most 5 which leaves remaindets
and 1 upon division byx — 1)3 and (x4 1)3, respectively.

Solution. If P(x) + 1 has a triple zero at point 1, then its derivati®’¢x) has a double zero at that
point. Similarly,P’(x) has a double zero at poirtl too. It follows thatP’(x) is divisible by the
polynomial(x — 1)?(x+ 1)2. SinceP’(x) is of degree at most 4, it follows that

P(x) = c(x— 1)%(x+1)? = c(x* = 2* + 1)
for some constart NowP(x) = ¢(£x® — 2x®+x) +d for some real numbersandd. The conditions
P(-1) =1andP(1) = —1 now give ux = —15/8,d =0 and

P(x) = —§x5+§ _15

VAN
8 4 8

Problem 19. For polynomials Fx) and Qx) and an arbitrary ke C, denote
R={zeC|P(2 =k} and Q={zeC|Q(2) =k}.

Prove that B= Qo and R = Qg imply that Rx) = Q(X).

Solution. Let us assume w.l.0.g. that= ded® > dedQ. LetPy = {z,2,...,z} andP; = {z.1,
Zi2,- .-, Zrmy- Polynomiald? andQ coincide ak+mpointsz;, z, . . ., Z m. The result will follow
if we show thak+m> n.
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We have
P(X) = (X—Zl)al'--(X—Zk)ak — (X_Zk+1)ak+l...(x_zk+m)ak+m+l

for some natural numbersy, ..., aw,m. Let us consideP’(x). We know that it is divisible by
(x—2z)%tfori=1,2,....k+m; hence,

k+m

rl(X—Zi)“"l [P/ (X).

Therefore, 2 —k—m= deg[1*"(x — )% 1 < de®”’ =n—1,i.e.k+m>n+1, as desired)
Even if P has no multiple zeros, certain relations between zerdd ahd P’ still hold. For
example, the following statement holds for all differebt&functions.

Theorem 22 (Rolle’s Theorem). Between every two zeros of a polynomié&kPthere is a zero of
P/ (x).

Corollary. If all zeros ofP(x) are real, then so are all zerosRfx).)

Proof. Leta < bbe two zeros of polynomi&. Assume w.l.0.g. thd (a) > 0 and consider the point
cin the intervala, b] in which P attains a local maximum (such a point exists since the iatéayb)

is compact). We know th&(x) = P(c) + (x— c)[P’(c) + o(1)]. If for exampleP’(c) > O (the case
P’(c) < 0 leads to a similar contradiction), th&(x) > P(c) would hold in a small neighborhood of
¢, a contradiction. Itis only possible thBt(c) = 0, soc is a root ofP’(x) betweera andb. O

7 Symmetric polynomials

A symmetric polynomial in variablesi, ..., X, is every polynomial that is not varied by permuting
the indices of the variables. For instance, polynomfals symmetric as a polynomial ir; (no
wonder), but is not symmetric as a polynomialinx, as changing places of the indices 1 and 2
changes it to the polynomia}.

Definition 2. The polynomial Pxy, X2, ...,X%n) is symmetridf, for every permutatiomrof {1, 2, .. .,
n}, P(X]_,Xz, e ,Xn) = P(er(l)axrr(Z)v R ,Xn(n)).

~An obvious property of a symmetric polynomial is that its fieéents at two terms of the forms
X -0 andx} -, where(j1, ..., jn) is @ permutatiofis, . . .,in), always coincide. For example,
if the expansion of a symmetric polynomial ¥y, z contains the terms?y, then it also contains
Xz, xy?, etc, with the same coefficient.

Thus, the polynomialsi (1 < k < n) introduced in section 2 are symmetric. Also symmetric is
e.g. the polynomiak? + x3.

A symmetric polynomial is said to deomogenous all its terms are of the same degree. Equiv-
alently, polynomiall is homogenous of degrekif T (txy,...,tx,) = tT(xq,...,%,) holds for allx
andt. For instancex? + x3 is homogenous of degree= 2, butx2 + x5 + 1, although symmetric, is
not homogenous.

Every symmetric polynomial iry, ..., X, can be written as a sum of homogenous polynomials.
Moreover, it can also be represented as a linear combinafioartain “bricks”. These bricks are
the polynomials

g "
Ta:ZXll...xﬁ'n (%)

for eachn-tuplea = (ay,...,an) of nonnegative integers witly > --- > a,, where the summation

goes over all permutation@s,...,in) of the indices 1...,n. In the expression fof, the same

summand can occur more than once, so we d&ires the sum of thdifferentterms in(x). The
polynomialT, is always an integral multiple &,. For instance,

T220) = 206X + X35 + X5%5) = 2S22.0)-
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All the n-tuplesa of degreed = a; + - - - + &, can be ordered in a lexicographic order so that
a>a if s=¢),...,5=sandsq1 > s, for somek > 1,

wheres = a; +--- +&. In this ordering, the least-tuple ism= (x+1,...,x+1,x,...,X), where
x = [d/n] andx+ 1 occursd — n[d/n] times.
The polynomialdl; can be multiplies according to the following simple formula

Theorem 23. Ifa = (a,...,an) and b= (by,...,bn) are n-tuples of nonnegative integers, it holds
that

Ta-To=> Tain),
T

where the sum goes over all permutatiom@®) of the n-tuple b. (We defingi), + (i), =
(X+yi)Ly)

Proof. It suffices to observe that

X0 T, - 5 )i 0

1 n ’
and to sum up over all permutatiorns 0

There are infinitely many mentioned bricks, and these aréobly not mutually independent.
We need simpler elements which are independent and usirghwhie can express every symmetric
polynomial by basic operations. It turns out that these atamoy,. .., dn.

Example 8. The following polynomials in,y,z can be written in terms afy, 0>, 03:
XY+ YzZ+ZX+ X+ Yy+2z= 02+ 01;
X2y + X2z + y?X + Y22+ X+ 22y = 010> — 303;
X2y + Y27 + 22X = 03 — 20103.

Theorem 24. Every symmetric polynomial inx .., x, can be represented in the form of a polyno-
mial in a3,...,0n. Moreover, a symmetric polynomial with integer coefficsdatalso a polynomial
in 01,..., 0y With integer coefficients.

Proof. Itis enough to prove the statement for the polynontalsf degreed (for eachd). Assuming
that it holds for the degrees less thdinwe use induction om-tuplesa. The statement is true for
the smallesh-tuple m: Indeed,Sy = ono;, whered = ng+r, 0<r < n. Now suppose that the
statement is true for at, with b < a; we show that it also holds f@&,.

Suppose thaa = (ay,...,an) with ag = --- = ax > a1 (k> 1). Consider the polynomi&,; —
0kSy, wherea' = (a; — 1,...,a— 1,a.1,...,an). According to theorem 23 it is easy to see that
this polynomial is of the fornf ,_,crS,, Wherec, are integers, and is therefore by the inductive
hypothesis representable in the form of a polynomiaiiiwith integer coefficientsa

The proof of the previous theorem also gives us an algorithimekpressing each symmetric
polynomial in terms of thes;. Nevertheless, for some particular symmetric polynomntiz¢se are
simpler formulas.

Theorem 25 (Newton’s Theorem on Symmetric Polynomials)lf we denotegs= x'{+x‘§+ e +xr'§,
then:
kok = S0k 1—S20k 2+ +(=1*s 101 + (—1)H s
Sn = O1Sn1—02Sm2+ -+ (=1)"lonsnn zam>n.

(All the polynomials are in n variables.)

Proof. Direct, for example by using the formula 23.
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Problem 20. Suppose that complex numbegsxy, ..., X satisfy
xi+x£+---+x|j(:n, forj=1,2,....k,

where nk are given positive integers. Prove that

(X—X1)(X=X2) ... (x—X) = X< — <2>xk1+ (2)xk2_...+ (_1)k<r|:).

Solution. We are givens; = n for k=1,...,n. The Newton’s theorem gives ug = n, 0> =

$(noy—n) = (5), 05 = §(ngz —noy+n) = (3), etc. We prove by induction okithatay = (y). If

this holds for 1... k—1, we have

(8- (6 ]

since(7) = (") + (7-1), the above equality telescopesdp= £ (i~7), which is exactly equal to

(- A
8 Problems

1. A monic polynomialf (x) of fourth degree satisfie§(1) = 10, f(2) = 20 andf(3) = 30.
Determinef (12) + f(—8).

2. Consider complex polynomiaR(x) = x" + a;x" 1 + --. 4 a, with the zerosx, ..., x,, and
Q(X) = X"+ byx""1 4 ... + b, with the zerosé,...,x2. Prove that ifa; +ag+as+--- and
a+a4+as+ - arereal numbers, thdn +by+--- + by, is also real.

3. If a polynomialP with real coefficients satisfies for &l
P(cox) = P(sinx),
show that there exists a polynom@isuch thaP(x) = Q(x* — x?) for eachx.

4. (a) Prove that for each € N there is a polynomiall, with integer coefficients and the
leading coefficient 2! such thaff,(cosx) = cosnx for all x.
(b) Prove that the polynomialg, satisfyTmin+ Tmen = 2TnTn forallmne N, m> n.

(c) Prove that the polynomidl, given byUn(2x) = 2Tn(X) also has integer coefficients and
satisfiedUn(x+x"1) = x"+x".

The polynomialdl,(x) are known as th€hebyshev polynomials
5. Prove that if cogn: ais a rational number for somg q € Z, thena € {0, i%, +1}.

6. Prove that the maximum in absolute value of any monic rejlnmmial of n-th degree on
[—1,1]is not less tharz'7.

7. The polynomiaP of n-th degree is such that, for eaick 0,1, ..., n, P(i) equals the remainder
of i modulo 2. Evaluat®(n+1).

8. A polynomialP(x) of n-th degree satisfie(i) = % fori=1,2,...,n+1. FindP(n+2).
9. LetP(x) be a real polynomial.

(@) If P(x) > 0 for all x, show that there exist real polynomiaA$x) and B(x) such that
P(x) = A(X)2 + B(x)2.
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(b) If P(x) > 0 for all x> 0, show that there exist real polynomi&lsx) andB(x) such that
P(x) = A(X)2 + xB(x)?.

. Prove that if the equatio@(x) = ax? + (c— b)x+ (e—d) = 0 has real roots greater than 1,
wherea, b, c,d,e € R, then the equatioR(x) = ax* + bx® + cx® + dx+ e = 0 has at least one
real root.

A monic polynomiaP with real coefficients satisfie$(i)| < 1. Prove that there is a root
z=a+ biof P such thata? + b? + 1)? < 4b? + 1.

For what real values afdoes there exist a rational functié(x) that satisfied (x?) = f (x)? —
a? (Arational function is a quotient of two polynomials.)

Find all polynomial® satisfyingP(x? + 1) = P(x)2 + 1 for all x.
Find allP for which P(x)2 — 2 = 2P(2x? — 1).
If the polynomial$® andQ each have a real root and
P(1+x+Q(x)?) = Q(1+x+P(x)?),
prove thatP = Q.
Find all polynomial®(x) with real coefficients satisfying the equality
P(a—b)+P(b—c)+P(c—a)=2P(a+b+c)
for all triples(a, b, c) of real numbers such thab+ bc+ ca= 0. (IMO04-2)

A sequence of integefan);,_; has the property thah— n | am — an for any distinctm,n € N.
Suppose that there is a polynomik) such thafas| < P(n) for all n. Show that there exists
a polynomialQ(x) such thate, = Q(n) for all n.

LetP(x) be a polynomial of degree > 1 with integer coefficients and &t be a natural
number. Consider the polynomi@i(x) = P(P(...P(P(x))...)), whereP is appliedk times.
Prove that there exist at mastntegerg such thaQ(t) =t. (IMOO06-5)

If P andQ are monic polynomials such thR{P(x)) = Q(Q(x)), prove thaP = Q.

Letm,n anda be natural numbers angl< a— 1 a prime number. Prove that the polynomial
f(x) =x™(x—a)"+ pisirreducible.

Prove that the polynomi&l(x) = (X2 +x)2" + 1 is irreducible for alh € N.

A polynomialP(x) has the property that for evepye Q there existx € Q such thaP(x) =Y.
Prove thaP is a linear polynomial.

LetP(x) be a monic polynomial of degreewhose zeros are— 1,i — 2,...,i —n (where
i2 = —1) and letR(x) andS(x) be the real polynomials such thatx) = R(x) +iS(x). Prove
that the polynomiaR(x) hasn real zeros.

Leta,b,c be natural numbers. Prove that if there exist coprime patyiats P,Q,R with
complex coefficients such that
Pa+ Qb — RC,
theni+{+2$>1.
Corollary: The Last Fermat Theorem for polynomials.

Suppose that all zeros of a monic polynorfi@t) with integer coefficients are of module 1.
Prove that there are only finitely many such polynomials gfgisen degree; hence show that
all its zeros are actually roots of unity, iB(x) | (X" — 1) for some naturat, k.
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9 Solutions

1. The polynomialf (x) — 10x vanishes at pointg = 1,2, 3, so it is divisible by polynomial
(x—1)(x—2)(x—3). The monicity implies thaf (x) — 10x = (x— 1)(x— 2)(x— 3)(x—c) for
somec. Now

f(12) 4 f(—8) = 11-10-9- (12— c) + 120+ (—9)(—10)(—11)(—8— c) — 80= 19840

2. Note thaQ(x?) = [1(x% —x?) = [1(x—%) - [1(X+ %) = (=1)"P(x)P(—X). We now have
br+by+ - +bn=Q(1) —1=(-1)"P(1)P(-1) — 1= (—-1)"(1+B—A)(1+B+A),
whereA=a;+az+as+---andB=ax+as+---.

3. It follows from the conditions tha&®(— sinx) = P(sinx), i.e. P(—t) = P(t) for infinitely many
t, so the polynomial®(x) andP(—x) coincide. ThereforeR(x) = S(x?) for some polynomial
S. Now S(cogx) = S(sirPx) for all x, i.e. S(1—t) = S(t) for infinitely manyt, which implies
S(x) = S(1—x). This is equivalent taR(x— 3) = R(3 — X), i.e. R(y) = R(~y), whereR is
a polynomial such thaB(x) = R(x— 3). Now R(x) = T(x?) for some polynomiall', and
thereforeP(x) = S(x%) = Rx? — 3) = T(x* — X%+ 1) = Q(x* — x?) for some polynomiaQ.

4. (a) Clearly,Tp(x) = 1 andTy(x) = x satisfy the requirements. For> 1 we use induction on
n. Since cofn+ 1)x = 2cosxcosnx— cogn— 1)x, we can defindp 1 = 2T Tn — Tp—1.
SinceT; T, andT,_1 are of degrees+ 1 andn— 1 respectivelyl,, 1 is of degreen+ 1
and has the leading coefficient2' = 2"1. It also follows from the construction that
all its coefficients are integers.

(b) The relation follows from the identity cG®+ n)x+ cogm— n)x = 2 cosnxcosnx.

(c) The sequence of polynomialsy) satisfiedUp(x) = 2, U1(x) = x andUp;1 = U1Up —
Un_1, implying that eachJ, has integer coefficients. The equality(x+x1) =x"+x"
holds for eachx = cost +isint, and therefore it holds for aX.

5. Suppose that cc%'r: a. It follows from the previous problem thbky(2a) = 2cosprr= £2,
whereUq is monic with integer coefficients, s@2s an integer by theorem 14.

6. Note that equality holds for a multiple of timeth Chebyshev polynomidh(x). The leading
coefficient ofT, equals 271, soCy(x) = Zn—l,lTn(x) is a monic polynomial and

1

o1 Zaxe [—1,1].

ITa(X)]| |cognarccox)| <

:F

Moreover, the values of, at points 1cos§,cos%",--- ,cos@,—l are alternatelyzn%l

1
and— .

Now suppose thal # Ty is a monic polynomial such that maxx<1|P(X)| < z=7. Then

P(x) —Cn(x) at points 1cosk,- - ,cos(”’Tl)’T ,—1 alternately takes positive and negative val-
ues. Therefore the polynomial-C, has at least zeros, namely, at least one in every interval
between two adjacent points. HoweuRr; C, is a polynomial of degree— 1 as the monomial

x"is canceled, so we have arrived at a contradiction.
7. SincePll(x) = (—2)"1(—1)*forx=0,1,...,n—i, we have

n .
P(n+1)=P(n)+PY(n—1)+...+PN(0) = { iizn ;m
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By theorem 20 we have

i 1 /n+1 n+2 21n;
P n 2 = —1 n I,— . n = ’ !
(n+2) |;‘)( ) '+l< I > n+22‘) ( ) { mz 2[n
By theorem 9, the polynomi®(x) can be factorized as
P(X) = (x—ap)--- (x—aK) % - (X2 — byx+C1) - - - (X% — byX + Cn), (%)

wherea;, bj, cj are real numbers such that theare different and the polynomiaté — bix+ ¢
has no real zeros.

The conditionP(x) > 0 for all x implies that thex; are even, whereas the conditiB(x) > 0
for x > 0 implies that(Vi) a; is even org < 0. It is now easy to write each factor {&) in
the form A% + B?, respectivelyA? + xB?, so by the known formulga® + yb?)(c? + yd?) =
(ac+ ybd)2 4 y(ad— bc)? one can express their prodiRiix) in the desired form.

Write

P(—x) = axX*+ (c— b)x2+ (e—d) — b(x®>— x%) —d(x— 1).
If r is a root of the polynomia®), we haveP(\/r) = —(y/r —1)(br+d) andP(—/F) =
(v/r+1)(br+d). Note that one of the two numbeP$+./r) positive and the other is negative
(or both are zero). Hence there must be a ze® bétween—./r and/r.

Let us writeP(X) = (X—X1) - - (X— Xm) (X2 — p1X+q1) - - - (X2 — pnX+ Qn), where the polyno-
mialsx? — px + g have no real zeros. We have

m n
1>[P(i)| = |_|1|i —Xj| |_[|\ —1—pdi+aul,
= k=

and sincéi — xj|? = 1+x > 1 forall j, we must havé— 1 — pyi + x| < 1 for somek, i.e.

e+ (k—1)° < 1. (%)

Let a= bi be the zeros of the polynomigt — px -+ qx (and also of the polynomid). Then
px = 2a andgy = a2 + b2, so the inequality*) becomes &* + (a® + b? — 1)? < 1, which is
equivalent to the desired inequality.

Write f in the form f = P/Q, whereP and Q are coprime polynomials an@ is monic.
Comparing the leading coefficients we conclude thas also monic. The condition of the
problem becomeB(x?)/Q(x?) = P(x)2/Q(x)? —a. SinceP(x?) andQ(x?) are coprime (if
they have a common zero, so BandQ), it follows thatQ(x?) = Q(x)? and henc&(x) = x"
for somen € N. ThereforeP(x?) = P(x)% — ax®".

LetP(x) = ag+ayX+- - - +am_1xX™ 1+ x™. Comparing the coefficients & x)? andP(x?) we
find thata,_1 = =aym-ny1=0,@mn=2a/2,a1 = --- = am—1 = 0 andag = 1. Clearly,
this is only possible if=0, ora=2 and 2Zn—n=0.

SinceP is symmetric with respect to point 0, it is easy to show thas$ also a polynomial
in X2, so there is a polynomid such thatP(x) = Q(x? + 1) or P(x) = xQ(x?> +1). Then
Q((X®+1)2+1) = Q(x*+1)% — 1, respectivelyx? + 1)Q((x® + 1)2+ 1) = x¥*Q(x* + 1)° + 1.
The substitution® + 1 =y yieldsQ(y? + 1) = Q(y)?+1, respyQ(y? + 1) = (y— 1)Q(y)?+ 1.
Suppose thatQ(y?+ 1) = (y—1)Q(y)?+ 1. Settingy = 1 gives u€Q(2) = 1. Note thatifa 0
andQ(a) = 1 thenaQ(a?+ 1) = (a— 1) +1, soQ(a®+ 1) = 1 as well. This leads to an infinite
sequenceéay,) of points at whichQ takes the value 1, given kap = 2 andan 1 = a2+ 1. We
conclude tha@Q = 1.

We have shown that i # 1, thenP(x) = Q(x* + 1). Now we easily come to all solutions:
these are the polynomials of the fofdT (--- (T(x))---)), whereT (x) = x> + 1.
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14. Let us denot®(1) = a. We havea? — 2a— 2 = 0. SinceP( ) (x—1)P1(x) + a, substituting
in the original equation and simplifying yields — 1)Py(x)? + 2aPy(x) = 4(x+ 1)Py(2x% —
1). Forx=1 we have 2P, (1) = 8P;(1), which together witha # 4 impliesP;(1) =0, i.e.
P(X) = (x—1)P2(X), SOP(X) = (x— 1)?P,(x) +a. Assume thaP(x) = (x— 1)"Q(x) +a, where
Q(1) # 0. Again substituting in the original equation and simptifyyields (x — 1)"Q(x)? +
2aQ(x) = (2x+ 2)"Q(2x? — 1), which implies thaQQ(1) = 0, a contradiction. We conclude
thatP(x) =

15. Atfirst, note that there exisks= a for which P(a)2 = Q(a)?. This follows from the fact that,
if p andq are real roots oP andQ respectively, theiP(p)2 — Q(p)? < 0 < P(g)? — Q(q)?,
wherebyP? — Q? is a continuous function. Then we also h&@) = Q(b) forb=1+a+
P(a)?. Assuming thah is the largest real number wit(a) = Q(a), we come to an immediate
contradiction.

16. LetP(x) =ap+aix+---+anX". For everythe triple(a, b, c) = (6x, 3x, —2x) satisfies the con-
ditionab+bc+ca=0. The condition irP gives usP(3x) 4+ P(5x) + P(—8x) = 2P(7x) for all x,
so by comparing the coefficients on both sides we ol{din = (3i +5 +(-8) —2. 7‘) =0
whenevem; # 0. SinceK(i) is negative for odd and positive foi = 0 and even > 6,8 =0
is only possible foi = 2 andi = 4. ThereforeP(x) = axX? + asx* for some real numbers
ap,a4. Itis easily verified that all sucB(x) satisfy the conditions.

17. Letd be the degree oP. There is a unique polynomi& of degree at mostl such that
Q(k) =acfork=1,2,...,d+ 1. Let us show tha®(n) = a, for all n.

Letn > d+ 1. PolynomialQ might not have integral coefficients, so we cannot dedude tha
n—m|Q(n) — Q(m), but it certainly has rational coefficients, i.e. there isatunal numbeM

for which R(x) = MQ(x) has integral coefficients. By the condition of the probléfta, —
Q(n)) =M(an—ax) — (R(n) —R(k)) is divisible byn—k foreachk=1,2,...,d+ 1. Therefore,

for eachn we either havey, = Q(n) or

Lh=Ilecm(n—1,n—2,....n—d—1) < M(a,— Q(n)) < Cr¢

for some constar@® independent of.

Suppose that, # Q(n) for somen. note that_, is not less than the produ@t—1)---(n—
d — 1) divided by the producl of numbers gcth—i,n— j) over all pairs(i, j) of different
numbers from{1,2,...,d +1}. Since gcdn—i,n—j) <i— j, we haveP < 1929-1...d. It
follows that

(n—1)(n—2)---(n—d—1) < PL, < CPrf,

which is false for large enoughas the left hand side is of degrde- 1. Thus,a, = Q(n) for
each sufficiently large, sayn > N.

What happens fon < N? By the condition of the problenM (a, — Q(n)) = M(an — ax) —
(R(n) — R(k)) is divisible bym—n for everym > N, so it must be equal to zero. Hence

an = Q(n) for all n.

18. We have shown in 7 from the text that every stishtisfiesP(P(t)) =t. If every sucht also
satisfied(t) =t, the number of solutions is clearly at most deg n. Suppose tha(t;) =ty,
P(t) =t1, P(t3) =ta i P(t4) =t3, wheret; # t234. By theorem 10t; — t3 dividest, —t4 and
vice versa, from which we deduce that-t3 = +(t —t4). Assume that; —tz =ty —14, i.e.
t1 —ty =t3—t4 = k# 0. Since the relatioty —t4 = £(t —t3) similarly holds, we obtain
ty —t3+ k = £(t1 — t3 — k) which is impossible. Therefore, we must haye-t3 =t4 —ty,
which gives us(t1) +t1 = P(t3) +t3 = c for somec. It follows that all integral solutionsof
the equatiorP(P(t)) =t satisfyP(t) +t = c, and hence their number does not exceed
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Suppose th& =P — Q# 0 and that < k <n—1is the degree dR(x). Then
P(P(x)) = Q(Q(x)) = [Q(P(X)) — Q(Q(X))] + R(P(x)).
Writing Q(X) = X" 4-- - - +aix+ag yields
Q(P(x) = Q(Q(X) = [P(x)" = Q(x)"] + -+ + a1 [P(x) — Q(x)],

where all the summands but the first have a degree at mMesn, while the first summand
equalsR(x) - (P(X)" 1+ P(x)"2Q(x) + ---+ Q(x)"1) and has the degre® — n+ k with the
leading coefficienn. Therefore the degree @(P(x)) — Q(Q(x)) is n> —n+ k. On the other
hand, the degree of the polynomR(P(x)) equalskn < n? — n+k, from which we conclude
that the differenc®(P(x)) — Q(Q(x)) has the degree? —n+k, a contradiction.

It remains to check the case of a constBnt c. Then the conditioP(P(x)) = Q(Q(X))
yields Q(Q(x) + ¢) = Q(Q(x)) — ¢, so the equalityQ(y+ c) = Q(y) — ¢ holds for infinitely
many values of; henceQ(y+ c) = Q(y) — c which is only possible foc = 0 (to see this, just
compare the coefficients).

Suppose that(x) = g(x)h(x) for some nonconstant polynomials with integer coefficients
Since|f(0)| = p, either|g(0)| = 1 or |h(0)| = 1 holds. Assume w.l.o.g. thag(0)| = 1.
Write g(x) = (Xx—az1)--- (X— o). Then|ay--- x| = 1. Sincef (ai) — p=a"(ai—a)" = —p,
taking the product over= 1,2,... k yields |g(a)|" = |(ay — a)--- (ax — a)|" = pX. Since
g(a) divides|g(a)h(a)| = p, we must haveég(a)| = p andn = k. However,a must divide
|g(a) —g(0)| = p£ 1, which is impossible.

Suppose that = G- H for some polynomial§s, H with integer coefficients. Let us consider
this equality modulo 2. Sincé? + x+ 1)2" = F(x) (mod 2), we obtainx? + x+ 1)2" =
g(x)h(x), whereg = G andh = H are polynomials oveZ,. The polynomiak? +x+ 1 is
irreducible overZ,([x], so there exists a natural numbefor which g(x) = (X2 + x+ 1)k and
h(x) = (2 +x+1)2"k; of course, these equalities holdZa[x] only.

Back inZ[x], these equalities becon(x) = (X2 + x+ 1) 4+ 2V (x) andG(x) = (x® + x+
1)K 42U (x) for some polynomials) andV with integer coefficients. Thus,

[0 +x+ 1)+ 20 (9] [08 +x+ 1)K+ 2V (x)] = F(x).

Now if we setx = £ = =13 in this equality, we obtaity (£)V () = F (¢) = 3. However,
this is impossible as the polynomidix)V (x) has integer coefficients, &b(e)V (¢) must be
of the forma+ be for somea, b € Z (sincee? = —1 — €), which is not the case wit%.

Itis clear, for example by theorem 16, tlratnust have rational coefficients. For somes N
the coefficients of the polynomiedP(x) are integral. Lep be a prime number not dividing.
We claim that, ifP is not linear, there is no rational numbefor which P(x) = mi Namely,
such arx would also satisfyfQ(x) = mpR(x) — 1= 0. On the other hand, the polynom@(x)

is irreducible because so is the polynonx#D(1/x) by the Eisenstain criterion; indeed, all the
coefficients ofx"Q(1/x) but the first are divisible by and the constant term is not divisible
by p?. This proves our claim.

DenoteP(x) = Py(X) = Ra(X) +iSn(X). We prove by induction om that all zeros of, are
real; moreover, ik, > xo > --- > X, are the zeros dR, andy; > y» > --- > yn_1 the zeros of
R,_1, then

X1>Y1>X>Y¥2> > X1-1> Yn-1> *n-

This statement is trivially true far= 1. Suppose that it is true for— 1.
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24,

25,

SinceR, +iS, = (x—i+n)(Ry-1+1Sy-1), the polynomialdR, and S, satisfy the recurrent
relationsR, = (x+N)Ry_1+ $,-1 andS, = (x+n)S,_1 — R,_1. This gives us

Rn— (2x42n—1)Ry_1+4 [(Xx+Nn—1)?>+1]R,_2 = 0.

If zz >--- >z, , are the (real) zerd’,_», by the inductive hypothesis we haxe; > vy; > 7.
Since the value oR,,_; is alternately positive and negative on the interals+), (z,z),
etc, it follows that sgR,_»(yi) = (—1)'""1. Now we conclude from the relatioRy(y;) =
—[(x+n—=1)2+1]Ry_2(yi) that

SgrRy () = (—1)',

which means that the polynomiBh has a zero on each of theintervals(ys, +), (Y2,Y1),
..y (—o0,yn_1). This finishes the induction.

We first prove the following auxiliary statement.

Lemmalf A B andC are coprime polynomials witA+ B = C, then the degree of each of the
polynomialsA, B,C is less than the number of different zeros of the polynomicC.

Proof. Let

k | m

A(X):B(X—Pi)a‘v B(X):B(X—Qi)b‘v C(X):iEl(X—ri)CV

Let us rewrite the given equality #x)/C(x) + B(x)/C(x) = 1 and differentiate it with
respect tox. We obtain

k ) m ' I ) m '
é&; (i;x—a{pi _i;xfri> - _(E:;EQ (i;x—bqi _i;xfri> ’

from which we see tha(x)/B(x) can be expressed as a quotient of two polynomials of
degree not exceedirigt+ | + m— 1. The statement follows from the coprimenes®of
andB.

Now we apply the Lemma on the polynomi&d Q°, R°. We obtain that each of the numbers
adegP, bdegQ, cdegRis less than delg+ degQ + degR, and therefore

1 - degP
a~ degP+degQ+degr’

etc. Adding these yields the desired inequality.

Letus fix de® = n. LetP(x) = (Xx—21) -+ (X—2) = X"+ an_1x"" 1+ ... +ay, where|z| = 1
fori=1,...,n. By the Vieta formulasan_i = +-0i(z, ... ,z,), whichis a sum of ) summands
of modulus 1, and henden_i| < (7). Therefore, there are at mos{9) + 1 possible values of
the coefficient ofP(x) atx"~' for eachi. Thus the number of possible polynomiBlsf degree
nis finite.

Now consider the polynomia® (x) = (x—2,)--- (x— Z,) for each natural numbaer. All
coefficients of polynomiaP are symmetric polynomials im with integral coefficients, so by
the theorem 24 they must be integers. Therefore, every polial B, satisfies the conditions
of the problem, but there are infinitely marig and only finitely many such polynomials. We
conclude thak (x) = Ps(x) for some distinct,s € N, and the main statement of the problem
follows.



