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1. Introduction 

The theory of elementary algebra and elementary 
geometry was shown to be decidable by Tarski using a 
quantifier elimination technique in the 1930’s [26]. 
Subsquently, Tarski’s decision algorithm was improved 
by others - notably among them Seidenberg [25], Monk 
[23], and Collins [12], and recently by Ben-Or et al [4]. 
These methods are algebraic and are based on translating 
geometry statements into first-order formulae using the 
operations 0, 1, -1, +, *, 2, = of an ordered field with 
variables rangmg over real numbers. Among these 
decision procedures, Collins’s method based on 
cylinderical algebraic decomposition technique is, to our 
knowledge, the only decision procedure implemented so 
far; see [2, 31 for details. 

Gelernter [13] investigated automating geometric 
reasoning using the synthetic approach to geometry. He 
characterized various geometric concepts including 
parallel line, vertical angle, collinear, congruence, 
equilateral triangle etc., by axioms and rules of 
inference. These axioms and rules of inference along 
with geometric construction techniques were used to 
prove some plane geometry theorems; see also [14]. 

Recently, Wu Wenjun [28] has revived interest in 
automated geometry theorem proving by showing how a 
subclass of geometry theorems can be proved using a 
fairly simple and elegant algebraic method. This method 
has been implemented by Wu in China and Chou at the 
University of Texas independently. Both Wu [28, 291 and 
Chou 19, lo] have extensively experimented with the 
method, and have been successful in provin many 
non-trivial theorems in geometry. Chou f 91, in 
particular, has proved over 200 theorems in Euchdean 
and non-Euclidean geometries. 

In Wu’s approach, a geometry statement of the form - 
a finite set of hypotheses implying a conclusion, is 
considered. Hypotheses are polynomials expressing 
geometric relations with a subset of variables as 
parameters, and the conclusion is also a polynomial 
stating a geometric relation to be derived. Unlike Tarski, 
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Seidenberg, Monk, Collins and Ben-Or et al’s methods, 
the variables in Wu’s method range over an algebraically 
closed field. So, Wu considered algebraic geometry 
instead of elementary geometry. 
In Wu’s formulation, proving a geometry formuIa is 
equivalent to the problem of checking whether the set of 
common zeros in an algebraically closed field of the 
hypothesis polynomials is contained in the set of zeros of 
the conclusion polynomial. However, if a given geometry 
formula is found to be not a theorem, Wu showed how to 
find a finite set of polynomial inequations (negations of 
polynomial equations) that rule out some common zeros 
of the hypothesis polynomials such that the remaining 
subset of common zeros of the hypothesis polynomials is 
indeed a subset of the zeros of the conclusion 
polynomial. Such polynomial inequations are called 
non-degenerate conditions by Wu and Chou; they are also 
called subsidiary conditions in this paper. 

Even though for elementary geometry one is interested in 
ensuring that the set of real common zeros of the 
hypothesis polynomials is contained in the set of real 
zeros of a conclusion polynomial, Wu observed that for 
many geometry statements, it often suffices to consider 
the cot%plex zeros instead of the real zeros. If a geometry 
formula is found to be a theorem bv Wu’s aonroach. then 
it is a theorem when interpreted over r&s, but the 
converse does not hold. Wu’s method is not complete in 
Tarski’s sense even for a subclass of geometry theorems 
considered by Wu. It evidentally is a good heuristic for 
deciding geometry statements when interpreted over reals 
since Wu and Chou have been successful in 
automatically proving many non-trivial theorems. 

In this paper, geometry statements in Wu’s sense, 
henceforth called Wu’s geometry, are considered and an 
alternative approach for proving such geometry theorems 
is proposed. This approach is based on Hilbert’s 
Nullstellensatz and is complete in Wu’s sense but is 
incomplete in Tarski’s sense. Unlike Wu’s approach, the 
proposed approach does not use factorization of 
polynomials over successive extension fields of a base 
field, which is generally considered a difficult problem 
(cf. [9], pp. 278-279). Further, we believe that 
subsidiary conditions, which are an integral part of a 
geometry statement, are handled in a natural way in the 
proposed approach. We think that subsidiary conditions 
can be stated a priori in Wu’s approach also, but this, to 
our knowledge, has not be tried by Wu or Chou. 
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In the proposed approach, a geometry statement is 
translated to checking whether a finite set of polynomials 
does not have a common zero, or equivalently, has no 
common solution in an aleebraicallv closed field. Since it 
follows from Hilbert’s %Mlstellensatz that a set of 
polynomials has a common zero if and only if their ideal 
is not the unit ideal, to prove a geometry statement it is 
sufficient to check whether an equivalent finite set of 
polynomials generates the unit ideal. The Gr’dbner basis 
method [5, 6, 7, 8., 181 is used for this check. Kutzler and 
Stifter at Universtty of Linz 
at Univesity of Texas [ll I 

221 and Chou and Schelter 
have also independently 

investigated the use of the Grijbner basis method for 
proving geometry theorems; their works are discussed 
later in the paper. 

This paper is a condensed version of [21]. An interested 
reader may consult [21] for further details and 
explanation, as well as for examples and precise 
statements of geometry theorems considered here. 

2. Wu’s Geometry 

Consider a field k of characteristic zero., for example, the 
field of rationals; let K be an algebrarcally closed field 
containing k [27] 1 Let +, *, 0, 1, 11 be the-operations of 
K. Consider the set of all auantifier-free formulae 
constructed using these operations, the equality predicate 
and boolean connectives, in which the variables range 
over K. Let this language be W, after Wu, and such a 
geometry Wu’s geometry. 

2.1 Wu’s Method 

A geometry statement considered by Wu [28, 301 is of 
the following type: 

Given a finite set of hypotheses expressed as 
polynomials, say { ht, .,., hi }, over k, where 
indeterminates are coordinates of points in a geometry 
statement and some indeterminates are chosen to be 
parameters (also called independent variables whereas the 
remaining indeterminates are called dependent variables), 
determine subsidiary conditions, if any, in the form of 
negations of polynomial equations, under which a given 
conclusion polynomial c vanishes at the zeros in K of 
{ Al* *.-f hi 1. 

Wu developed a method which can be used to derive 
these conditions for a geometry statement. Chou [9, lo] 
further developed Wu’s method and, based on his 
extensive implementation experience with Wu’s method, 
Chou has developed a way to interpret the subsidiary 
conditions geometrically. 

Wu’s method is reported to be complete for an 
algebraically closed field [30]. However, the major 
stumbling block in his method is the need to factorize 
polynomials over successive extension fields of a base 
field in obtaining irreducible triangular form(s) of 
hypothesis polynomials. Chou has developed an 
algorithm for- factoring polynomials in which 
indeterminates have at most denree two T9, 101; he has 
found his factoring algorithm t; be quite adequate and 
efficient for proving plane geometry theorems. Factoring 
arbitrary polynomials over successive extension fields is 
generally considered a difficult problem (cf [9], pp. 
278-279); as a result, theorems which need factorization 
of arbitrary polynomrals over successive extenstion fields 
in Wu’s method are likely to be not easily handled. 

3. Method Based on Hilbert’s Nullstellensatz 

A geometry statement considered in the proposed 
approach is of the following kind: 

v Xl, .--, Xn E K, [[ hl I 0 and . . . and hi = 0 and 

sl#Ound...undsi #O]= [c=O]] (i) 
where h’s are polynomials corresponding to geometry 
relations in the hypothesis of a geometry statement, S’S 
are polynomials corresponding to degenerate cases, and c 
is a polynomial corresponding to a geometry relation 
stated as the conclusion of the geometry statement. Each 
of h’s, s’s, and c are in k[xl, . . . . z,]. 

The problem is to decide whether the formula (i) is a 
theorem or not. This problem is the same as checking 
whether the zeros in K of c include all the zeros of 

{hr, . . . . hi }, on which st , . . . . and si do not vanish. 

Definitions: A polynomial equation p = 0, where p E 
k[Xl. ..-, x, 1, is satisfiable (or consistent or equivalently, p 
has a solution) iff there exist ~1, . .., v, in K such that 
p(x1 +- Vl, . . . . x, + vn), the result of substituting VI, . . . . 
v, for XI, . . . . x,, respectively, in p, evaluates to 0. An 
equation p = 0 is unsatisfiable (or inconsistent) otherwise. 
Similarly, a polynomial inequation p # 0 is satisfiable if 
and only if there exist VI, . .., V, in K such that 
Ph + VI, . . . . x, + vn ) does not evaluate to 0; p # 0 is 
unsatisfiable otherwise. Given a set S of polynomial 
equations and inequations in k[xt. . . . . x, 1. S is satisfiable 
(or consistent or equivalently, S has a common solution) iff 
there exist VI, . . . . v, in K such that for every polynomial 
equationp = 0 in S, p(xt + vi, . . . . X, c vn) evaluates to 
0, and for every polynomial inequation p # 0, p(xi c VI, 
. ..) x, + vn) does not evaluate to 0. The set S is 
unsatisfiable (or inconsistent) otherwise. 

The proof-by-contradiction technique is employed for 
deciding whether the formula (i) is a theorem or not, 
much like the refutational approach used in 
resolution-based theorem proving and equational 
approaches to theorem proving in predicate calculus 
116, 201. It is checked whether the hypotheses including 
the subsidiary conditions and the negation of the 
conclusion together are unsatisfiable. Note that unlike 
Wu’s formulation, there is no need to classify variables 
appearing in a geometry statement into independent 
variables and dependent variables. 

In general, the problem is to decide whether a universally 
quantified formula in language W is a theorem or 
equivalently, whether an existentially quantified formula 
in W is unsatifiable. 

Theorem 1: The satisfiability of any quantifier-free 
formula in the language W is equivalent to the 
satisfiability of a finite set of polynomial equations. 

Proof: This is done by showing how to simulate various 
boolean connectives by introducing new variables [25]. 
The satisfiability of p Z 0 is equivalent to the 
satisfiability of p z - I = 0, where z is a new variable. 
This construction is similar to the one used in the proof 
of Hilbert’s Nullstellensatz [27]. The satisfiability of 
@I = 0 or p2 = 0) is equivalent to the satisfiability of 
p1 p2 = 0, and the satisfiability of ~$1 = 0 and p2 = 0) is 
equivalent to the satisfiability of { pt = 0. p2 = 0 }. From 
these transformations, it is obvious that the satisfiability 
of anv auantifier-free formula involving booIean 
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conneciives’ is equivalent to the satisfiability-of a finite 
set of polynomial equations. (For instaace, convert an 
arbitrary quantifier-free formula into a conjunctive 
normal form, and then use the above transformations to 
obtain a set of polynomial equauons). q 

3.1 A Decision Procedure for W 

Using the above theorem, the problem of deciding the 
satisfiability of a quantifier-free formula in W is 
equivalent to finding whether an equivalent finite set of 
equations has a solution in K. This is a special case of the 

P 
roblem addressed by Hilbert’s Nullstellensatz over K 
27, vol. II, p. 1571. Using Hilbert’s Nullstellensatz, it 

follows that 

Theorem 2: The validity of a geometry statement of the 
form: 
v Xl, . ..I Xn E K, [ [ hl = 0 und . . . und ht = 0 und 

S1 # 0 and ... and Sj # 0] =+ [ c = 0 ]] 
is equivalent to whether the ideal 

(hl, . . . . ht , ~1 ~1 - 1, . . . . Sj zj -I, c zz - I ) is the unit 

ideal, where hi, . . . . hi , ~1, . . . . sj , c E k[xl, . . . . x,], 

and ~1, . . . . zj , zz are distinct variables different from 
Xl, . ..( x,. 

So, the validity of a formula in Wu’s geometry reduces to 
checking whether the ideal generated by an equivalent 
finite set of polynomials is the unit ideal. The problem of 
checking whether an ideal generated by a finite set of 
polynomials is the unit ideal or equivalently whether a 
finite set of polynomials has a common zero in an 
algebraically closed field is known to be decidable and 
co-NP-hard [l]. This gives us a complete decision 
procedure for universally quantified formulae in WU’S 
geometry. Section 4 addresses the problem of checking 
whether a given basis generates the unit ideal. 

3.2 Equivalence of Geometry Statements in Wu’s 
Formulation and our Formulation 

Let Zeros( { fl, . . . . & }) be the set of all common zeros 
in K of fl, . . . . fi ; this set is also called the algebraic 
variety or algebraic manifold defined by { fl, . . . . 4 }. 

A: Given a finite set of hypothesis polynomials { h 1, . . . , hi }, 

and a conclusion polynomial c, are Zeros( { hi, . . ., ht }) E 
zeros( { c } )? 

In our formulation, the same geometry statement is: 

B: Given a finite set of hypothesis polynomials { hl, . . . . ht 1, 
and a conclusion polynomial c, is the following statement 
valid? 
VXl, ‘.., X, E K, [[ hi = 0 and . . . and ht = 0] =+ [ c = 0 I]. 
The validity of this formula is equivalent to the 
unsatisjiubility of ( hl = 0, . . . . hi = 0, c zz = I }, where zz is 
u new variable not appearing in hi, . . ., ht und c, i.e., 

whether Zeros({ hl, . . . . hi , c zz -I }) is empty. 

Theorem 3: Formulations A and B above are equivalent. 

See [21] for a proof. 

Wu and Chou have argued that a geometry statement is 
often valid only if certain degenerate conditions are ruled 
out: such conditions are often not clearly stated but are 

implicit in a problem statement such as certain points 
being distinct, certain points not being collinear, a 
triangle or a circle being non-trivial, etc. Deriving such 
subsidiary conditions under which a geometry statement 
is a theorem, is considered by them as a crucial feature 
of their methods. Consider a geometry problem 
formulation considered by Wu and Chou, which is a 
generalization of the formulation A above. 

A’: Given a finite set of hypothesis polynomials (hr, . . . . hi 1, 

and a conclusion polynomial c, find ~1, . . . . sj , such thut 

( Zeros( { hl, . . . . hi }) - Zeros( { SI , . . . . Sj 1)) !Z 

Zeros( { c I). 

If a geometry statement under consideration is not a 
theorem and if formulation B is used, as is the case in 
the proposed method, the ideal generated by the 
polynomials corresponding to the geometry statement is 
not the unit ideal. Equivalently, the set of hypothesis 
polynomials of a given geometry statement has a 
common zero which is not a zero of the conclusion 
polynomial. In Section 5, a method for examining the 
structure of the ideal generated by the polynomials 
corresponding to the geometry statement is discussed. 
This method is used to obtain subsidiarv conditions such 
that the original geometry statement with these subsidiary 
conditions is then a theorem. 

3.3 Incompleteness of Wu’s Method and the Proposed 
Method in Tarski’s Sense 

As the following example provided by Singer [private 
comm., Sept. 19841 illustrates, both Wu’s method and 
the method discussed in this paper are incomplete in 
Tarski’s sense as they consider complex zeros in contrast 
to Tarski’s method which considers real zeros. 

vx,y,x2+y2=0~[x=Oundy=O]. 

The above formula is a theorem if x and y are assumed 
to range over reals. However, the above is not a theorem 
if x and y are assumed to range over K. If Wu’s method is 
used, the hypothesis polynomial is already in triangular 
form (assuming x > y), and the conclusion polynomials 
cannot be pseudo-divided. The above formula is not a 
theorem by the proposed method either, as the 
polynomials 

x2 + y2 = 0 , (x Zl - I) (y z2 - I) = 0 

do have a common complex zero. However, there is no 
common real zero. 

4. Automated Geometry Theorem Proving 

The validity of a geometry statement in Wu’s geometry is 
equivalent to checking whether the ideal generated by a 
finite set of polynomials is the unit ideal. 

4.1. Checking for the Unit Ideal 

There are many methods for deciding whether a finite set 
of polynomials generates the unit ideal; this is called the 
triviality problem of polynomial ideals in 

t 
11. In this paper, 

the use of the Gr’dbner basis method 5, 6, 7, 8. 181 is 
investigated for this problem. Other methods worth 
investigating are (i) Hermann’s method [lS], (ii) a 
method based on combining elimination, resultants and 
S-polynomials ala Gr’dbner basis [24]. (iii) Wu’s method 
based on triangulation. 
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4.1.1 Factoring is Essential in Wu’s method 

If Wu’s method is to be used for deciding whether an 
ideal generated by a set of polynomials is the unit ideal, 
factor;zation of polynomiais over successive extension 
fields of a base field is essential in the triangulation 
procedure. The need for factorization in Wu’s mkthod is 
illustrated by a following simple example due to 
Narendran [Private communication, Oct. 19851: 

Pl = x2 + 2 x + 1, p2 = (x+1) y2 + x 

It is easy to see that the ideal generated by PI and p2 is 
the unit ideal; this can be tested also using the Grtibner 
basis method. However, the two polynomials are in 
triangular form under the ordering x < y. This shows that 
it is not just sufficient to bring the polynomials in 
triangular form to check whether- a set -of polynomials 
eenerate the unit ideal. The oolvnomial ~1 is factorizable. 
Ke., p1 = (x + 112. So, if ‘the problem. is decomposed 
considering each of the factors (in this case, the two 
factors are identical), one gets ~1’ = (x + I). The 
polynomial ~1’ simplifies ~2, giving 1 as the triangular 
form. 

4.2 Gr’6bner Basis of a Polynomial ideal 

The concept of a Griibner basis was introduced by 
Buchberger [5, 61 for deciding the ideal membership 
problem for polynomial ideals over a field, and other 
related problems. A polynomial is viewed as a rule for 
simplifying other polynomials. Since then, this concept 
has been extensively studied and extended to other 
algebraic structures; see [8, 181 for detaiis. 

Theorem (Buchberger): A Gr’dbner basis of the unit ideal 
must include 1. 

4.3 Using the Grgbner Basis Method for Geometry 
Theorem Proving 

The proposed method is illustrated on a simple example 
due to Mundy which can be done b 
examples, the reader may consult [21 1 

hand. For more 
. 

Example: Given three lines such that AB is perpendicular 
to AC and CD is perpendicular to AC, prove that AB is 
parallel to CD, see Figure 1 below. 

A B 

Ic D 

Figure I. 

Set A = (0, 0), B = (xl, yl), C = (x3, ~3). D = (x2, ~2). 
The hypothesis polynomial equations are: 

1. yl y3 = - xl x3 ... AB is perpendicular to AC 9,) 
2. y3(y2- y3) = -(x2 - x3)x3 ;;; CD is perpendicular to AC 

The subsidiary condition is that points A and C be 
distinct, i.e., x3 # 0 or y3 # 0. By introducing new 
variables zl and 22, the above transforms to 

3. (x3 zl - I) (y3 22 - I) = 0. 
Polynomial equation for the conclusion is 

4. yl (x2 - x3) = xl (y2 - y3) ;;; AB and CD are parallel. 
And, its negation translates, after introducing a new 
variable zzl, to 

5. tyl (x2 - x3) - xl (y2 - y3)) zzl - I = 0. 

The Gr’dbner basis of the above polynomials is 1, which 
implies that under the condition that A and C are distinct 
points, the theorem holds. In [21], some of the steps in 
the computation are illustrated. 

The method used for proving geometry theorems is: 

Method 1: Given hypotheses hi, . . . . hi , degenerate cases 

Sl* .*.9 Sj 9 and a conclusion c : 

1~ Gr’dbner((h1, . . . . hi , ~1 ~1 -I, . . . . sj Zj -1, c ZZ -I), 

Q[Xl, -..9 X, I Z19 3s.9 Zj t ZZl>? 

yes: return theorem 
no: return falsij?able 

end. 
The function Gr’dbner above takes a finite set of 
polynomials and a polynomial ring from which these 
polynomials are taken as arguments, and computes a 
Gr’dbner basis of the ideal specified by the input basis. 
The reader may consult [7, 8, 181 for algorithms for 
computing a Gr’dbner basis. 

Table I. Time Needed to Prove Theorems 

Theorem 

Centroid 
Ceva’s 
Secants 
Equidistant Secants 
Simson 
Pappus 
Square 
Tangent Circle 
Peripheral Angle 
Altitudes 
Desargues 
Nine Point Circle 
Isosceles Midpoint 
Pentagon 
Tetraeder 
Pappus’s Dual 
Quadrangle in R2 
C2;;lygle in R3 

Pascal 
Brahmagupta 
Wang 
Butterfly 

Time (seconds) 

.7 
20.9 
9.6 
.2 

13.7 
3.0 

1:: 
6.5 
.4 

1.2 
12 
6.4 

.05 

2:; 
.45 
.7 
.2 

640 

119: 
25:l 

The above method was used to prove a number of 
geometry theorems including Simson’s theorem, Pascal’s 
theorem, Pappus’s theorem, Desargues’s theorem, 
nine-point circle theorem, butterfly theorem, and 
Gauss’s theorem; see [21] for precise statements of these 
theorems. An imolementation of the Grijbner basis 
algorithm for the blynomial rings over the integers [18] 
and rationals [8 B developed by Richard Harris at 
General Electric Corporate Research and Development, 
was used for this purpose. This implementation 
incorporates optimizations for not considering certain 
critical pairs proposed by Buchberger [7] and Kapur et 
al. [19], and it supports both lexicographic and degree 
ordering on terms. The implementation runs on a 
Symbolics 3640 Lisp machine. The above table gives 
computation times ‘on some representative geometry 
theorems taken from 19. 10. 11. 221. The Grtibner basis 
computation for theseLtheorems’was performed using the 
degree ordering as that was found to be generally much 
faster than the pure lexicographic ordering. 

Based on timings given for some of these theorems in 
[II], it appears that Chou’s implementation of Wu’s 
method is much faster than the proposed method. 
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4.4 Related Work on the Use of the Grobner Bases 
for Geometry Theorem Proving 

Kutzler and Stifter [22] have independently investigated 
the use of the Gr’dbner basis method for geometry 
theorem proving. Their method is based on checking 
whether the conclusion polynomial is in the ideal 
generated by the hypothesis polynomials:; they compute 
the Grobner basis of polynomials over Q&l, . . . . ud), 
where ~1. . . . . Ud are parameters in Wu’s sense. 
Polynomials in ui, . . . . UA , that are needed to be non-zero 
in checking whether thi conclusion polynomial is in the 
ideal of hypothesis polynomials are produced as the 
subsidiary conditions by their method. 

Chou and Schelter [private communication, July 19851 
studied the use of the Gr’dbner basis method for 
checking whether a conclusion polynomial is in the ideal 
generated by hypothesis polynomials in triangular form 
and subsidiary conditions obtained from the triangulation 
method. Recently, Chou and Schelter [l l] have also been 
using a Gr’dbner basis of polynomial ideals over 
Q&I, . . . . Ud) for checking whether the conclusion 
polynomial is in the ideal of hypothesis polynomials 
under certain conditions. Their method also produces 
subsidiary conditions which are polynomials required to 
be non-zero in generating a Gr’dbner basis and 
simplifying a conclusion polynomial. They compared the 
Grijbner basis approach with Wu’s method on 80 
examples and found Wu’s method to be faster than the 
Grii bner basis approach. 

The approaches pursued by Kutzler and Stifter as well as 
Chou and Schelter are based on checking whether a 
conclusion polynomial is in the ideal g:nerated by 
hypothesis polynomials under subsidiary conditions. This 
is a first approximation to checking whether the 
conclusion Dolvnomial is in the radical of the hvDothesis 
polynomial;; however, as shown by their results, even 
this first approximation works on many examples. These 
approaches are incomplete. For completeness, if the 
conclusion polynomial is not in the ideal generated by the 
hypothesis polynomials, one needs to successively 
examine powers of the conclusion polynomial for 
membership. Chou and Schelter have also reported 
results based on an approach very similar to ours, but 
they have not investigated it in detail. 
The check for the triviality of an ideal is a special case of 
the check for the ideal membershio Droblem- The 
theoretical complexity of the ideal membership problem 
is obviously at least as much as the theoretical 
complexity -of the triviality problem. Further, if a 
Dolvnomial I, simDlifies to 0 usine a basis. then using the 
‘sake basis-and using at most &e more reduction: the 
polynomial p z - 1, where z does not appear in p, reduces 
to -1. Thus. a suitable imulementation of the trivialitv 
check should be at least as fast as the membership check 
for ideals. This along with the fact that the method based 
on Hilbert’s Nullstellensatz is complete for Wu’s 
geometry are our reasons for investigating the proposed 
approach. 

5. Deducing Subsidiary Conditions 

In case a geometry statement is not a theorem, it is 
possible, just like in Wu’s approach, to derive using the 
proposed approach, the subsidiary conditions such that if 
they are included as part of the original geometry 
statement, it becomes a theorem. Although the proposed 
approach is quite inefficient as compared to Wu’s 
approach, subsidiary conditions found using it are often 

simpler and weaker than the ones reported using Wu’s 
method [9] or those reported in [ll] and [22] using the 
Gr’dbner basis approach. 

For instance, for the example discussed in Section 4, if a 
Gr’dbner basis of the hvDothesis Dolvnomials and the 
polynomial corresponding to the negation of the 
conclusion is computed without the subsidiary condition, 
the result does not include 1. Instead,. there~ appear x3, 
v3. and other Dolvnomials in the Grobner basis. This 
&plies that the -hypothesis polynomials indeed have 
common zeros which are not zeros of the conclusion 
polynomial; these zeros are x3 = 0, y3 = 0, and suitably 
chosen values of the remaining varibles. Further, these 
zeros are real zeros, suggestyng that the above is a 
theorem only when such zeros are ruled out, i.e., when 
x3 # 0 or y3 # 0, which is the condition that A and C are 
distinct points thus making AC indeed determine a line. 

In contrast, if Wu’s method is used for this example, we 
obtain stronger conditions. If we partition the variables 
such that yl and y2 are dependent variables, then the 
hypothesis polynomials are already in triangular form. 
The conclusion polynomial can be pseudo-divided to 0 
under the condition that y3 # 0. This condition is 
sufficient as imposing this condition would make points A 
and C distinct. However it is too strong. If instead, we 
choose xl and x2 as dependent variables, then again, the 
hypothesis polynomials are still in triangular form with 
resDect to this choice of variables. The conclusion c-- 
polynomial can be pseudo-divided to 0 under the 
condition that x3 # 0, which is still too strong. 

If any of the approaches in [ll, 221 based on computing 
Gr’dbner basis on Q(u1, . . . . Ud) is used, the conditions 
obtained are too strong then also. For instance, the two 
hypothesis polynomials of the example above constitute a 
Gr’dbner basis over Q(x3, y3, xl, x2); the conclusion 
polynomial simplifies to 0 under the condition that y3 # 
0, which is stronger than the condition that points A and 
C be distinct. Similarly, the two hypothesis polynomials 
of the example above constitute a Grijbner basis over 
Q(x3, y3, yl, ~2); the conclusion polynomial simplifies to 
0 under the condition that x3 # 0. 

For Pappus’s theorem (example 3 in [9]), when a 
Gr’dbner basis is computed of the hypothesis polynomials 
along with the polynomial corresponding to the negation 
of the conclusion without the subsidiary conditions, the 
result includes 

xl x4, x2 x5, x3 x6, xl x2 x3, x4 x5 x6 
as polynomials, among others. The subsidiary condition 
under -which the theoFern holds is a disjunction of the 
followine conditions: (il xl x4 # 0. i.e.. Doints Al and Bl 
are distiict, (ii) x2 xi ‘# 0, i.e:, Ai anb’B2 are distinct, 
(iii) x3 x6 # 0, i.e., A3 and B3 are distinct, (iv) xl x2 x3 
# 0, i.e., neither of AI, A2, and A3 is the point of 
intersection of lines AIA2A3 and BIB2B3, (v) x4 x5 x6 # 
0, i.e., neither of BI, B2 and 83 is the point of 
intersection of lines AIA2A3 and BlB2B3. For the square 
exampIe, (example 4 in [9]), the condition found by this 
method is simply that the square have a non-zero side. 
For the triangle altitudes theorem (example 5 in [9]), the 
subsidiary condition found is x3 # 0. 

Geometry problems considered in this case have the 
following structure: 

Given a consistent set of hypotheses {ht = 0, . . . . hi = 0 }, 
and a conclusion c 
such that 

= 0 such that c e k, find s’s, if any, 
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(0 V-xl, . . . . X, E K, [ [ hl = 0 and ... and hi = 0] - 

t Sl = 0 or . . . or Sj = 0 ] 1, is not a theorem, and 

(ii) vxt, . . . . -h E K, [[ hl = 0 and . . . and hi = 0 and 

~1 # 0 and . . . and Sj # 0] z+ [C = O]], 

is a theorem or equivalently, 
Zeros( { hl, . . . . hi , ~1 ZJ - 1, . . . . sj zj -I, c zz -I }) is 

empty. 
If for a given geometry problem, a Grobner basis of the 
ideal (hl, . . . . hi , c zz -I) does not include 1, which 

implies that c e Radical(ht, . . . . hi ), the radical ideal of 

(hr, . . . . hi ), then any polynomial p E k[xl, . . . . x,] from 
the Gr’d bner basis such that p is not a consequence of the 
hypotheses (i.e., p 4 Radical(ht, ,.., hi )), is a candidate 
for stating degenerate cases which must be avoided for 
the theorem to hold. One can pick a ‘simplest’ such 
candidate (in fact, a set of polynomials) from the 
Gr‘dbner basis for this purpose. 

The following theorem serves as the basis of this 
approach (Method 2 below) for deducing degenerate 
cases. 

Theorem 4: Let { hi = 0, . . . . hi = 0 } be a consistent set 
of hypotheses, and c = 0 where c 4 k, be a conclusion, 
such that there is a polynomial p E k[xl , . . . . X, ] and 
p @ Radical(ht, . . . . hi ) but p c E Radical(ht, . . . . hi ). 

Let GB be a Gr’dbner basis of (ht , . . . . hi , c zz -1) under 
a lexicographic ordering on terms in which zz > other 
variables, where zz is an indeterminate different from 
Xl, . ..( x,. Then there exists a polynomial q E GB not 
involving zz such that 

(i) q e Radical(hl, . . . . ht ), 

(ii) s1 , . . . . Sj are the irreducible factors of q, and 

(iii) q c E Radical(h 1, . . . , hi ) , thus implying 

v Xl, . . . . x, E K, [[ hi = 0 and . . . and hi = 0 and 

~1 # 0 and . . . and Sj # 0] --j [C = O]]. 

Theorem 4 holds even if p in its statement is restricted to 
be in k[xl, . . . . n,], where { nt, . . . . x, } is a subset of 
1 Xl, . . . . JG 1. 

Proof: Let J = (hi, . . . . h; , c zz -1) and 
J’ = J n k[xt. . . . . x, ]. Since there is a polynomial p E 
k[xl, . . . . zn] such that p c E Radical(ht, . . . . hi ), for 

some m, @ c)~ E (hl, . . . . hi ). It is easy to see that 

pm E J’ since pm = ( p c ZZ)~ - pm ((c ZZ)~ - 1). So, 

pm reduces to 0 using polynomials not involving zz in 
GB. There is at least one polynomial among them which 
is not in Radical(ht, . . . . hi ), as otherwise p E 

Radical(hr, . . . . hi ) leading to a contradiction. Call that 
q. The rest of the proof follows. 0 

The proposed method is thus complete for deriving 
subsidiary conditions also in case a gtven geometry 
statement is not a theorem. 

Method 2: Given hypotheses hl , .,, hi , and a conclusion 
c satisfying conditions of Theorem 4: 

{ g1, *.., gm} := Griibner({ hl, . . . . ht , c zz -I}, 

Qbr, . . . . %a, 4); 
if gj = 1 then return theorem: no condition needed 

else repeat from v = 1 to m 

if g, E Qh, -., x,] and g, 4: {hi, . . . . ht } then 

if 1 $ Grijbner({ hi, . . . . hi , g, zz -l}, 

Qtxl, . ..t x,, ~4) 
then theorem under condition g, # 0; 

end repeat; 

end; 

The function Gr’d bner above is assumed to return 
polynomials in a Gr’dbner basis in ascending order using 
the lexicographic ordering on terms. 

A polynomial selected from a Grijbner basis to state a 
degenerate case gives a disjunction of polynomial 
equations, each corresponding to an irreducible factor of 
the polynomial g, above. The above method can be 
easily modified to select in general a set of polynomials 
from a Gr’dbner basis instead of a single polynomial; 
then the conjunction of the formulae corresponding to the 
polynomials in this set is the degenerate case. Thus in 
general, this method gives a conjunction of disjunctions 
of polynomial equations as a degenerate case. In 
there are two types of degenerate cases found: i) those P 

eneral, 

corresponding to geometrically degenerate cases, and (ii} 
those expressing common complex zeros of the 
hypotheses which are not zeros of the conclusion. 
Developing a good method to distinguish between these 
two types of degenerate cases is an interesting open 
research problem. 

Conditions thus obtained are usually simpler and weaker 
than those obtained using Wu’s method because for a 
fixed classification of variables into independent and 
dependent variables, there exist many triangulation 
forms and different triangulation forms give rise to 
different subsidiary conditions. Further, variables can be 
classified into independent and dependent variables in 
more than one way. As discussed above about the 
example, different choice led to different subsidiary 
condition. In contrast to this, a reduced (minimai) 
Gr’dbner basis of an ideal is uniaue once an ordering on 
polynomial terms is fixed [8]; ail the information about 
the degenerate cases is available from the Gr’dbner basis. 
Conditions derived by the proposed method are also 
simpler and weaker than those obtained using 
approaches discussed in [ll, 221 because if a conclusion 
polynomial or its power is a member of an ideal 
generated by the hypothesis polynomials, there is usually 
more than one way to simplify that polynomial to zero 
with respect to its Gr’dbner basis. One sequence of 
simplifications of a polynomial with respect to its 
Gr’dbner basis may lead to simpler conditions as 
compared to another sequence of simplifications with 
respect to the same Grtibner basis. The weakest 
condition in this way is the disjunction of conditions 
obtained for every simplification sequence. 

In [21], a table is given with computation times for 
deducing subsidiary conditions for most geometry 
problems of Table I above, along with an English 
description of the subsidiary conditions. The table is not 
reproduced here because of lack of space. 
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:a;~ observed in pract!ce that co?puting a Gr’dbner 
wlthout subsidlarv condltlons is hiehlv 

time-consuming on big examples. For all examgei, 
deducing subsidiary conditions took more time than 
proving a geometry theorem when subsidiary conditions 
were stated as part of the input. For examples such as 
the butterfly theorem, Pascal Theorem, their Gr’dbner 
bases could not be computed without subsidiary 
conditions in a reasonable amount of time. 
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