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Polynomials in One Variable
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1 General Properties

A Monomialin variablex is an expression of the formcxk, wherec is a constant andk a nonnegative
integer. Constantc can be e.g. an integer, rational, real or complex number.

A Polynomialin x is a sum of finitely many monomials inx. In other words, it is an expression
of the form

P(x) = anxn +an−1+ · · ·+a1x+a0. (∗)
If only two or three of the above summands are nonzero,P is said to be abinomialandtrinomial,
respectively.

The constantsa0, . . . ,an in (∗) are thecoefficientsof polynomialP. The set of polynomials with
the coefficients in setA is denoted byA[x] - for instance,R[x] is the set of polynomials with real
coefficients.

We can assume in(∗) w.l.o.g. thatan 6= 0 (if an = 0, the summandanxn can be erased without
changing the polynomial). Then the exponentn is called thedegreeof polynomialP and denoted
by degP. In particular, polynomials of degree one, two and three arecalled linear, quadraticand
cubic. A nonzero constant polynomial has degree 0, while the zero-polynomialP(x) ≡ 0 is assigned
the degree−∞ for reasons soon to become clear.

Example 1. P(x) = x3(x+ 1)+ (1− x2)2 = 2x4 + x3−2x2 + 1 is a polynomial with integer coeffi-
cients of degree 4.

Q(x) = 0x2−
√

2x+3 is a linear polynomial with real coefficients.
R(x) =

√
x2 = |x|, S(x) = 1

x and T(x) =
√

2x+1 are not polynomials.

Polynomials can be added, subtracted or multiplied, and theresult will be a polynomial too:

A(x) = a0 +a1x+ · · ·+anxn, B(x) = b0 +b1x+ · · ·+bmxm

A(x)±B(x) = (a0−b0)+ (a1−b1)x+ · · · ,
A(x)B(x) = a0b0 +(a0b1 +a1b0)x+ · · ·+anbmxm+n.

The behavior of the degrees of the polynomials under these operations is clear:
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Theorem 1. If A and B are two polynomials then:

(i) deg(A±B)≤ max(degA,degB), with the equality ifdegA 6= degB.

(ii) deg(A ·B) = degA+degB. 2

The conventional equality deg0= −∞ actually arose from these properties of degrees, as else
the equality (ii) would not be always true.

Unlike a sum, difference and product, a quotient of two polynomials is not necessarily a polyno-
mial. Instead, like integers, they can be divided with a residue.

Theorem 2. Given polynomials A and B6= 0, there are unique polynomials Q (quotient) and R
(residue) such that

A = BQ+R and degR< degB.

Proof. Let A(x) = anxn+ · · ·+a0 andB(x) = bkxk + · · ·+b0, whereanbk 6= 0. Assumek is fixed and
use induction onn. Forn < k the statement is trivial. Suppose thatn = N ≥ k and that the statement
is true forn < N. ThenA1(x) = A(x)− an

bk
xn−kB(x) is a polynomial of degree less thann (for its

coefficient atxn iz zero); hence by the inductive assumption there are uniquepolynomialsQ1 andR
such thatA1 = BQ1 +Rand degR. But this also implies

A = BQ+R, where Q(x) =
an

bk
xn−k +Q1(x) . 2

Example 2. The quotient upon division of A(x) = x3 +x2−1 by B(x) = x2−x−3 is x+2 with the
residue5x+5, as

x3 +x2−1
x2−x−3

= x+2+
5x+5

x2−x−3
.

We say that polynomialA is divisibleby polynomialB if the remainderR whenA is divided by
B equal to 0, i.e. if there is a polynomialQ such thatA = BQ.

Theorem 3 (Bezout’s theorem).Polynomial P(x) is divisible by binomial x−a if and only if P(a) =
0.

Proof. There exist a polynomialQ and a constantc such thatP(x) = (x−a)Q(x)+c. HereP(a) = c,
making the statement obvious.2

Numbera is azero (root)of a given polynomialP(x) if P(a) = 0, i.e.(x−a) | P(x).
To determine a zero of a polynomialf means to solve the equationf (x) = 0. This is not always

possible. For example, it is known that finding the exact values of zeros is impossible in general
when f is of degree at least 5. Nevertheless, the zeros can always becomputed with an arbitrary
precision. Specifically,f (a) < 0 < f (b) implies thatf has a zero betweena andb.

Example 3. Polynomial x2−2x−1 has two real roots: x1,2 = 1±
√

2.
Polynomial x2−2x+2 has no real roots, but it has two complex roots: x1,2 = 1± i.
Polynomial x5−5x+1 has a zero in the interval[1.44,1.441] which cannot be exactly computed.

More generally, the following simple statement holds.

Theorem 4. If a polynomial P is divisible by a polynomial Q, then every zero of Q is also a zero of
P. 2

The converse does not hold. Although every zero ofx2 is a zero ofx, x2 does not dividex.

Problem 1. For which n is the polynomial xn +x−1 divisible by a) x2−x+1, b) x3−x+1?
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Solution. a) The zeros of polynomialx2− x+ 1 areε1,2 = 1±i
√

3
2 . If x2− x+ 1 dividesxn + x−1,

thenε1,2 are zeros of polynomialxn +x−1, soεn
i = 1− εi = ε−1

i . Sinceεk = 1 if and only if 6| k,
the answer isn = 6i −1.

b) If f (x) = x3−x+1 dividesxn +x−1, then it also dividesxn +x3. This means that every zero
of f (x) satisfiesxn−3 = −1; in particular, each zero off has modulus 1. However,f (x) has a zero
between−2 and−1 (for f (−2) < 0 < f (−1)) which is obviously not of modulus 1. Hence there is
no suchn. △

Every nonconstant polynomial with complex coefficients hasa complex root. We shall prove
this statement later; until then we just believe.

The following statement is analogous to the unique factorization theorem in arithmetics.

Theorem 5. Polynomial P(x) of degree n> 0 has a unique representation of the form

P(x) = c(x−x1)(x−x2) · · · (x−xn),

not counting the ordering, where c6= 0 and x1, . . . ,xn are complex numbers, not necessarily distinct.
Therefore, P(x) has at mostdegP = n different zeros.

Proof. First we show the uniqueness. Suppose that

P(x) = c(x−x1)(x−x2) · · · (x−xn) = d(x−y1)(x−y2) · · · (x−yn).

Comparing the leading coefficients yieldsc = d. We may assume w.l.o.g. that there are noi, j for
which xi = y j (otherwise the factorx− xi can be canceled on both sides). ThenP(x1) = 0. On the
other hand,P(x1) = d(x1−y1) · · · (x1−yn) 6= 0, a contradiction.

The existence is shown by induction onn. The casen = 1 is clear. Letn > 1. The polynomial
P(x) has a complex root, sayx1. By Bezout’s theorem,P(x) = (x− x1)P1(x) for some polynomial
P1 of degreen−1. By the inductive assumption there exist complex numbersx2, . . . ,xn for which
P1(x) = c(x−x2) · · · (x−xn), which also impliesP(x) = c(x−x1) · · · (x−xn). 2

Corollary. If polynomialsP andQ has degrees not exceedingn and coincide atn+ 1 different
points, then they are equal.

Grouping equal factors yields thecanonical representation:

P(x) = c(x−a1)
α1(x−a2)

α2 · · ·(x−ak)
αk,

whereαi are natural numbers withα1 + · · ·+ αk = n. The exponentαi is called themultiplicity of
the rootai . It is worth emphasizing that:

Theorem 6. Polynomial of n-th degree has exactly n complex roots counted with their multiplicities.
2

We say that two polynomialsQ andRarecoprimeif they have no roots in common; Equivalently,
there is no nonconstant polynomial dividing them both, in analogy with coprimeness of integers. The
following statement is a direct consequence of the previoustheorem:

Theorem 7. If a polynomial P is divisible by two coprime polynomials Q and R, then it is divisible
by Q·R. 2

Remark:This can be shown without using the existence of roots. By theEuclidean algorithm applied
on polynomials there exist polynomialsK andL such thatKQ+LR= 1. Now if P = QS= RT for
some polynomialsR,S, thenR(KT −LS) = KQS−LRS= S, and thereforeR | SandQR| QS= P.

If polynomialP(x) = xn+ · · ·+a1x+a0 with real coefficients has a complex zeroξ , thenP(ξ ) =

ξ n + · · ·+a1ξ +a0 = P(ξ ) = 0. Thus:

Theorem 8. If ξ is a zero of a real polynomial P(x), then so isξ . 2
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In the factorization of a real polynomialP(x) into linear factors we can group conjugated com-
plex zeros:

P(x) = (x− r1) · · · (x− rk)(x− ξ1)(x− ξ1) · · · (x− ξl)(x− ξl),

wherer i are the real zeros,ξ complex, andk+ 2l = n = degP. Polynomial(x− ξ )(x− ξ) = x2−
2Reξ + |ξ |2 = x2− pix+qi has real coefficients which satisfyp2

i −4qi < 0. This shows that:

Theorem 9. A real polynomial P(x) has a unique factorization (up to the order) of the form

P(x) = (x− r1) · · · (x− rk)(x
2− p1x+q1) · · · (x2− plx+ql),

where ri and pj ,q j are real numbers with p2i < 4qi and k+2l = n. 2

It follows that a real polynomial of an odd degree always has an odd number of zeros (and at
least one).

2 Zeros of Polynomials

In the first section we described some basic properties of polynomials. In this section we describe
some further properties and at the end we prove that every complex polynomial actually has a root.

As we pointed out, in some cases the zeros of a given polynomial can be exactly determined.
The case of polynomials of degree 2 has been known since the old age. The well-known formula
gives the solutions of a quadratic equationax2 +bx+c= 0 (a 6= 0) in the form

x1,2 =
−b±

√
b2−4ac

2a
.

When f has degree 3 or 4, the (fairly impractical) formulas describing the solutions were given
by the Italian mathematicians Tartaglia and Ferrari in the 16-th century. We show Tartaglia’s method
of solving a cubic equation.

At first, substitutingx = y− a/3 reduces the cubic equationx3 + ax2 + bx+ c = 0 with real
coefficients to

y3 + py+q= 0, where p = b− a2

3
, q = c− ab

3
+

2a3

27
.

Puttingy = u+ v transforms this equation intou3 + v3 + (3uv+ p)y+ q = 0. But, sinceu andv
are variable, we are allowed to bind them by the condition 3uv+ p = 0. Thus the above equation
becomes the system

uv= − p
3
, u3 +v3 = −q

which is easily solved:u3 andv3 are the solutions of the quadratic equationt2 + qt− p3

27 = 0 and
uv= −p/3 must be real. Thus we come to the solutions:

Theorem 10 (Cardano’s formula). The solutions of the equation y3+ py+q= 0 with p,q∈ R are

yi = ε j 3

√

−q
2

+

√

q2

4
+

p3

27
+ ε− j 3

√

−q
2
−
√

q2

4
+

p3

27
, j = 0,1,2,

whereε is a primitive cubic root of unity.2

A polynomial f (x) = anxn + · · ·+a1x+a0 is symmetricif an−i = ai for all i. If deg f = n is odd,
then−1 is a zero off and the polynomialf (x)/(x+1) is symmetric. Ifn = 2k is even, then

f (x)/xk = a0(x
k +x−k)+ · · ·+ak−1(x+x−1)+ak

is a polynomial iny = x+ x−1, for so is each of the expressionsxi + x−i (see problem 3 in section
7). In particular,x2 +x−2 = y2−2,x3 +x−3 = y3−3y, etc. This reduces the equationf (x) = 0 to an
equation of degreen/2.
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Problem 2. Show that the polynomial f(x) = x6−2x5+x4−2x3+x2−2x+1 has exactly four zeros
of modulus 1.

Solution. Sety = x+x−1. Then

f (x)
x3 = g(y) = y3−2y2−2y+2.

Observe thatx is of modulus 1 if and only ifx = cost + i sint for somet, in which casey = 2cost;
conversely,y = 2cost implies thatx = cost ± i sint. In other words,|x| = 1 if and only if y is real
with −2≤ y≤ 2, where to each suchy correspond two values ofx if y 6=±2. Therefore it remains to
show thatg(y) has exactly two real roots in the interval(−2,2). To see this, it is enough to note that
g(−2) = −10,g(0) = 2, g(2) = −2, and that thereforeg has a zero in each of the intervals(−2,0),
(0,2) and(2,∞). △

How are the roots of a polynomial related to its coefficients?Consider a monic polynomial

P(x) = xn +a1x
n−1 + · · ·+an−1x+an = (x−x1)(x−x2) · · · (x−xn)

of degreen > 0. For example, comparing coefficients atxn−1 on both sides gives usx1 +x2 + · · ·+
xn = −a1. Similarly, comparing the constant terms gives usx1x2 · · ·xn = (−1)nan. The general
relations are given by the Vieta formulas below.

Definition 1. Elementary symmetric polynomialsin x1, . . . ,xn are the polynomialsσ1,σ2, . . . ,σn,
where

σk = σk(x1,x2, . . . ,xn) = ∑xi1xi2 . . .xik ,

the sum being over all k-element subsets{i1, . . . , ik} of {1,2, . . . ,n}.

In particular,σ1 = x1+x2+ · · ·+xn andσn = x1x2 · · ·xn. Also, we usually setσ0 = 1 andσk = 0
for k > n.

Theorem 11 (Vieta’s formulas). If α1,α2, . . . ,αn are the zeros of polynomial P(x) = xn+a1xn−1+
a2xn−2 + · · ·+an, then ak = (−1)kσk(α1, . . . ,αn) for k = 1,2, . . . ,n.

Proof. Induction onn. The casen = 1 is trivial. Assume thatn > 1 and writeP(x) = (x−xn)Q(x),
whereQ(x) = (x−x1) · · · (x−xn−1). Let us compute the coefficientak of P(x) atxk. Since the coeffi-
cients ofQ(x) at xk−1 andxk area′k−1 = (−1)k−1σk−1(x1, . . . ,xn−1) anda′k = (−1)kσk(x1, . . . ,xn−1)
respectively, we have

ak = −xna′k−1 +a′k = σk(x1, . . . ,xn). 2

Example 4. The roots x1,x2,x3 of polynomial P(x) = x3 − ax2 + bx− c satisfy a= x1 + x2 + x3,
b = x1x2 +x2x3 +x3x1 and c= x1x2x3.

Problem 3. Prove that not all zeros of a polynomial of the form xn +2nxn−1+2n2xn−2 + · · · can be
real.

Solution. Suppose that all its zerosx1,x2, . . . ,xn are real. They satisfy

∑
i

xi = −2n, ∑
i< j

xix j = 2n2.

However, by the mean inequality we have

∑
i< j

xix j =
1
2

(

∑
i

xi

)2

− 1
2 ∑

i
x2

i ≤
n−1
2n

(

∑
i

xi

)2

= 2n(n−1),

a contradiction.△
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Problem 4. Find all polynomials of the form anxn + an−1xn−1 + · · ·+ a1x+ a0 with aj ∈ {−1,1}
( j = 0,1, . . . ,n), whose all roots are real.

Solution. Let x1, . . . ,xn be the roots of the given polynomial. Then

x2
1 +x2

2 + · · ·+x2
n = (∑i xi)

2−2(∑i< j xix j) = a2
n−1−2an−2 ≤ 3;

x2
1x2

2 · · ·x2
n = 1.

By the mean inequality, the second equality impliesx2
1 + · · ·+x2

n ≥ n; hencen≤ 3. The casen = 3
is only possible ifx1,x2,x3 = ±1. Now we can easily find all solutions:x±1, x2± x−1, x3− x±
(x2−1). △

One contradiction is enough to show that not all zeros of a given polynomial are real. On the
other hand, if the task is to show that all zeros of a polynomial are real, but not all are computable,
the situation often gets more complicated.

Problem 5. Show that all zeros of a polynomial f(x) = x(x−2)(x−4)(x−6)+ (x−1)(x−3)(x−
5)(x−7) are real.

Solution. Since f (−∞) = f (∞) = +∞, f (1) < 0, f (3) > 0 and f (5) < 0, polynomial f has a real
zero in each of the intervals(−∞,1), (1,3), (3,5), (5,∞), that is four in total.△

We now give the announced proof of the fact that every polynomial has a complex root. This
fundamental theorem has many different proofs. The proof wepresent is, although more difficult
than all the previous ones, still next to elementary. All imperfections in the proof are made on
purpose.

Theorem 12 (The Fundamental Theorem of Algebra).Every nonconstant complex polynomial
P(x) has a complex zero.

Proof. Write P(x) = xn + an−1xn−1 + · · ·+ a0. Suppose thatP(0) = a0 6= 0. For eachr > 0, letCr

be the circle in the complex plane with the center at point 0 and radiusr. Consider the continuous
curveγr = P(Cr) = {P(x) | |x| = r}. The curve described by the monomialxn, i.e. {xn | x ∈ Cr}
rounds point 0n times. If r is large enough, for exampler > 1+ |a0|+ · · ·+ |an−1|, we have|xn| >
|an−1xn−1+ · · ·+a0|= |P(x)−xn|, which means that the restP(x)−xn in the expression ofP(x) can
not “reach” point 0. Thus for suchr the curveγr also rounds point 0n times; hence, it contains point
0 in its interior.

For very smallr the curveγr is close to pointP(0) = a0 and leaves point 0 in its exterior. Thus,
there exists a minimumr = r0 for which point 0 isnot in the exterior ofγr . Since the curveγr changes
continuously as a function ofr, it cannot jump over the point 0, so point 0 must lie on the curveγr0.
Therefore, there is a zero of polynomialP(x) of modulusr0. 2

3 Polynomials with Integer Coefficients

Consider a polynomialP(x) = anxn + · · ·+a1x+a0 with integer coefficients. The differenceP(x)−
P(y) can be written in the form

an(x
n−yn)+ · · ·+a2(x

2−y2)+a1(x−y),

in which all summands are multiples of polynomialx−y. This leads to the simple though important
arithmetic property of polynomials fromZ[x]:

Theorem 13. If P is a polynomial with integer coefficients, then P(a)−P(b) is divisible by a−b for
any distinct integers a and b.

In particular, all integer roots of P divide P(0). 2

There is a similar statement about rational roots of polynomial P(x) ∈ Z[x].
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Theorem 14. If a rational number p/q (p,q ∈ Z, q 6= 0, nzd(p,q) = 1) is a root of polynomial
P(x) = anxn + · · ·+a0 with integer coefficients, then p| a0 and q| an.

Proof. We have

qnP

(

p
q

)

= anpn +an−1pn−1q+ · · ·+a0q
n.

All summands but possibly the first are multiples ofq, and all but possibly the last are multiples of
p. Henceq | anpn andp | a0qn and the claim follows.2

Problem 6. Polynomial P(x) ∈ Z[x] takes values±1 at three different integer points. Prove that it
has no integer zeros.

Solution. Suppose to the contrary, thata,b,c,d are integers withP(a), P(b),P(c) ∈ {−1,1} and
P(d) = 0. Then by the previous statement the integersa−d,b−d andc−d all divide 1, a contra-
diction.△
Problem 7. Let P(x) be a polynomial with integer coefficients. Prove that if P(P(· · ·P(x) · · · )) = x
for some integer x (where P is iterated n times), then P(P(x)) = x.

Solution. Consider the sequence given byx0 = x andxk+1 = P(xk) for k ≥ 0. Assumexk = x0. We
know that

di = xi+1−xi | P(xi+1)−P(xi) = xi+2−xi+1 = di+1

for all i, which together withdk = d0 implies|d0| = |d1| = · · · = |dk|.
Suppose thatd1 = d0 = d 6= 0. Thend2 = d (otherwisex3 = x1 andx0 will never occur in the

sequence again). Similarly,d3 = d etc, and hencexk = x0 + kd 6= x0 for all k, a contradiction. It
follows thatd1 = −d0, sox2 = x0. △

Note that a polynomial that takes integer values at all integer points does not necessarily have
integer coefficients, as seen on the polynomialx(x−1)

2 .

Theorem 15. If the value of the polynomial P(x) is integral for every integer x, then there exist
integers c0, . . . ,cn such that

P(x) = cn

(

x
n

)

+cn−1

(

x
n−1

)

+ · · ·+c0

(

x
0

)

.

The converse is true, also.

Proof. We use induction onn. The casen = 1 is trivial; Now assume thatn > 1. Polynomial
Q(x) = P(x+ 1)−P(x) is of degreen− 1 and takes integer values at all integer points, so by the
inductive hypothesis there exista0, . . . ,an−1 ∈ Z such that

Q(x) = an−1

(

x
n−1

)

+ · · ·+a0

(

x
0

)

.

For every integerx > 0 we haveP(x) = P(0)+ Q(0)+ Q(1)+ · · ·+ Q(x− 1). Using the identity
(0

k

)

+
(1

k

)

+ · · ·+
(x−1

k

)

=
( x

k+1

)

for every integerk we obtain the desired representation ofP(x):

P(x) = an−1

(

x
n

)

+ · · ·+a0

(

x
1

)

+P(0). 2

Problem 8. Suppose that a natural number m and a real polynomial R(x) = anxn+an−1xn−1+ · · ·+
a0 are such that R(x) is an integer divisible by m whenever x is an integer. Prove that n!an is divisible
by m.

Solution. Apply the previous theorem on polynomial1
mR(x) (with the same notation). The leading

coefficient of this polynomial equalscn+ncn−1+ · · ·+n!c0, and the statement follows immediately.
△
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4 Irreducibility

PolynomialP(x) with integer coefficients is said to beirreducibleoverZ[x] if it cannot be written as
a product of two nonconstant polynomials with integer coefficients.

Example 5. Every quadratic or cubic polynomial with no rational roots is irreducible overZ. Such
are e.g. x2−x−1 and2x3−4x+1.

One analogously defines (ir)reducibility over the sets of polynomials with e.g. rational, real or
complex coefficients. However, of the mentioned, only reducibility over Z[x] is of interest. Gauss’
Lemma below claims that the reducibility overQ[x] is equivalent to the reducibility overZ[x]. In
addition, we have already shown that a real polynomial is always reducible into linear and quadratic
factors overR[x], while a complex polynomial is always reducible into linearfactors overC[x].

Theorem 16 (Gauss’ Lema).If a polynomial P(x) with integer coefficients is reducible overQ[x],
then it is reducible overZ[x], also.

Proof. Suppose thatP(x) = anxn + · · ·+ a0 = Q(x)R(x) ∈ Z[x], whereQ(x) andR(x) nonconstant
polynomials with rational coefficients. Letq and r be the smallest natural numbers such that the
polynomialsqQ(x) = qkxk + · · ·+ q0 andrR(x) = rmxm + · · ·+ r0 have integer coefficients. Then
qrP(x) = qQ(x) · rR(x) is a factorization of the polynomialqrP(x) into two polynomials fromZ[x].
Based on this, we shall construct such a factorization forP(x).

Let p be an arbitrary prime divisor ofq. All coefficients ofP(x) are divisible byp. Let i be such
that p | q0,q1, . . . ,qi−1, but p ∤ qi . We havep | ai = q0r i + · · ·+ qir0 ≡ qir0 (mod p), which implies
that p | r0. Furthermore,p | ai+1 = q0r i+1+ · · ·+qir1 +qi+1r0 ≡ qir1 (modp), sop | r1. Continuing
in this way, we deduce thatp | r j for all j. HencerR(x)/p has integer coefficients. We have thus
obtained a factorization ofrqp P(x) into two polynomials fromZ[x]. Continuing this procedure and
taking other values forp we shall eventually end up with a factorization ofP(x) itself. 2

From now on, unless otherwise specified, by “irreducibility” we mean irreducibility overZ[x].

Problem 9. If a1, a2, . . . , an are integers, prove that the polynomial P(x) = (x−a1)(x−a2) · · · (x−
an)−1 is irreducible.

Solution. Suppose thatP(x) = Q(x)R(x) for some nonconstant polynomialsQ,R∈ Z[x]. Since
Q(ai)R(ai) = −1 for i = 1, . . . ,n, we haveQ(ai) = 1 andR(ai) = −1 or Q(ai) = −1 andR(ai) =
1; either way, we haveQ(ai) + R(ai) = 0. It follows that the polynomialQ(x) + R(x) (which is
obviously nonzero) hasn zerosa1, . . . ,an which is impossible for its degree is less thann. △

Theorem 17 (Extended Eisenstein’s Criterion).Let P(x) = anxn + · · ·+a1x+a0 be a polynomial
with integer coefficients. If there exist a prime number p andan integer k∈ {0,1, . . . ,n−1} such
that

p | a0,a1, . . . ,ak, p ∤ ak+1 and p2 ∤ a0,

then P(x) has an irreducible factor of a degree greater than k.
In particular, if p can be taken so that k= n−1, then P(x) is irreducible.

Proof. Like in the proof of Gauss’s lemma, suppose thatP(x) = Q(x)R(x), whereQ(x) = qkxk +
· · ·+ q0 andR(x) = rmxm + · · ·+ r0 are polynomials fromZ[x]. Sincea0 = q0r0 is divisible by p
and not byp2, exactly one ofq0, r0 is a multiple of p. Assume thatp | q0 and p ∤ r0. Further,
p | a1 = q0r1 +q1r0, implying thatp | q1r0, i.e. p | q1, and so on. We conclude that all coefficients
q0,q1, . . . ,qk are divisible byp, but p ∤ qk+1. It follows that degQ≥ k+1. 2

Problem 10. Given an integer n> 1, consider the polynomial f(x) = xn + 5xn−1 + 3. Prove that
there are no nonconstant polynomials g(x),h(x) with integer coefficients such that f(x) = g(x)h(x).
(IMO93-1)
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Solution. By the (extended) Eisenstein criterion,f has an irreducible factor of degree at leastn−1.
Since f has no integer zeros, it must be irreducible.△

Problem 11. If p is a prime number, prove that the polynomialΦp(x) = xp−1 + · · ·+ x+ 1 is irre-
ducible.

Solution. Instead ofΦp(x), we shall considerΦp(x+1) and show that it is irreducible, which will
clearly imply that so isΦp. We have

Φp(x+1) =
(x+1)p−1

x
= xp−1 +

(

p
p−1

)

xp−2+ · · ·+
(

p
2

)

x+ p.

This polynomial satisfies all the assumptions of Eisenstein’s criterion, based on which it is irre-
ducible.△

In investigating reducibility of a polynomial, it can be useful to investigate its zeros and their
modules. The following problems provide us an illustration.

Problem 12. Prove that the polynomial P(x) = xn + 4 is irreducible overZ[x] if and only if n is a
multiple of 4.

Solution. All zeros of polynomialP have the modulus equal to 22/n. If Q andR are polynomials
from Z[x] and degQ = k, then|Q(0)| is the product of the modules of the zeros ofQ and equals
22k/n; since this should be an integer, we deduce thatn = 2k.

If k is odd, polynomialQ has a real zero, which is impossible sinceP(x) has none. Therefore,
2 | k and 4| n. △

If the zeros cannot be exactly determined, one should find a good enough bound. Estimating
complex zeros of a polynomial is not always simple. Our main tool is the triangle inequality for
complex numbers:

|x|− |y| ≤ |x+y| ≤ |x|+ |y|.
Consider a polynomialP(x) = anxn+an−kxn−k+ · · ·+a1x+a0 with complex coefficients (an 6=

0). Letα be its zero. IfM is a real number such that|ai | < M|an| for all i, it holds that

0 = |P(α)| ≥ |an||α|n−M|an|(|α|n−k + · · ·+ |α|+1) > |an||α|n
(

1− M
|α|k−1(|α|−1)

)

,

which yields|α|k−1(|α|−1) < M. We thus come to the following estimate:

Theorem 18. Let P(x) = anxn + · · ·+a0 be a complex polynomial with an 6= 0 and M= max
0≤k<n

∣

∣

∣

∣

ak

an

∣

∣

∣

∣

.

If an−1 = · · · = an−k+1 = 0, then all roots of the polynomial P are less than1+ k
√

M in modulus.
In particular, for k= 1, each zero of P(x) is of modulus less than M+1. 2

Problem 13. If an . . .a1a0 is a decimal representation of a prime number and an > 1, prove that the
polynomial P(x) = anxn + · · ·+a1x+a0 is irreducible. (BMO 1989.2)

Solution. Suppose thatQ andR are nonconstant polynomials fromZ[x] with Q(x)R(x) = P(x). Let
x1, . . . ,xk be the zeros ofQ andxk+1, . . . ,xn be the zeros ofR. The condition of the problem means
thatP(10) = Q(10)R(10) is a prime, so we can assume w.l.o.g. that

|Q(10)|= (10−x1)(10−x2) · · · (10−xk) = 1.

On the other hand, by the estimate in 18, each zeroxi has a modulus less than 1+9/2 = 11/2 < 9;
hence|10−xi| > 1 for all i, contradicting the above inequality.△

Problem 14. Let p> 2 be a prime number and P(x) = xp−x+ p.
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1. Prove that all zeros of polynomial P are less than p
1

p−1 in modulus.

2. Prove that the polynomial P(x) is irreducible.

Solution.

1. Lety be a zero ofP. Then|y|p−|y| ≤ |yp−y|= p. If we assume that|y| ≥ p
1

p−1 , we obtain

|y|p−|y| ≥ (p−1)p
1

p−1 > p,

a contradiction. Here we used the inequalityp
1

p−1 > p
p−1 which follows for example from the

binomial expansion ofpp−1 = ((p−1)+1)p−1.

2. Suppose thatP(x) is the product of two nonconstant polynomialsQ(x) andR(x) with integer
coefficients. One of these two polynomials, sayQ, has the constant term equal to±p. On the

other hand, the zerosx1, . . . ,xk of Q satisfy|x1|, . . . , |xk|< p
1

p−1 by part (a), andx1 · · ·xk =±p,
so we conclude thatk≥ p, which is impossible.△

5 Interpolating polynomials

A polynomial ofn-th degree is uniquely determined, given its values atn+ 1 points. So, suppose
thatP is ann-th degree polynomial and thatP(xi) = yi in different pointsx0,x1, . . . ,xn. There exist
unique polynomialsE0,E1, . . . ,En of n-th degree such thatEi(xi) = 1 andEi(x j) = 0 for j 6= i. Then
the polynomial

P(x) = y0E0(x)+y1E1(x)+ · · ·+ynEn(x)

has the desired properties: indeed,P(xi) = ∑ j y jE j(xi) = yiEi(xi) = yi . It remains to find the poly-
nomialsE0, . . . ,En. A polynomial that vanishes at then pointsx j , j 6= i, is divisible by∏ j 6=i(x−x j),

from which we easily obtainEi(x) = ∏ j 6=i
(x−xj )

(xi−xj )
. This shows that:

Theorem 19 (Newton’s interpolating polynomial). For given numbers y0, . . . ,yn and distinct x0,
. . . , xn there is a unique polynomial P(x) of n-th degree such that P(xi) = yi for i = 0, 1, . . . ,n. This
polynomial is given by the formula

P(x) =
n

∑
i=0

yi ∏
j 6=i

(x−x j)

(xi −x j)
. 2

Example 6. Find the cubic polynomial Q such that Q(i) = 2i for i = 0,1,2,3.

Solution. Q(x) = (x−1)(x−2)(x−3)
−6 + 2x(x−2)(x−3)

2 + 4x(x−1)(x−3)
−2 + 8x(x−1)(x−2)

6 = x3+5x+6
6 . △

In order to compute the value of a polynomial given in this wayin some point, sometimes we
do not need to determine its Newton’s polynomial. In fact, Newton’s polynomial has an unpleasant
property of giving the answer in a complicated form.

Example 7. If the polynomial P of n-th degree takes the value 1 in points0,2,4, . . . ,2n, compute
P(−1).

Solution. P(x) is of course identically equal to 1, soP(−1) = 1. But if we apply the Newton
polynomial, here is what we get:

P(1) =
n

∑
i=0

∏
j 6=i

1−2i
(2 j −2i)

=
n

∑
i=0

∏
j 6=i

−1−2 j
(2i −2 j)

=
(2n+1)!!

2n

n+1

∑
i=1

(−1)n−i

(2i +1)i!(n− i)!
. △
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Instead, it is often useful to consider thefinite differenceof polynomialP, defined byP[1](x) =
P(x+ 1)−P(x), which has the degree by 1 less than that ofP. Further, we define thek-th finite
difference,P[k] = (P[k−1])[1], which is of degreen−k (where degP = n). A simple induction gives a
general formula

P[k] =
k

∑
i=0

(−1)k−i
(

k
i

)

P(x+ i).

In particular,P[n] is constant andP[n+1] = 0, which leads to

Theorem 20. P(x+n+1)=
n

∑
i=0

(−1)n−i
(

n+1
i

)

P(x+ i). 2

Problem 15. Polynomial P of degree n satisfies P(i) =
(n+1

i

)−1
for i = 0,1, . . . ,n. Evaluate P(n+1).

Solution. We have

0 =
n+1

∑
i=0

(−1)i
(

n+1
i

)

P(i) = (−1)n+1P(n+1)+

{

1, 2 | n;
0, 2 ∤ n.

It follows thatP(n+1) =

{

1, 2 | n;
0, 2 ∤ n.

△

Problem 16. If P(x) is a polynomial of an even degree n with P(0) = 1 and P(i) = 2i−1 for i =
1, . . . ,n, prove that P(n+2) = 2P(n+1)−1.

Solution. We observe thatP[1](0) = 0 i P[1](i) = 2i−1 for i = 1, . . . ,n−1; furthermore,P[2](0) = 1 i
P[2](i)= 2i−1 for i = 1, . . . ,n−2, etc. In general, it is easily seen thatP[k](i) = 2i−1 for i = 1, . . . ,n−k,
andP[k](0) is 0 fork odd and 1 fork even. Now

P(n+1) = P(n)+P[1](n) = · · · = P(n)+P[1](n−1)+ · · ·+P[n](0) =

{

2n, 2 | n;
2n−1, 2 ∤ n.

Similarly, P(n+2) = 22n+1−1. △

6 Applications of Calculus

The derivative of a polynomialP(x) = anxn +an−1xn−1 + · · ·+a1x+a0 is given by

P′(x) = nanxn−1 +(n−1)an−1x
n−2 + · · ·+a1.

The inverse operation, the indefinite integral, is given by

∫

P(x)dx=
an

n+1
xn+1 +

an−1

n
xn + · · ·+a0x+C.

If the polynomialP is not given by its coefficients but rather by its canonical factorization, as
P(x) = (x− x1)

k1 · · · (x− xn)
kn, a more suitable expression for the derivative is obtained by using

the logarithmic derivative rule or product rule:

P′(x) = P(x)

(

k1

x−x1
+ · · ·+ kn

x−xn

)

.

A similar formula can be obtained for the second derivative.
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Problem 17. Suppose that real numbers0 = x0 < x1 < · · · < xn < xn+1 = 1 satisfy

n+1

∑
j=0, j 6=i

1
xi −x j

= 0 za i= 1,2, . . . ,n. (1)

Prove that xn+1−i = 1−xi for i = 1,2, . . . ,n.

Solution. Let P(x) = (x−x0)(x−x1) · · · (x−xn)(x−xn+1). We have

P′(x) =
n+1

∑
j=0

P(x)
x−x j

i P′′(x) =
n+1

∑
j=0

∑
k6= j

P(x)
(x−x j)(x−xk)

.

Therefore

P′′(xi) = 2P′(xi)∑
j 6=i

1
(xi −x j)

for i = 0,1, . . . ,n+1. Thus the condition of the problem is equivalent toP′′(xi) = 0 for i = 1,2, . . . ,n.
Therefore

x(x−1)P′′(x) = (n+2)(n+1)P(x).

It is easy to see that there is a unique monic polynomial of degreen+2 satisfying the above differ-
ential equation. On the other hand, the monic polynomialQ(x) = (−1)nP(1−x) satisfies the same
equation and has degreen+2, so we must have(−1)nP(1−x) = P(x), which implies the statement.
△

What makes derivatives of polynomials especially suitableis their property of preserving multi-
ple zeros.

Theorem 21. If (x−α)k | P(x), then(x−α)k−1 | P′(x).

Proof. If P(x) = (x−α)kQ(x), thenP′(x) = (x−α)kQ′(x)+k(x−α)k−1Q(x). 2

Problem 18. Determine a real polynomial P(x) of degree at most 5 which leaves remainders−1
and 1 upon division by(x−1)3 and(x+1)3, respectively.

Solution. If P(x)+ 1 has a triple zero at point 1, then its derivativeP′(x) has a double zero at that
point. Similarly,P′(x) has a double zero at point−1 too. It follows thatP′(x) is divisible by the
polynomial(x−1)2(x+1)2. SinceP′(x) is of degree at most 4, it follows that

P′(x) = c(x−1)2(x+1)2 = c(x4−2x2+1)

for some constantc. NowP(x) = c(1
5x5− 2

3x3+x)+d for some real numbersc andd. The conditions
P(−1) = 1 andP(1) = −1 now give usc = −15/8,d = 0 and

P(x) = −3
8

x5 +
5
4

x3− 15
8

x. △

Problem 19. For polynomials P(x) and Q(x) and an arbitrary k∈ C, denote

Pk = {z∈ C | P(z) = k} and Qk = {z∈ C | Q(z) = k}.

Prove that P0 = Q0 and P1 = Q1 imply that P(x) = Q(x).

Solution. Let us assume w.l.o.g. thatn = degP ≥ degQ. Let P0 = {z1,z2, . . . ,zk} andP1 = {zk+1,
zk+2, . . . ,zk+m}. PolynomialsP andQ coincide atk+mpointsz1,z2, . . . ,zk+m. The result will follow
if we show thatk+m> n.
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We have

P(x) = (x−z1)
α1 · · ·(x−zk)

αk = (x−zk+1)
αk+1 · · ·(x−zk+m)αk+m +1

for some natural numbersα1, . . . ,αk+m. Let us considerP′(x). We know that it is divisible by
(x−zi)

αi−1 for i = 1,2, . . . ,k+m; hence,

k+m

∏
i=1

(x−zi)
αi−1 | P′(x).

Therefore, 2n−k−m= deg∏k+m
i=1 (x−zi)

αi−1 ≤ degP′ = n−1, i.e.k+m≥ n+1, as desired.△
Even if P has no multiple zeros, certain relations between zeros ofP and P′ still hold. For

example, the following statement holds for all differentiable functions.

Theorem 22 (Rolle’s Theorem).Between every two zeros of a polynomial P(x) there is a zero of
P′(x).

Corollary. If all zeros ofP(x) are real, then so are all zeros ofP′(x).)
Proof. Leta< b be two zeros of polynomialP. Assume w.l.o.g. thatP′(a)> 0 and consider the point
c in the interval[a,b] in whichP attains a local maximum (such a point exists since the interval [a,b]
is compact). We know thatP(x) = P(c)+ (x− c)[P′(c)+ o(1)]. If for exampleP′(c) > 0 (the case
P′(c) < 0 leads to a similar contradiction), thenP(x) > P(c) would hold in a small neighborhood of
c, a contradiction. It is only possible thatP′(c) = 0, soc is a root ofP′(x) betweena andb. 2

7 Symmetric polynomials

A symmetric polynomial in variablesx1, . . . ,xn is every polynomial that is not varied by permuting
the indices of the variables. For instance, polynomialx2

1 is symmetric as a polynomial inx1 (no
wonder), but is not symmetric as a polynomial inx1,x2 as changing places of the indices 1 and 2
changes it to the polynomialx2

2.

Definition 2. The polynomial P(x1,x2, . . . ,xn) is symmetricif, for every permutationπ of {1, 2, . . . ,
n}, P(x1,x2, . . . ,xn) ≡ P(xπ(1),xπ(2), . . . ,xπ(n)).

An obvious property of a symmetric polynomial is that its coefficients at two terms of the forms
xi1

1 · · ·xin
n andx j1

1 · · ·x jn
n , where( j1, . . . , jn) is a permutation(i1, . . . , in), always coincide. For example,

if the expansion of a symmetric polynomial inx,y,z contains the termsx2y, then it also contains
x2z,xy2, etc, with the same coefficient.

Thus, the polynomialsσk (1≤ k≤ n) introduced in section 2 are symmetric. Also symmetric is
e.g. the polynomialx2

1 +x2
2.

A symmetric polynomial is said to behomogenousif all its terms are of the same degree. Equiv-
alently, polynomialT is homogenous of degreed if T(tx1, . . . ,txn) = tdT(x1, . . . ,xn) holds for allx
andt. For instance,x2

1 +x2
2 is homogenous of degreed = 2, butx2

1 +x2
2 +1, although symmetric, is

not homogenous.
Every symmetric polynomial inx1, . . . ,xn can be written as a sum of homogenous polynomials.

Moreover, it can also be represented as a linear combinationof certain “bricks”. These bricks are
the polynomials

Ta = ∑x
ai1
1 · · ·xain

n (∗)
for eachn-tuplea = (a1, . . . ,an) of nonnegative integers witha1 ≥ ·· · ≥ an, where the summation
goes over all permutations(i1, . . . , in) of the indices 1, . . . ,n. In the expression forTa the same
summand can occur more than once, so we defineSa as the sum of thedifferentterms in(∗). The
polynomialTa is always an integral multiple ofSa. For instance,

T(2,2,0) = 2(x2
1x2

2 +x2
2x2

3 +x2
3x2

1) = 2S(2,2,0).
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All the n-tuplesa of degreed = a1 + · · ·+an can be ordered in a lexicographic order so that

a > a′ if s1 = s′1, . . . ,sk = s′k andsk+1 > s′k+1 for somek≥ 1,

wheresi = a1 + · · ·+ ai. In this ordering, the leastn-tuple ism= (x+ 1, . . . ,x+ 1,x, . . . ,x), where
x = [d/n] andx+1 occursd−n[d/n] times.

The polynomialsTa can be multiplies according to the following simple formula:

Theorem 23. If a = (a1, . . . ,an) and b= (b1, . . . ,bn) are n-tuples of nonnegative integers, it holds
that

Ta ·Tb = ∑
π

Ta+π(b),

where the sum goes over all permutationsπ(b) of the n-tuple b. (We define(xi)
n
i=1 + (yi)

n
i=1 =

(xi +yi)
n
i=1.)

Proof. It suffices to observe that

xπ1(b)
1 · · ·xπn(b)

n Ta = ∑x
a1+πi1(b)

i1
· · ·xan+πin(b)

in
,

and to sum up over all permutationsπ . 2

There are infinitely many mentioned bricks, and these are obviously not mutually independent.
We need simpler elements which are independent and using which one can express every symmetric
polynomial by basic operations. It turns out that these atoms areσ1, . . . ,σn.

Example 8. The following polynomials in x,y,z can be written in terms ofσ1,σ2,σ3:
xy+yz+zx+x+y+z= σ2 + σ1;
x2y+x2z+y2x+y2z+z2x+z2y = σ1σ2−3σ3;
x2y2 +y2z2 +z2x2 = σ2

2 −2σ1σ3.

Theorem 24. Every symmetric polynomial in x1, . . . ,xn can be represented in the form of a polyno-
mial in σ1, . . . ,σn. Moreover, a symmetric polynomial with integer coefficients is also a polynomial
in σ1, . . . ,σn with integer coefficients.

Proof. It is enough to prove the statement for the polynomialsSa of degreed (for eachd). Assuming
that it holds for the degrees less thand, we use induction onn-tuplesa. The statement is true for
the smallestn-tuple m: Indeed,Sm = σq

n σr , whered = nq+ r, 0≤ r < n. Now suppose that the
statement is true for allSb with b < a; we show that it also holds forSa.

Suppose thata = (a1, . . . ,an) with a1 = · · · = ak > ak+1 (k≥ 1). Consider the polynomialSa−
σkSa′ , wherea′ = (a1 − 1, . . . ,ak − 1,ak+1, . . . ,an). According to theorem 23 it is easy to see that
this polynomial is of the form∑b<acbSb, wherecb are integers, and is therefore by the inductive
hypothesis representable in the form of a polynomial inσi with integer coefficients.2

The proof of the previous theorem also gives us an algorithm for expressing each symmetric
polynomial in terms of theσi . Nevertheless, for some particular symmetric polynomialsthere are
simpler formulas.

Theorem 25 (Newton’s Theorem on Symmetric Polynomials).If we denote sk = xk
1+xk

2+ · · ·+xk
n,

then:
kσk = s1σk−1−s2σk−2 + · · ·+(−1)ksk−1σ1 +(−1)k+1sk;
sm = σ1sm−1−σ2sm−2 + · · ·+(−1)n−1σnsm−n za m≥ n.

(All the polynomials are in n variables.)

Proof. Direct, for example by using the formula 23.2
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Problem 20. Suppose that complex numbers x1,x2, . . . ,xk satisfy

x j
1 +x j

2+ · · ·+x j
k = n, for j = 1,2, . . . ,k,

where n,k are given positive integers. Prove that

(x−x1)(x−x2) . . . (x−xk) = xk−
(

n
1

)

xk−1 +

(

n
2

)

xk−2−·· ·+(−1)k
(

n
k

)

.

Solution. We are givensk = n for k = 1, . . . ,n. The Newton’s theorem gives usσ1 = n, σ2 =
1
2(nσ1−n) =

(n
2

)

, σ3 = 1
3(nσ2−nσ1 +n) =

(n
3

)

, etc. We prove by induction onk thatσk =
(n

k

)

. If
this holds for 1, . . . ,k−1, we have

σk =
n
k

[(

n
k−1

)

−
(

n
k−2

)

+

(

n
k−3

)

−·· ·
]

.

Since
(n

i

)

=
(n−1

i

)

+
(n−1

i−1

)

, the above equality telescopes toσk = n
k

(n−1
k−1

)

, which is exactly equal to
(n

k

)

. △

8 Problems

1. A monic polynomialf (x) of fourth degree satisfiesf (1) = 10, f (2) = 20 and f (3) = 30.
Determinef (12)+ f (−8).

2. Consider complex polynomialsP(x) = xn + a1xn−1 + · · ·+ an with the zerosx1, . . . ,xn, and
Q(x) = xn + b1xn−1 + · · ·+ bn with the zerosx2

1, . . . ,x
2
n. Prove that ifa1 + a3 + a5 + · · · and

a2 +a4+a6+ · · · are real numbers, thenb1+b2+ · · ·+bn is also real.

3. If a polynomialP with real coefficients satisfies for allx

P(cosx) = P(sinx),

show that there exists a polynomialQ such thatP(x) = Q(x4−x2) for eachx.

4. (a) Prove that for eachn ∈ N there is a polynomialTn with integer coefficients and the
leading coefficient 2n−1 such thatTn(cosx) = cosnx for all x.

(b) Prove that the polynomialsTn satisfyTm+n +Tm−n = 2TmTn for all m,n∈ N, m≥ n.

(c) Prove that the polynomialUn given byUn(2x) = 2Tn(x) also has integer coefficients and
satisfiesUn(x+x−1) = xn +x−n.

The polynomialsTn(x) are known as theChebyshev polynomials.

5. Prove that if cospq π = a is a rational number for somep,q∈ Z, thena∈ {0,± 1
2,±1}.

6. Prove that the maximum in absolute value of any monic real polynomial of n-th degree on
[−1,1] is not less than 1

2n−1 .

7. The polynomialP of n-th degree is such that, for eachi = 0,1, . . . ,n, P(i) equals the remainder
of i modulo 2. EvaluateP(n+1).

8. A polynomialP(x) of n-th degree satisfiesP(i) = 1
i for i = 1,2, . . . ,n+1. FindP(n+2).

9. LetP(x) be a real polynomial.

(a) If P(x) ≥ 0 for all x, show that there exist real polynomialsA(x) and B(x) such that
P(x) = A(x)2 +B(x)2.
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(b) If P(x) ≥ 0 for all x≥ 0, show that there exist real polynomialsA(x) andB(x) such that
P(x) = A(x)2 +xB(x)2.

10. Prove that if the equationQ(x) = ax2 +(c−b)x+(e−d) = 0 has real roots greater than 1,
wherea,b,c,d,e∈ R, then the equationP(x) = ax4 +bx3 +cx2 +dx+e= 0 has at least one
real root.

11. A monic polynomialP with real coefficients satisfies|P(i)| < 1. Prove that there is a root
z= a+bi of P such that(a2 +b2+1)2 < 4b2+1.

12. For what real values ofa does there exist a rational functionf (x) that satisfiesf (x2) = f (x)2−
a? (A rational function is a quotient of two polynomials.)

13. Find all polynomialsP satisfyingP(x2 +1) = P(x)2 +1 for all x.

14. Find allP for whichP(x)2−2 = 2P(2x2−1).

15. If the polynomialsP andQ each have a real root and

P(1+x+Q(x)2) = Q(1+x+P(x)2),

prove thatP≡ Q.

16. Find all polynomialsP(x) with real coefficients satisfying the equality

P(a−b)+P(b−c)+P(c−a)= 2P(a+b+c)

for all triples(a,b,c) of real numbers such thatab+bc+ca= 0. (IMO04-2)

17. A sequence of integers(an)
∞
n=1 has the property thatm−n | am−an for any distinctm,n∈ N.

Suppose that there is a polynomialP(x) such that|an| < P(n) for all n. Show that there exists
a polynomialQ(x) such thatan = Q(n) for all n.

18. Let P(x) be a polynomial of degreen > 1 with integer coefficients and letk be a natural
number. Consider the polynomialQ(x) = P(P(. . .P(P(x)) . . . )), whereP is appliedk times.
Prove that there exist at mostn integerst such thatQ(t) = t. (IMO06-5)

19. If P andQ are monic polynomials such thatP(P(x)) = Q(Q(x)), prove thatP≡ Q.

20. Letm,n anda be natural numbers andp < a−1 a prime number. Prove that the polynomial
f (x) = xm(x−a)n+ p is irreducible.

21. Prove that the polynomialF(x) = (x2 +x)2n
+1 is irreducible for alln∈ N.

22. A polynomialP(x) has the property that for everyy∈ Q there existsx∈ Q such thatP(x) = y.
Prove thatP is a linear polynomial.

23. Let P(x) be a monic polynomial of degreen whose zeros arei − 1, i − 2, . . . , i − n (where
i2 = −1) and letR(x) andS(x) be the real polynomials such thatP(x) = R(x)+ iS(x). Prove
that the polynomialR(x) hasn real zeros.

24. Let a,b,c be natural numbers. Prove that if there exist coprime polynomials P,Q,R with
complex coefficients such that

Pa +Qb = Rc,

then 1
a + 1

b + 1
c > 1.

Corollary: The Last Fermat Theorem for polynomials.

25. Suppose that all zeros of a monic polynomialP(x) with integer coefficients are of module 1.
Prove that there are only finitely many such polynomials of any given degree; hence show that
all its zeros are actually roots of unity, i.e.P(x) | (xn−1)k for some naturaln,k.
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9 Solutions

1. The polynomialf (x)− 10x vanishes at pointsx = 1,2,3, so it is divisible by polynomial
(x−1)(x−2)(x−3). The monicity implies thatf (x)−10x = (x−1)(x−2)(x−3)(x−c) for
somec. Now

f (12)+ f (−8) = 11·10·9 · (12−c)+120+(−9)(−10)(−11)(−8−c)−80= 19840.

2. Note thatQ(x2) = ∏(x2−x2
i ) = ∏(x−xi) ·∏(x+xi) = (−1)nP(x)P(−x). We now have

b1+b2+ · · ·+bn = Q(1)−1 = (−1)nP(1)P(−1)−1= (−1)n(1+B−A)(1+B+A),

whereA = a1 +a3+a5+ · · · andB = a2+a4+ · · · .

3. It follows from the conditions thatP(−sinx) = P(sinx), i.e. P(−t) = P(t) for infinitely many
t, so the polynomialsP(x) andP(−x) coincide. Therefore,P(x) = S(x2) for some polynomial
S. Now S(cos2x) = S(sin2x) for all x, i.e. S(1− t) = S(t) for infinitely manyt, which implies
S(x) ≡ S(1− x). This is equivalent toR(x− 1

2) = R(1
2 − x), i.e. R(y) ≡ R(−y), whereR is

a polynomial such thatS(x) = R(x− 1
2). Now R(x) = T(x2) for some polynomialT, and

thereforeP(x) = S(x2) = R(x2− 1
2) = T(x4−x2 + 1

4) = Q(x4−x2) for some polynomialQ.

4. (a) Clearly,T0(x) = 1 andT1(x) = x satisfy the requirements. Forn> 1 we use induction on
n. Since cos(n+1)x = 2cosxcosnx−cos(n−1)x, we can defineTn+1 = 2T1Tn−Tn−1.
SinceT1Tn andTn−1 are of degreesn+1 andn−1 respectively,Tn+1 is of degreen+1
and has the leading coefficient 2·2n = 2n+1. It also follows from the construction that
all its coefficients are integers.

(b) The relation follows from the identity cos(m+n)x+cos(m−n)x= 2cosmxcosnx.

(c) The sequence of polynomials(Un) satisfiesU0(x) = 2, U1(x) = x andUn+1 = U1Un −
Un−1, implying that eachUn has integer coefficients. The equalityUn(x+x−1)= xn+x−n

holds for eachx = cost + i sint, and therefore it holds for allx.

5. Suppose that cospqπ = a. It follows from the previous problem thatUq(2a) = 2cospπ = ±2,
whereUq is monic with integer coefficients, so 2a is an integer by theorem 14.

6. Note that equality holds for a multiple of then-th Chebyshev polynomialTn(x). The leading
coefficient ofTn equals 2n−1, soCn(x) = 1

2n−1 Tn(x) is a monic polynomial and

|Tn(x)| =
1

2n−1 |cos(narccosx)| ≤ 1
2n−1 zax∈ [−1,1].

Moreover, the values ofTn at points 1,cosπ
n ,cos2π

n , · · · ,cos(n−1)π
n ,−1 are alternately 1

2n−1

and− 1
2n−1 .

Now suppose thatP 6= Tn is a monic polynomial such that max−1≤x≤1 |P(x)| < 1
2n−1 . Then

P(x)−Cn(x) at points 1,cosπ
n , · · · ,cos(n−1)π

n ,−1 alternately takes positive and negative val-
ues. Therefore the polynomialP−Cn has at leastn zeros, namely, at least one in every interval
between two adjacent points. However,P−Cn is a polynomial of degreen−1 as the monomial
xn is canceled, so we have arrived at a contradiction.

7. SinceP[i](x) = (−2)i−1(−1)x for x = 0,1, . . . ,n− i, we have

P(n+1) = P(n)+P[1](n−1)+ · · ·+P[n](0) =

{

2n, 2 ∤ n;
1−2n, 2 | n.
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8. By theorem 20 we have

P(n+2) =
n

∑
i=0

(−1)n−i 1
i +1

(

n+1
i

)

=
1

n+2

n

∑
i=0

(−1)n−i
(

n+2
i +1

)

=

{

0, 2 ∤ n;
2

n+2, 2 | n.

9. By theorem 9, the polynomialP(x) can be factorized as

P(x) = (x−a1)
α1 · · · (x−ak)

αk · (x2−b1x+c1) · · · (x2−bmx+cm), (∗)

whereai ,b j ,c j are real numbers such that theai are different and the polynomialsx2−bix+ci

has no real zeros.

The conditionP(x) ≥ 0 for all x implies that theαi are even, whereas the conditionP(x) ≥ 0
for x ≥ 0 implies that(∀i) αi is even orai < 0. It is now easy to write each factor in(∗) in
the formA2 + B2, respectivelyA2 + xB2, so by the known formula(a2 + γb2)(c2 + γd2) =
(ac+ γbd)2+ γ(ad−bc)2 one can express their productP(x) in the desired form.

10. Write
P(−x) = ax4 +(c−b)x2+(e−d)−b(x3−x2)−d(x−1).

If r is a root of the polynomialQ, we haveP(
√

r) = −(
√

r − 1)(br + d) and P(−√
r) =

(
√

r +1)(br+d). Note that one of the two numbersP(±√
r) positive and the other is negative

(or both are zero). Hence there must be a zero ofP between−√
r and

√
r.

11. Let us writeP(x) = (x−x1) · · · (x−xm)(x2− p1x+q1) · · · (x2− pnx+qn), where the polyno-
mialsx2− pkx+qk have no real zeros. We have

1 > |P(i)| =
m

∏
j=1

|i −x j |
n

∏
k=1

|−1− pki +qk|,

and since|i −x j |2 = 1+x2
j > 1 for all j, we must have|−1− pki +qk| < 1 for somek, i.e.

p2
k +(qk−1)2 < 1. (∗)

Let a±bi be the zeros of the polynomialx2− pkx+qk (and also of the polynomialP). Then
pk = 2a andqk = a2 + b2, so the inequality(∗) becomes 4a2 +(a2 + b2−1)2 < 1, which is
equivalent to the desired inequality.

12. Write f in the form f = P/Q, whereP and Q are coprime polynomials andQ is monic.
Comparing the leading coefficients we conclude thatP is also monic. The condition of the
problem becomesP(x2)/Q(x2) = P(x)2/Q(x)2 − a. SinceP(x2) andQ(x2) are coprime (if
they have a common zero, so doP andQ), it follows thatQ(x2) = Q(x)2 and henceQ(x) = xn

for somen∈ N. Therefore,P(x2) = P(x)2−ax2n.

Let P(x) = a0+a1x+ · · ·+am−1xm−1+xm. Comparing the coefficients ofP(x)2 andP(x2) we
find thatan−1 = · · · = a2m−n+1 = 0, a2m−n = a/2, a1 = · · · = am−1 = 0 anda0 = 1. Clearly,
this is only possible ifa = 0, ora = 2 and 2m−n= 0.

13. SinceP is symmetric with respect to point 0, it is easy to show thatP is also a polynomial
in x2, so there is a polynomialQ such thatP(x) = Q(x2 + 1) or P(x) = xQ(x2 + 1). Then
Q((x2 +1)2 +1) = Q(x2 +1)2−1, respectively(x2 +1)Q((x2 +1)2+1) = x2Q(x2 +1)2+1.
The substitutionx2+1= y yieldsQ(y2+1) = Q(y)2+1, resp.yQ(y2+1) = (y−1)Q(y)2+1.

Suppose thatyQ(y2+1)= (y−1)Q(y)2+1. Settingy= 1 gives usQ(2) = 1. Note that ifa 6= 0
andQ(a) = 1 thenaQ(a2+1) = (a−1)+1, soQ(a2+1) = 1 as well. This leads to an infinite
sequence(an) of points at whichQ takes the value 1, given bya0 = 2 andan+1 = a2

n +1. We
conclude thatQ≡ 1.

We have shown that ifQ 6≡ 1, thenP(x) = Q(x2 + 1). Now we easily come to all solutions:
these are the polynomials of the formT(T(· · · (T(x)) · · · )), whereT(x) = x2 +1.
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14. Let us denoteP(1) = a. We havea2−2a−2 = 0. SinceP(x) = (x−1)P1(x)+a, substituting
in the original equation and simplifying yields(x− 1)P1(x)2 + 2aP1(x) = 4(x+ 1)P1(2x2 −
1). For x = 1 we have 2aP1(1) = 8P1(1), which together witha 6= 4 impliesP1(1) = 0, i.e.
P1(x) = (x−1)P2(x), soP(x) = (x−1)2P2(x)+a. Assume thatP(x) = (x−1)nQ(x)+a, where
Q(1) 6= 0. Again substituting in the original equation and simplifying yields(x−1)nQ(x)2 +
2aQ(x) = 2(2x+ 2)nQ(2x2−1), which implies thatQ(1) = 0, a contradiction. We conclude
thatP(x) = a.

15. At first, note that there existsx = a for whichP(a)2 = Q(a)2. This follows from the fact that,
if p andq are real roots ofP andQ respectively, thenP(p)2−Q(p)2 ≤ 0≤ P(q)2−Q(q)2,
wherebyP2−Q2 is a continuous function. Then we also haveP(b) = Q(b) for b = 1+ a+
P(a)2. Assuming thata is the largest real number withP(a) = Q(a), we come to an immediate
contradiction.

16. LetP(x)= a0+a1x+ · · ·+anxn. For everyx the triple(a,b,c)= (6x,3x,−2x) satisfies the con-
ditionab+bc+ca= 0. The condition inPgives usP(3x)+P(5x)+P(−8x)= 2P(7x) for all x,
so by comparing the coefficients on both sides we obtainK(i) =

(

3i +5i +(−8)i −2 ·7i
)

= 0
wheneverai 6= 0. SinceK(i) is negative for oddi and positive fori = 0 and eveni ≥ 6, ai = 0
is only possible fori = 2 andi = 4. Therefore,P(x) = a2x2 + a4x4 for some real numbers
a2,a4. It is easily verified that all suchP(x) satisfy the conditions.

17. Let d be the degree ofP. There is a unique polynomialQ of degree at mostd such that
Q(k) = ak for k = 1,2, . . . ,d+1. Let us show thatQ(n) = an for all n.

Let n > d + 1. PolynomialQ might not have integral coefficients, so we cannot deduce that
n−m | Q(n)−Q(m), but it certainly has rational coefficients, i.e. there is a natural numberM
for which R(x) = MQ(x) has integral coefficients. By the condition of the problem,M(an−
Q(n))= M(an−ak)−(R(n)−R(k)) is divisible byn−k for eachk= 1,2, . . . ,d+1. Therefore,
for eachn we either havean = Q(n) or

Ln = lcm(n−1,n−2, . . .,n−d−1)≤ M(an−Q(n)) < Cnd

for some constantC independent ofn.

Suppose thatan 6= Q(n) for somen. note thatLn is not less than the product(n−1) · · ·(n−
d−1) divided by the productP of numbers gcd(n− i,n− j) over all pairs(i, j) of different
numbers from{1,2, . . . ,d + 1}. Since gcd(n− i,n− j) ≤ i − j, we haveP≤ 1d2d−1 · · ·d. It
follows that

(n−1)(n−2) · · ·(n−d−1) ≤ PLn < CPnd,

which is false for large enoughn as the left hand side is of degreed+1. Thus,an = Q(n) for
each sufficiently largen, sayn > N.

What happens forn ≤ N? By the condition of the problem,M(an −Q(n)) = M(an − ak)−
(R(n)−R(k)) is divisible by m− n for everym > N, so it must be equal to zero. Hence
an = Q(n) for all n.

18. We have shown in 7 from the text that every sucht satisfiesP(P(t)) = t. If every sucht also
satisfiesP(t) = t, the number of solutions is clearly at most degP= n. Suppose thatP(t1) = t2,
P(t2) = t1, P(t3) = t4 i P(t4) = t3, wheret1 6= t2,3,4. By theorem 10,t1− t3 dividest2− t4 and
vice versa, from which we deduce thatt1− t3 = ±(t2− t4). Assume thatt1− t3 = t2− t4, i.e.
t1 − t2 = t3 − t4 = k 6= 0. Since the relationt1 − t4 = ±(t2 − t3) similarly holds, we obtain
t1 − t3 + k = ±(t1 − t3 − k) which is impossible. Therefore, we must havet1 − t3 = t4 − t2,
which gives usP(t1)+ t1 = P(t3)+ t3 = c for somec. It follows that all integral solutionst of
the equationP(P(t)) = t satisfyP(t)+ t = c, and hence their number does not exceedn.
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19. Suppose thatR= P−Q 6= 0 and that 0< k≤ n−1 is the degree ofR(x). Then

P(P(x))−Q(Q(x)) = [Q(P(x))−Q(Q(x))]+R(P(x)).

Writing Q(x) = xn + · · ·+a1x+a0 yields

Q(P(x))−Q(Q(x)) = [P(x)n−Q(x)n]+ · · ·+a1[P(x)−Q(x)],

where all the summands but the first have a degree at mostn2− n, while the first summand
equalsR(x) ·

(

P(x)n−1 +P(x)n−2Q(x)+ · · ·+Q(x)n−1
)

and has the degreen2−n+k with the
leading coefficientn. Therefore the degree ofQ(P(x))−Q(Q(x)) is n2−n+k. On the other
hand, the degree of the polynomialR(P(x)) equalskn< n2−n+k, from which we conclude
that the differenceP(P(x))−Q(Q(x)) has the degreen2−n+k, a contradiction.

It remains to check the case of a constantR≡ c. Then the conditionP(P(x)) = Q(Q(x))
yields Q(Q(x) + c) = Q(Q(x))− c, so the equalityQ(y+ c) = Q(y)− c holds for infinitely
many values ofy; henceQ(y+c)≡ Q(y)−c which is only possible forc = 0 (to see this, just
compare the coefficients).

20. Suppose thatf (x) = g(x)h(x) for some nonconstant polynomials with integer coefficients.
Since | f (0)| = p, either |g(0)| = 1 or |h(0)| = 1 holds. Assume w.l.o.g. that|g(0)| = 1.
Write g(x) = (x−α1) · · · (x−αk). Then|α1 · · ·αk|= 1. Sincef (αi)− p= αm

i (αi −a)n =−p,
taking the product overi = 1,2, . . . ,k yields |g(a)|n = |(α1 − a) · · · (αk − a)|n = pk. Since
g(a) divides |g(a)h(a)| = p, we must have|g(a)| = p andn = k. However,a must divide
|g(a)−g(0)|= p±1, which is impossible.

21. Suppose thatF = G ·H for some polynomialsG,H with integer coefficients. Let us consider
this equality modulo 2. Since(x2 + x+ 1)2n ≡ F(x) (mod 2), we obtain(x2 + x+ 1)2n

=
g(x)h(x), whereg ≡ G andh ≡ H are polynomials overZ2. The polynomialx2 + x+ 1 is
irreducible overZ2[x], so there exists a natural numberk for which g(x) = (x2 + x+ 1)k and
h(x) = (x2 +x+1)2n−k; of course, these equalities hold inZ2[x] only.

Back inZ[x], these equalities becomeH(x) = (x2 +x+1)2n−k +2V(x) andG(x) = (x2 +x+
1)k +2U(x) for some polynomialsU andV with integer coefficients. Thus,

[(x2 +x+1)k +2U(x)][(x2+x+1)2n−k +2V(x)] = F(x).

Now if we setx = ε = −1+i
√

3
2 in this equality, we obtainU(ε)V(ε) = 1

4F(ε) = 1
2. However,

this is impossible as the polynomialU(x)V(x) has integer coefficients, soU(ε)V(ε) must be
of the forma+bε for somea,b∈ Z (sinceε2 = −1− ε), which is not the case with12.

22. It is clear, for example by theorem 16, thatP must have rational coefficients. For somem∈ N
the coefficients of the polynomialmP(x) are integral. Letp be a prime number not dividingm.
We claim that, ifP is not linear, there is no rational numberx for which P(x) = 1

mp. Namely,
such anx would also satisfyQ(x) = mpP(x)−1= 0. On the other hand, the polynomialQ(x)
is irreducible because so is the polynomialxnQ(1/x) by the Eisenstain criterion; indeed, all the
coefficients ofxnQ(1/x) but the first are divisible byp and the constant term is not divisible
by p2. This proves our claim.

23. DenoteP(x) = Pn(x) = Rn(x)+ iSn(x). We prove by induction onn that all zeros ofPn are
real; moreover, ifx1 > x2 > · · · > xn are the zeros ofRn andy1 > y2 > · · · > yn−1 the zeros of
Rn−1, then

x1 > y1 > x2 > y2 > · · · > xn−1 > yn−1 > xn.

This statement is trivially true forn = 1. Suppose that it is true forn−1.
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SinceRn + iSn = (x− i + n)(Rn−1 + iSn−1), the polynomialsRn andSn satisfy the recurrent
relationsRn = (x+n)Rn−1+Sn−1 andSn = (x+n)Sn−1−Rn−1. This gives us

Rn− (2x+2n−1)Rn−1+[(x+n−1)2+1]Rn−2 = 0.

If z1 > · · ·> zn−2 are the (real) zerosRn−2, by the inductive hypothesis we havezi−1 > yi > zi .
Since the value ofRn−2 is alternately positive and negative on the intervals(z1,+∞), (z2,z1),
etc, it follows that sgnRn−2(yi) = (−1)i−1. Now we conclude from the relationRn(yi) =
−[(x+n−1)2+1]Rn−2(yi) that

sgnRn(yi) = (−1)i,

which means that the polynomialRn has a zero on each of then intervals(y1,+∞), (y2,y1),
. . . , (−∞,yn−1). This finishes the induction.

24. We first prove the following auxiliary statement.

Lemma.If A,B andC are coprime polynomials withA+B= C, then the degree of each of the
polynomialsA,B,C is less than the number of different zeros of the polynomialABC.

Proof. Let

A(x) =
k

∏
i=1

(x− pi)
ai , B(x) =

l

∏
i=1

(x−qi)
bi , C(x) =

m

∏
i=1

(x− r i)
ci .

Let us rewrite the given equality asA(x)/C(x)+B(x)/C(x) = 1 and differentiate it with
respect tox. We obtain

A(x)
C(x)

(

k

∑
i=1

ai

x− pi
−

m

∑
i=1

ci

x− r i

)

= −B(x)
C(x)

(

l

∑
i=1

bi

x−qi
−

m

∑
i=1

ci

x− r i

)

,

from which we see thatA(x)/B(x) can be expressed as a quotient of two polynomials of
degree not exceedingk+ l + m−1. The statement follows from the coprimeness ofA
andB.

Now we apply the Lemma on the polynomialsPa,Qb,Rc. We obtain that each of the numbers
adegP, bdegQ, cdegR is less than degP+degQ+degR, and therefore

1
a

>
degP

degP+degQ+degR
,

etc. Adding these yields the desired inequality.

25. Let us fix degP= n. Let P(x) = (x−z1) · · · (x−zn) = xn+an−1xn−1+ · · ·+a0, where|zi | = 1
for i = 1, . . . ,n. By the Vieta formulas,an−i =±σi(z1, . . . ,zn), which is a sum of

(n
i

)

summands
of modulus 1, and hence|an−i| ≤

(n
i

)

. Therefore, there are at most 2
(m

i

)

+1 possible values of
the coefficient ofP(x) atxn−i for eachi. Thus the number of possible polynomialsP of degree
n is finite.

Now consider the polynomialPr(x) = (x− zr
1) · · · (x− zr

n) for each natural numberr. All
coefficients of polynomialPr are symmetric polynomials inzi with integral coefficients, so by
the theorem 24 they must be integers. Therefore, every polynomialPr satisfies the conditions
of the problem, but there are infinitely manyr ’s and only finitely many such polynomials. We
conclude thatPr(x) = Ps(x) for some distinctr,s∈ N, and the main statement of the problem
follows.


