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Preface

These notes started in the summer of 1993 when | was teachinthdl Theory at the Center for Talented Youth Summer
Program at the Johns Hopkins University. The pupils werasbeh 13 and 16 years of age.

The purpose of the course was to familiarise the pupils wattitest-type problem solving. Thus the majority of the prob-
lems are taken from well-known competitions:

AHSME American High School Mathematics Examination
AIME American Invitational Mathematics Examination
USAMO United States Mathematical Olympiad

IMO International Mathematical Olympiad

ITT International Tournament of Towns

MMPC Michigan Mathematics Prize Competition

(UM)? University of Michigan Mathematics Competition
STANFORD Stanford Mathematics Competition

MANDELBROT Mandelbrot Competition

Firstly, I would like to thank the pioneers in that coursentsi@l Chong, Nikhil Garg, Matthew Harris, Ryan Hoegg, Masha
Sapper, Andrew Trister, Nathaniel Wise and Andrew Wong. ild@lso like to thank the victims of the summer 1994: Karen
Acquista, Howard Bernstein, Geoffrey Cook, Hobart Lee HdatLutchansky, David Ripley, Eduardo Rozo, and Victor Yang

| would like to thank Eric Friedman for helping me with the iiyg, and Carlos Murillo for proofreading the notes.

Due to time constraints, these notes are rather sketchyt Mdbe motivation was done in the classroom, in the notes
| presented a rather terse account of the solutions. | hope stay to be able to give more coherence to these notes. No
theme requires the knowledge of Calculus here, but someecfdhutions given use it here and there. The reader not kigowin
Calculus can skip these problems. Since the material iedearHigh School students (talented ones, though) | assenye v
little mathematical knowledge beyond Algebra and Trigoetyn Here and there some of the problems might use certain
properties of the complex numbers.

A note on the topic selection. | tried to cover most Numberdrizgghat is useful in contests. | also wrote notes (which |
have not transcribed) dealing with primitive roots, quéidreeciprocity, diophantine equations, and the geomeftryumbers.
| shall finish writing them when laziness leaves my weary soul

| would be very glad to hear any comments, and please forwardmy corrections or remarks on the material herein.

David A. SANTOS
dsantos@ccp.edu
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or later (the latest version is presently available at

http://www.opencontent.org/openpub/ .

THIS WORK IS LICENSED AND PROVIDED “AS I1S” WITHOUT WARRANTY OFANY KIND, EXPRESS OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE OR A WARRANTY OF NON-INFRINGEMENT.

THIS DOCUMENT MAY NOT BE SOLD FOR PROFIT OR INCORPORATED INTOOMMERCIAL DOCUMENTS
WITHOUT EXPRESS PERMISSION FROM THE AUTHOR(S). THIS DOCUMENMAY BE FREELY DISTRIBUTED
PROVIDED THE NAME OF THE ORIGINAL AUTHOR(S) IS(ARE) KEPT ANCANY CHANGES TO IT NOTED.



Chapter

Preliminaries

1.1 Introduction

We can say that no history of mankind would ever be complethowt a history of Mathematics. For ages numbers have
fascinated Man, who has been drawn to them either for thiityuat solving practical problems (like those of measgrin
counting sheep, etc.) or as a fountain of solace.

Number Theory is one of the oldest and most beautiful bresmoh&athematics. It abounds in problems that yet simple to
state, are very hard to solve. Some number-theoretic prabtbat are yet unsolved are:

1. (Goldbach’s Conjecture) Is every even integer greatar ththe sum of distinct primes?
2. (Twin Prime Problem) Are there infinitely many primgsuch thatp+ 2 is also a prime?
3. Are there infinitely many primes that are 1 more than thesgjof an integer?

4. |s there always a prime between two consecutive squaiaggers?

In this chapter we cover some preliminary tools we need leeganbarking into the core of Number Theory.

1.2 Well-Ordering

The setN = {0,1,2,3,4,...} of natural numbers is endowed with two operations, addiiod multiplication, that satisfy the
following properties for natural numbeasb, andc:

1. Closure: a+b andabare also natural numbers.

2. Associativelaws: (a+b)+c=a+ (b+c) anda(bc) = (ab)c.
3. Distributivelaw: a(b+c) =ab+ac.

4. Additive ldentity: 0O+a=a+0=a

5. Multiplicative | dentity: la=al=a.

One further property of the natural numbers is the following
1 Axiom (Well-Ordering Axiom)  Every non-empty subse¥’ of the natural numbers has a least element.
As an example of the use of the Well-Ordering Axiom, let usvprthat there is no integer between 0 and 1.

2 Example Prove that there is no integer in the interl@lL[.
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Solution: Assume to the contrary that the sétof integers in]0;1[ is non-empty. Being a set of positive integers, it must
contain a least element, say Now, 0< n? < m< 1, and son? € .. But this is saying that” has a positive integem’
which is smaller than its least positive integerThis is a contradiction and s@ = .

We denote the set of all integers Byi.e.,

Z=1{.—-3-2-10123,...}

. . . . a .
A rational number is a number which can be expressed as tioe-raif two integersa, b, whereb # 0. We denote the set of

rational numbers b§). An irrational number is a number which cannot be expressed as the ratio of twoergeget us give
an example of an irrational number.

3 Example Prove that/2 is irrational.

a

Solution: The proof is by contradiction. Suppose th@ were rational, i.e., thay2 = b

that the set

for some integers, b. This implies

</ = {nv/2: bothn andnv/2 positive integers
is nonempty since it contaires By Well-Ordering« has a smallest element, spy- kv/2. Asv/2—1> 0,
j(V2-1) = jv2—kv2=(j—kV2
is a positive integer. Since2 2v/2 implies 2—v/2 < v/2 and alsgjv/'2 = 2k, we see that
(j—kV2=k(2—Vv2) <k(V2) =].
Thus(j—k)Vv2 is a positive integer in7 which is smaller tharj. This contradicts the choice gfas the smallest integer i

and hence, finishes the proof.

4 Example Leta,b,c be integers such thaf +2b® = 4c8. Show tham=b=c=0.

Solution: Clearly we can restrict ourselves to nonnegativebers. Choose a triplet of nonnegative integebsc satisfying
this equation and with
max(a,b,c) >0

as small as possible. #° + 2b% = 4c® thena must be evena = 2a;. This leads to 3& +b® = 2c5. Henceb = 2b; and so
1688 + 3208 = c®. This givesc = 2c;, and soa + 2b§ = 4c8. But clearly maxay, b1, c1) < maxa,b,c). This means that all of
these must be zero.

22 212
e as+bs . . ac+b- .
5 Example (IMO 1988) If a,b are positive integers such th?t—jab is an integer, theF%l :—ab is a perfect square.

2 | 12
. a-+b . . L .
Solution: Suppose thaﬁ =k is a counterexample of an integer which is not a perfect sgueith maxa, b) as small as

possible. We may assume without loss of generality ahatb for if a= b then

232

O<k=———
< ¥+1<

2,
which forcesk = 1, a perfect square.
Now, a® + b? — k(ab+ 1) = 0 is a quadratic ifb with sum of the rootska and product of the roota® — k. Let by, b be its
roots, sab; + b =kaandbb = a?—k.
As a k are positive integers, supposilig < 0 is incompatible witha® + b? = k(ab; + 1). As k is not a perfect square,
supposingy; = 0 is incompatible witha? + 0% = k(0-a+1). Also
a®—k b?—k

by = b < b <h.
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2 2
i:att))i =k and which is smaller than the smallest rf&). This

is a contradiction. It must be the case, then, kata perfect square.

Thus we have found another positive integeifor which

Practice

6 Problem Find all integer solutions ad®+ 2b* = 4c. 7 Problem  Prove that the equality? +y?+Z° = 2xyzcan hold
for whole numbers,y, zonly whenx=y=2z=0.

1.3 Mathematical Induction

The Principle of Mathematical Induction is based on theofelhg fairly intuitive observation. Suppose that we are éofprm
a task that involves a certain number of steps. Supposehbsg tsteps must be followed in strict numerical order. Binal
suppose that we know how to perform tih task provided we have accomplished the 1-th task. Thus if we are ever able
to start the job (that is, if we have a base case), then we dlbeudhble to finish it (because starting with the base case we go
the next case, and then to the case following that, etc.).

Thus in the Principle of Mathematical Induction, we try taifiethat some assertioR(n) concerning natural numbers is
true for some base cagg (usuallyko = 1, but one of the examples below shows that we may takeksay33.) Then we try
to settle whether information dA(n— 1) leads to favourable information d#(n).

We will now derive the Principle of Mathematical Inductiaom the Well-Ordering Axiom.

8 Theorem (Principle of Mathematical Induction) If a set? of non-negative integers contains the integer 0, and alse co
tains the integen+ 1 whenever it contains the integerthen.” = N.

Proof: Assume this is not the case and so, by the Well-Ordering Ptathere exists a least positive integer k
not in.. Observe that k> 0, since0 € S and there is no positive integer smaller tharAs k— 1 < k, we see that
k—1e€ .. But by assumptionk 1+ 1 is also in.#, since the successor of each element in the set is also in the
set. Hence k= k— 1+ 1is also in the set, a contradiction. Thuwg = N. [

The following versions of the Principle of Mathematical lration should now be obvious.

9 Corollary If a setos of positive integers contains the integeand also contains+ 1 whenever it contains, wheren > m,
then« contains all the positive integers greater than or equal. to

10 Corollary (Principle of Strong Mathematical Induction) If a sete? of positive integers contains the integarand also
containsn+ 1 whenever it containgy+ 1, m+2, ..., n, wheren > m, then«/ contains all the positive integers greater than or
equal tom.

We shall now give some examples of the use of induction.

11 Example Prove that the expression
3PS _26n—27
is a multiple of 169 for all natural numbens
Solution: Fom = 1 we are asserting thaf 3- 53 = 676= 169- 4 is divisible by 169, which is evident. Assume the asselion

true forn—1 n> 1, i.e., assume that
3N _26n—1=16N

for some integeN. Then

3¥+3_26n—27=27.3"—26n—27=27(3""—26n—1) + 676n
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which reduces to
27-169N+169-4n,

which is divisible by 169. The assertion is thus establidethduction.
12 Example Prove that
(1+V2)*"+(1—-V2)™

is an even integer and that

(1+vV2)2—(1—vV2) =bv2

for some positive integer b, for all integars> 1.

Solution: We proceed by induction en Let P(n) be the proposition: (14 v/2)2"+ (1—v/2)"is even and 1+ v/2)2"— (1—
V/2)>" = by/2 for someb € N.” If n= 1, then we see that

(1+v2)%24 (1—V2)2 =8,

an even integer, and

(1+V2)?2—(1—V2)2=4V2.

ThereforeP(1) is true. Assume thd(n—1) is true forn > 1, i.e., assume that
(1+ ﬁ)Z(nfl) + (1_\@)2“171] —2N

for some integeN and that

(L+V22NY - (1 V22D —ay2

for some positive integea.
Consider now the quantity

(1+V2)+(1-V2)" = (14 V22 (1+ V2" 2+ (1-V2)*(1- V22

This simplifies to

(342V2)(1+v2)2"2 4 (3—2V2)(1—2)22.

UsingP(n— 1), the above simplifies to
12N +2v/2av/2 = 2(6N + 2a),

an even integer and similarly
(14+Vv2)2"— (1—v2)?" = 3av/2+ 2V/2(2N) = (3a+4N)V/2,

and soP(n) is true. The assertion is thus established by induction.

13 Example Prove that ifk is odd, then 2" divides
K" —1

for all natural numbers.

Solution: The statement is evident foe= 1, ask? — 1 = (k— 1)(k+ 1) is divisible by 8 for any odd natural numblebecause
both (k—1) and(k+ 1) are divisible by 2 and one of them is divisible by 4. Assume ﬂ'fé2|k2n —1, and let us prove that
232 1 As k2T -1 = (K2 — 1)(K¥" + 1), we see that®2 divides (k" — 1), so the problem reduces to proving that
2|(K*"+1). This is obviously true sinck”” odd make®" + 1 even.
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14 Example (USAMO 1978) An integern will be calledgoodif we can write
n=a+a+:--+a,

whereay, ay, . .., 8 are positive integers (not necessarily distinct) satigfyi

1 1 1
4+ =44+ = =1
a @ ak

Given the information that the integers 33 through 73 aralgpmve that every integer 33 is good.

Solution: We first prove that ifi is good, then 8+ 8 and 21+ 9 are good. For assume thet a3 +a + - - - + ax, and

11 1
I==F 4 4=
a @ 2
Then 2+ 8= 2a; + 28, + - +2ax+4+4 and
11 1 11 1 1 1

2a 28 2a a4 27272
Also, 2n+9=2a;+2a,+---+2ax+3+6 and

i+i+ +i+}+}f}+}+}fl
2a; 2a 2 3 6 2 3 6
Therefore,
if nis good both B+ 8 and 2+ 9 are good (1.2)

We now establish the truth of the assertion of the problemmbudtion onn. Let P(n) be the proposition “all the integers
nn+1,n+2,...,2n+ 7" are good. By the statement of the problem, we seeR@8) is true. But (.1) implies the truth of
P(n+ 1) wheneverP(n) is true. The assertion is thus proved by induction.

We now present a variant of the Principle of Mathematicalubttbn used by Cauchy to prove the Arithmetic-Mean-
Geometric Mean Inequality. It consists in proving a statettfiest for powers of 2 and then interpolating between povedérs
2.

15 Theorem (Arithmetic-Mean-Geometric-Mean Inequality) Letas,ay,...,a be nonnegative real numbers. Then

& +a+--+an
- :

vaidz:--an <

Proof: Since the square of any real number is nonnegative, we have

(VXL—/%2)? > 0.
Upon expanding, @ x
oz Vak, (1.2)

which is the Arithmetic-Mean-Geometric-Mean Inequalityrf = 2. Assume that the Arithmetic-Mean-Geometric-
Mean Inequality holds true for & 2k*1,k > 2, that is, assume that nonnegative real numbersmy, ..., W1

satisfy
W1 +W2 + -+ Wok—1
2k—l

> (WoWa- W 1) Y2 (1.3)

Using (L.2) with
Y1ty Yk
- 2k—1

X1

and

- yzk—l+1+' "+y2k
X2 = 2k71 )
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we obtain that

VYi+Yo+- o +Yok1  Yok-1iq+ Yok
2k—1 + 2k—1
>
2 =

((y1+yz+~-+y2k-1 (Y2t toHY )>1/2
2k—1 2k—1 :

Applying (L.3) to both factors on the right hand side of the above , we obtain

yl+y2‘|'k"'+ka > (

5 Y1y2 -+ 'sz)l/zk ) (1.4)

This means that the*~1-th step implies th&*-th step, and so we have proved the Arithmetic-Mean-Geametr
Mean Inequality for powers of 2.

Now, assume tha1 < n < 2% Let
Yi=a,Y2=az,...,¥Yn=2an,

and ata+---+an
L tagt
Yn+1ZYn+2="'=y2k=—n :
Let at---+
A= & AndG = (ag---an) ",

Using (1.4) we obtain

a1—|—a2-|-..._|_an_|_(2k_n)17an
2K >
art - +an g\ Y
(alaz...an(lf)(z n)) ,
which is to say that
nAH;%n)A > (GNAT V2,
This translates into A> G or
(arap---an)" < i+t +an

n
which is what we wanted.

16 Example Letsbe a positive integer. Prove that every interigis| contains a power of.2

Solution: Ifsis a power of 2, then there is nothing to proves|§ not a power of 2 then it must lie between two consecutive
powers of 2, i.e., there is an integefor which 2 < s< 2'*1. This yields 27* < 2s. Hences < 21 < 2s, which gives the
required result.

17 Example Let.# be a nonempty set of positive integers such thaadd[\/X] both belong ta# wheneveix does. Prove
that.# is the set of all natural numbers.

Solution: We will prove this by induction. First we will prewvthat 1 belongs to the set, secondly we will prove that evewep
of 2 is in the set and finally we will prove that non-powers ofr@ also in the set.

Since.# is a nonempty set of positive integers, it has a least elersapa. By assumptiori| \/a|| also belongs to#, but
v/a< aunlessa= 1. This means that 1 belongs.i#'.

Since 1 belongs to# so does 4, since 4 belongs.# so does 44 = 42, etc.. In this way we obtain that all numbers of
the form 4 = 22" n=1,2,... belong to.#. Thus all the powers of 2 raised to an even power belong/toSince the square
roots belong as well to# we get that all the powers of 2 raised to an odd power also fdlorv7 . In conclusion, all powers
of 2 belong taz.
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Assume now thah € N fails to belong to.#. Observe thah cannot be a power of 2. SineceZ M we deduce that
no integer inA; = [n?, (n+ 1)?) belongs to.#, because every member i A satisfies[,/y] = n. Similarly no member
ze Ay = [n*, (n+1)*) belongs ta since this would entail thatwould belong toA;, a contradiction. By induction we can
show that no member in the inter&! = [n? , (n+1)? ) belongs to.

We will now show that eventually these intervals are so léngéthey contain a power of 2, thereby obtaining a conttamtic
to the hypothesis that no element of thebelonged to#. The function
R},

X —>

R
log, x

—

f:

is increasing and hence lglgn+ 1) —log,n > 0. Since the function

£ R — Ri
X > 2%
is decreasing, for a sufficiently large positive integere have
27K <log,(n+1) —log,n.

This implies that
(n+1)% > 2n?

Thus the interva[n2k72n2k] is totally contained ir{nzk, (n+ 1)2k). But every interval of the fornfs, 25 wheres is a positive
integer contains a power of 2. We have thus obtained theatbsantradiction.

Practice

22 Problem Let a; = 3,b; = 4, anda, = 3%1,b, = 41
whenn > 1. Prove thatiggg > bgge.

18 Problem  Prove that 1172+ 122" is divisible by 133 for
all natural numbers.

19 Problem Prove that

X  X(x—1)
R TR

X(x—1)(x—2)

3!
aX(X—=1)(x—=2)--- (x—n+1)
n!

(1)

equals
(x—1)(x—2)---(x—n)

n!

(="

for all non-negative integers

20 Problem Letn e N. Prove the inequality

1 1

nelnp2 T

T o1
N+l

21 Problem Prove that

\\/2+\/2+---+\f%=20032n—711

~
n radical signs

forne N.

23 Problem Letne N,n> 1. Prove that

1-3-5---(2n—1)< 1
2-4.6---(2n) V3n+1

24 Problem Prove that if n is a natural number, then

1.24+2-5+---+n-(3n—1) =n’(n+1).

25 Problem Prove that if n is a natural number, then
n(4n?—1
F+§+§+M+Qmﬂﬁzl—?—L
26 Problem Prove that
4qn
n+1

(2n)!
(n)2

for all natural numbera > 1.

27 Problem Prove that the sum of the cubes of three consec-

utive positive integers is divisible by 9.
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28 Problem If |x| # 1,n € N prove that

8 e n
14+x8 1+x2"

1
14X

2
14-x2

4
14x2

equals
1 2n+1
X— 1 + l_X2n+1 N

29 Problem Is it true that for every natural number n t
quantityn? 4+ n+41 is a prime? Prove or disprove!

30 Problem Give an example of an assertion whicimigtrue
for any positive integer, yet for which the induction stepdso

31 Problem Give an example of an assertion which is true
the first two million positive integers but fails for eventéger
greater than 2000000.

32 Problem Prove by induction om that a set having n ele
ments has exactly"Xsubsets.

33 Problem Prove that ifnis a natural number,
n°/5+n*/2+n%/3—n/30

is always an integer.

34 Problem (Halmos) ) Every man in a village knows in
stantly when another’s wife is unfaithful, but never whea
own is. Each man is completely intelligent and knows that
ery other man is. The law of the village demands that w|
a man can PROVE that his wife has been unfaithful, he n
shoot her before sundown the same day. Every man is

pletely law-abiding. One day the mayor announces that t
is at least one unfaithful wife in the village. The mayor ajaa
tells the truth, and every man believes him. If in fact th
are exactly forty unfaithful wives in the village (but thaict
is not known to the men,) what will happen after the may
announcement?

h

S

35 Problem
with

1. Letay,ay,...a, be positive real numbern
a-ap---an=1
Use induction to prove that
artag+---+an>n,
with equality ifand only ifag =ap =--- =ay,=1.

2. Use the preceding part to give another proof of
Arithmetic-Mean-Geometric-Mean Inequality.

for

hi
ev-

hust
om-
here

DI'S

the

. Prove that ih > 1, then

1.3.5---(2n—1) < n".

. Prove that ih > 1 then

1 1
n_ T4z
n((n+1)Yn—1) L4+

. Prove that ih > 1 then

e

LI
n-+1)1/n

1

1
1 _
+ N1

2

1
+...+<n<1_
n (

. Given that u, v, w are positive, € a < 1, and that
u+v+w=1 prove that

ROl
u % w

. Letyy,yo,...,¥n be positive real numbers. Prove the
Harmonic-Mean- Geometric-Mean Inequality:

1 < VY1y2- - Yn
n

) >27—27a+9a’—a°.

n
1

Y2

Y1

. Letay,...,a, be positive real numbers, all different. Set
S=aj+ax+---+an.
(a) Prove that

1
S—&

(n—1)

1<r<n

<
1<r<n

1
~
(b) Deduce that

4n
s SE:a(

S 1<r<n

en
1

s—a)

- n
n—1

1<r<n

-Q’.\ [

g6 Problem Suppose thak, Xp, ..., X, are nonnegative real
numbers with
X1+Xo+ X <1/2.

Prove that

(1—x1)(1—x2) -+ (1—Xq) > 1/2.

37 Problem Given a positive integen prove that there is a
polynomialT, such that cosx= T,(cosx) for all real numbers
X. T, is called then-th Tchebychev Polynomial

38 Problem Prove that
1 n 1 I 1 < 13
n+2 2n

for all natural numbera > 1.
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39 Problem In how many regions will a sphere be divid¢d1 Problem Let Fy(X) = X, F(X) = 4X(1 — X),Fhr1(X) =
by n planes passing through its centre if no three planes [pa¢g,(x)),n=0,1,.... Prove that
through one and the same diameter?

1 22n71
40 Problem (IMO 1977) Let f, f : N+ N be a function satis A Fa(x)dx= 21
fying
f(n+1) > f(f(n))
for each positive integer. Prove thatf (n) = nfor each n. (Hint: Letx = sin’6.)

1.4 Fibonacci Numbers
TheFibonacci numbersfare given by the recurrence
fo=0, f1=1, frr1=fh1+fr, n>1 (1.5)

Thus the first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 2. A number of interesting algebraic identities can be
proved using the above recursion.

42 Example Prove that
fi+fo+- -+ fi=fy2—1

Solution: We have

fi =fz—"1
fo =1f4—f3
fsz =fg—"f4
fn = fho— Ty

Summing both columns,
fit+fot At fh=fho—fo="fho—1

as desired.

43 Example Prove that
fi+fa+ fs+ -+ fon1 = fon.

Solution: Observe that

f = fo—fo
fa = f4—f
fs = fg—f4
fonmy = fon—Tfono

Adding columnwise we obtain the desired identity.

44 Example Prove that
f24+ 24+ f2 = fnfnie.

Solution: We have
fn—lfn-i-l - (fn+1— fn)( fn+ fn—l) = fn+1fn— f;$+ fn+1fn—1— fn fn—l-

Thus
fn+lfn - fn fn—l = fnza
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which yields
24+ 24+ f2 = fafara.

45 Theorem (Cassini’s Identity)
1:nflfnjtlf fn2 = (71)n7 n>1.

Proof: Observe that
foafori— 12 = (fa—fo2)(fatfo1)— 12
- *fnfzfn* fnfl( fnfzf fn)
= —(fn—zfn—fnz_l)

Thusify=fr_1fhr1— f,f, we have y= —vp_1. This yields y = (—1)”_1v1 which is to say
foo1faer— f2=(—1)" Y(fofa— £2) = (—1)".
O

46 Example (IMO 1981) Determine the maximum value of
m +n?,
wherem, n are positive integers satisfyimgn € {1,2,3,...,1981} and

(N> —mn—n?)? =1.

Solution: Call a paifn,m) admissibléf mne {1,2,...,1981} and(n>—mn—n?)2 =1.

If m=1, then(1,1) and(2,1) are the only admissible pairs. Suppose now that the(pajn,) is admissible, witm, > 1.
Asni(ng—mnp) = n% +1> 0, we must haven; > ny.

Let nowns = n; —n,. Then 1= (n? — ninz —n3)? = (n3 — nan3 — n3)?, making(ny, n3) also admissible. Ihs > 1, in the
same way we conclude that > n3 and we can leby = n, —n3 making(ns, ns) an admissible pair. We have a sequence of
positive integers; > np > ..., which must necessarily terminate. This terminates wiyes 1 for somek. Since(ng_1,1)
is admissible, we must havg_1 = 2. The sequence goes thu®13,5,8,...,987,1597, i.e., a truncated Fibonacci sequence.
The largest admissible pair is thus (1597, 987) and so thénmam sought is 1597+ 987.

1+2\/§ be the Golden Ratio. Observe that® = @

x° = X+ 1. We now obtain a closed formula fdf. We need the following lemma.

Lett =

. The numberr is a root of the quadratic equation

47 Lemma If x> =x+1,n> 2 then we have” = fox+ fn_1.

Proof: ~ We prove this by induction on fror n = 2 the assertion is a triviality. Assume thatn2 and that
X" = f,_1x+ fr_o. Then

X" = xX"r.x
(fa—1X+ fa—2)x
fao1(X+1) + fn2x
(fr—1+ fr2)x+ fo1
fax =+ fr—1

n—1.

O

48 Theorem (Binet's Formula)  The n-th Fibonacci number is given by

()

n=0,2,....
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Proof: The roots of the equatiorfx=x+1aret = andl—rt1=

1+5
2

Tn - Tfn+ fnfl

and
(l— T)n == (l— T)fn"‘ fnfl.

Subtracting ] -
"— (1—1)" = V51,

from where Binet's Formula follows.

49 Example (Cesaro) Prove that

Solution: Using Binet's Formula,

LM e s (N T (1)
> (12t = 0<k>2 NG

=~

(1+20)"—(1+2(1—1)").

G- &l

As T2 =T1+1,1421 = 1°. Similarly 1+ 2(1— 1) = (1—1)3. Thus

S

k=0

(0¥ + (1= 1)) = fa,

as wanted.

The following theorem will be used later.
50 Theorem If s> 1.t > 0 are integers then
fore = fs 1 fe + fsfepa.

Proof:
frp1 = fofe+ frfepq,

which is trivially true.

We have
fsit = fspr1+ T2
= fs14t+ fsoqt trivially
= fsofi+foafiii+fesfit+fs ofiia
= filfso+fs3)+fiia(fs1+fs o) rearranging
= fifs 1+ froafs
This finishes the proadi.

Practice

1-5
2

(S0 50

. In virtue of the above lemma,

r)k>

We keep t fixed and prove this by using strong induction onrss £ol we are asking whether

Assume thats1and that £ ¢ = fs x_1fi + fs_kft4-1 for all k satisfyingl < k <s—1.

by the Fibonacci recursion
by the inductive assumption

by the Fibonacci recursion
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51 Problem Prove that 61 Problem Prove that
farifn—foafno="fon 1, n>2 © 1
> arctan—— = /4.
2n+1
52 Problem Prove that n=1 "
2 2
fapr=4ffn1+ 17 n>1. 62 Problem Prove that
53 Problem Prove that i fn 1
im—=—.
2 noe /B
fifo+ fofa+ -+ fon_1fon = f5,.
54 Problem LetN be a natural number. Prove that the large ? Problem Prove that
n such thatf, < N is given by I frer o
1 —o0
log (N + —) V5 et
n= u—zﬂ.
log (1‘1' \/§> 64 Problem Prove that
2
n
1 fon_
P i
55 Problem Prove thatf?+ f2 | = fan 1. — fx fon
56 Problem Prove that ifn > 1, Deduce that . 8
1 7—+V5
[ _
fﬁ_ fopt for = (=)™ flz' Z fizk - 2
k=0
57 Problem Prove that
n n 65 Problem (Cesaro) Prove that
> fa=> (=K faya.
k=1 k=0 " /n
> o) fic=fan-
58 Problem Prove that k=0
Z 1 -1 66 Problem Prove that
— fhafn
—~ fn
Hint: What is 10

1 B 1 0
fnfl fn 1:n fn+l .

59 Problem Prove that

0

fo
nz::l s 1

1 fn+2

60 Problem Prove that

> 1fn=4-r.
n=0

n=1

is a rational number.

67 Problem Find the exact value of

1994
Z(—l)k<1?(95) fi.

k=1

68 Problem Prove the converse of Cassini's Identitykland
m are integers such thatr? —km— k?| = 1, then there is an
integern such thak = +fp, m= +fy;1.
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1.5 Pigeonhole Principle

The Pigeonhole Principle states thamif 1 pigeons fly tan holes, there must be a pigeonhole containing at least tweppig
This apparently trivial principle is very powerful. Let usessome examples.

69 Example (Putnam 1978) Let A be any set of twenty integers chosen from the arithmeticnession 14, ...,100. Prove
that there must be two distinct integersAnvhose sum is 104.

Solution: We partition the thirty four elements of this pregsion into nineteen grougd}, {52}, {4,100} , {7,97}, {10,94},
...{49,55}. Since we are choosing twenty integers and we have ninetégrbyethe Pigeonhole Principle there must be two
integers that belong to one of the pairs, which add to 104.

70 Example Show that amongst any seven distinct positive integersxuesling 126, one can find two of them, sagndb,
which satisfy
b<a<?2b

Solution: Split the number§l, 2,3,...,126} into the six sets
{1,2},{3,4,5,6},{7,8,...,13 14} {1516, ...,29,30},
{31,32,...,61,62} and{63,64,...,126}.
By the Pigeonhole Principle, two of the seven numbers meshlone of the six sets, and obviously, any such two will $atis

the stated inequality.

71 Example Given any set of ten natural numbers between 1 and 99 inelupiove that there are two disjoint nonempty
subsets of the set with equal sums of their elements.

Solution: There are? — 1 = 1023 non-empty subsets that one can form with a given 10esieset. To each of these subsets
we associate the sum of its elements. The maximum value tlyagech sum can achieve is 9®1+---+99=945< 1023
Therefore, there must be at least two different subsetsthat the same sum.

72 Example No matter which fifty five integers may be selected from

{1,2,...,100},

prove that one must select some two that differ by 10.

Solution: First observe that if we choose- 1 integers from any string ofreconsecutive integers, there will always be some
two that differ byn. This is because we can pair the @nsecutive integers

{a+1,a+2,a+3,...,a+2n}

into then pairs
{a+1,a+n+1},{a+2,a+n+2},...,{a+n,a+2n},

and ifn+ 1 integers are chosen from this, there must be two that beotige same group.
So now group the one hundred integers as follows:

{1,2,...20},{21,22,...,40},
{41,42,... 60}, {61,62,...,80}

and
{81,82,...,100}.

If we select fifty five integers, we must perforce choose eidvem some group. From that group, by the above observation
(letn=10), there must be two that differ by 10.
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73 Example (AHSME 1994) Label one disc1”, two discs ‘2", three discs 3", .. ., fifty discs“50". Put these ¥ 2+3+---+
50= 1275 labeled discs in a box. Discs are then drawn from the boxnalom without replacement. What is the minimum
number of discs that must me drawn in order to guarantee dgpatileast ten discs with the same label?

Solution: If we draw all the %2+ ---4+9 =45 labelled 17, ..., “9” and any nine from each of the disc0", ..., “50", we
have drawn 45-9-41 =414 discs. The 415-th disc drawn will assure at least tersdism a label.

74 Example (IMO 1964) Seventeen people correspond by mail with one another—eaevith all the rest. In their letters
only three different topics are discussed. Each pair ofespondents deals with only one of these topics. Prove tbat tit
least three people who write to each other about the same topi

Solution: Choose a particular person of the group, say @hate corresponds with sixteen others. By the Pigeonhaheipte,
Charlie must write to at least six of the people of one topag, ®pic I. If any pair of these six people corresponds onctdpi
then Charlie and this pair do the trick, and we are done. @tiser these six correspond amongst themselves only onstopic
Il or lll. Choose a particular person from this group of siay<ric. By the Pigeonhole Principle, there must be thredef t
five remaining that correspond with Eric in one of the topsas; topic Il. If amongst these three there is a pair that spords
with each other on topic Il, then Eric and this pair correspon topic Il, and we are done. Otherwise, these three peapje o
correspond with one another on topic lll, and we are donenagai

75 Example Given any seven distinct real numbaegs. . . x7, prove that we can always find two, sayb with

a—b 1

0< — < —.
<1+ab<\@

Solution: Putx, = tanay for ay satisfying—g < < g Divide the interval(—g, LZT) into six non-overlapping subintervals of

equal length. By the Pigeonhole Principle, two of seventgaiill lie on the same interval, say < aj. Then 0< aj —a; < 3
Since the tangent increasesinr/2, 11/2), we obtain

_ tanaj —tany .
~ 1+tana;jtana; 6 3

0 < tan(aj — &)
as desired.

76 Example (Canadian Math Olympiad 1981) Letay,ay,...,a7 be nonnegative real numbers with

atax+...+a;=1.

M = max
max a + A+1 + A+2,

determine the minimum possible value th4t can take as they vary.
Solution: Sincea; < a3 +ap < a;+a+az anday < ag+ ay < as+ ag + a7y we see that# also equals

max{ay,az,a, + az,ag + a7, a + + )
1§kgs{l 7,81+ 82,86 + a7, 8k + A1+ A2}

We are thus taking the maximum over nine quantities that stap8ay + - - - +a7) = 3. These nine quantities then average
3/9=1/3. By the Pigeonhole Principle, one of thesevid/3,i.e. M >1/3. fay =ay+ap=as+apx+azs=ap+azt+as =
aztautas=ast+as+as=as+as+ay =ay =1/3, we obtain the 7-tupléay, ap, a3, a4, as,as,a7) = (1/3,0,0,1/3,0,0,1/3),
which shows tha =1/3.

Practice
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77 Problem (AHSME 1991) A circular table has exactly sixt
chairs around it. There aM people seated at this table in su
a way that the next person to be seated must sit next to s

one. What is the smallest possible valueNef

Answer: 20.

78 Problem Show that if any five points are all in, or on,

square of side 1, then some pair of them will be at mos

distancev'2/2.

79 Problem (E6tvos, 1947)  Prove that amongst six people

aroom there are at least three who know one another, or &t

three who do not know one another.

80 Problem Show that in any sum of non-negative real nu
bers there is always one number which is at least the avd

of the numbers and that there is always one member tha
at most the average of the numbers.

81 Problem We call a set“sum free” if no two elements of t

set add up to a third element of the set. What is the maxin

size of a sum free subset §f,2,...,2n—1}.

Hint: Observe that the séh+1,n+2,...,2n—1} of n+1el-
ements is sum free. Show that any subset with2 elementg
is not sum free.

82 Problem (MMPC 1992) Suppose that the letters of the H
glish alphabet are listed in an arbitrary order.

1. Prove that there must be four consecutive consonari

2. Give a list to show that there need not be five consg
tive consonants.

3. Suppose that all the letters are arranged in a circle.eH
that there must be five consecutive consonants.

83 Problem (Stanford 1953) Bob has ten pockets and for
four silver dollars. He wants to put his dollars into his pei
so distributed that each pocket contains a different nurab
dollars.

1. Can he do so?

2. Generalise the problem, consideripgpockets anch
dollars. The problem is most interesting when

Why?

84 Problem No matter which fifty five integers may be se-
clected from
bme- {1,2,...,100},

prove that you must select some two that differ by 9, some two
that differ by 10, some two that differ by 12, and some two that
differ by 13, but that you need not have any two that differ by

11.

a

t8q;1 Problem Let mn+ 1 different real numbers be given.
Prove that there is either an increasing sequence with sit lea
n+ 1 members, or a decreasing sequence with at leasf.

"members.
leas

86 Problem If the points of the plane are coloured with three
colours, show that there will always exist two points of the

M¥ame colour which are one unit apart.
rage

Izt37ISProbIem Show that if the points of the plane are coloured
with two colours, there will always exist an equilateraatri
gle with all its vertices of the same colour. There is, howeae
'€olouring of the points of the plane with two colours for whnic
'8 equilateral triangle of side 1 has all its vertices of tame
colour.

88 Problem Letrq,ro,...,rp,n> 1 be real numbers of abso-
lute value not exceeding 1 and whose sum is 0. Show that there
is a non-empty proper subset whose sum is not more tjan 2
in size. Give an example in which any subsum has absolute

n- 1
value at Ieash.

t§9 Problem Letry,ro,...,ry be real numbers in the interval
| [0.1]. Show that there are numbegigl <k <n,g =-1,0,1
"not all zero, such that

rov <N
- 2n .

n
Z&’kl’k
k=1

Y00 Problem (USAMO, 1979) Nine mathematicians meet at
an international conference and discover that amongst any
Plthree of them, at least two speak a common language. If
each of the mathematicians can speak at most three languages
prove that there are at least three of the mathematicians who
can speak the same language.

91 Problem (USAMO, 1982) In a party with 1982 persons,
amongst any group of four there is at least one person who
knows each of the other three. What is the minimum number
of people in the party who know everyone else?
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92 Problem (USAMO, 1985) There are n people at a parfysome three were sleeping simultaneously.
Prove that there are two people such that, of the remaihing
n—2 people, there are at leasn/2| — 1 of them, each o 94 Problem Let &, be a set of en ||+ 1 points on the plane.

WhOT "”O.WS ,,b.Oth or else knows ne_|ther (.)f the two. Ass nA%y two distinct points of#, are joined by a straight line seg-
that “knowing” is a symmetrical relationship.

ment which is then coloured in one ofgiven colours. Show

_ _ that at least one monochromatic triangle is formed.
93 Problem (USAMO, 1986) During a certain lecture, eagh

of five mathematicians fell asleep exactly twice. For eadh pa -
of these mathematicians, there was some moment when *{Pﬁﬁt: e— Zl/n!')
were sleeping simultaneously. Prove that, at some morpent,

n=0
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Divisibility

2.1 Divisibility
95 Definition If a+# 0,b are integers, we say thatiavidesb if there is an integet such thatic = b. We write this as|b.

If adoes not dividé» we writea fb. The following properties should be immediate to the reader.

96 Theorem 1. If a,b,c,m,n are integers witft|a, c|b, thenc|(am+ nb).
2. If x,y,z are integers witlx|y, y|z thenx|z
Proof: There are integers,swith sc=a,tc=b. Thus
am+nb = c(sm+tn),

giving d(am+bn).
Also, there are integers,u with xu=y,yv= z Hence xuv= z, giving %z.
It should be clear that if o and b£ O thenl < |a| < |b|.O

97 Example Find all positive integera for which
n+1jn?+1.

Solution:n>+1=n?—1+2= (n—1)(n+1) + 2. This forcem+ 1|2 and son+1=1 orn+ 1= 2. The choicen+1=1is
out sincen > 1, so that the only suchisn=1.

98 Example If 7|3x+ 2 prove that {15 — 11x— 14.).

Solution: Observe that ¥5— 11x— 14 = (3x+ 2)(5x— 7). We have 8= 3x+ 2 for some integes and so
15x% — 11x— 14 = 75(5x— 7),
giving the result.

Among every two consecutive integers there is an even onen@rvery three consecutive integers there is one divisible
by 3, etc.The following theorem goes further.

99 Theorem The product oh consecutive integers is divisible loy.

17
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Proof: Assume first that all the consecutive integers iom+2, ..., m+n are positive. If this is so, the divisibility
by nl follows from the fact that binomial coefficients are integer

nm n!

<m+n> _ (m+n)!  (m+n)(m+n—1)---(m+1)
n

If one of the consecutive integers is 0, then the productarhtts 0, and so there is nothing to prove. If all the n
consecutive integers are negative, we multiply-bg)", and see that the corresponding product is positive, and so
we apply the first resulil

100 Example Prove that 1 —n, for all integersn.

Solution:n®*—n = (n—1)n(n+1) is the product of 3 consecutive integers and hence is dieibip3 = 6.

101 Example (Putnam 1966) LetO<a; < ap <...< amns+1 bemn+ 1 integers. Prove that you can find eitimes- 1 of them
no one of which divides any other, or- 1 of them, each dividing the following.

Solution: Let, for each ¥ k < mn+ 1, n, denote the length of the longest chain, starting witand each dividing the following
one, that can be selected frag ax 1, ...,a8mnt1. If NO Nk is greater tham, then the are at least+ 1 ni’s that are the same.
However, the integeray corresponding to thesg’s cannot divide each other, becaugésy implies thatng > nj + 1.

102 Theorem If k|n then fy| f,.

Proof: Letting s=kn,t =ninthe identity §,; = fs_1f; + fsf;.-1 we obtain

fcr1n = fenen = fao1fun+ fafinia.

Itis clear that if §|fxnthen f|f(1)n. Since | fn.1, the assertion followsl

Practice

103 Problem Given that %(n+2), which of the following argl 107 Problem Prove that ifn > 4 is composite, then divides

divisible by 5 (n—2)!.
) ) 5 (Hint: Consider, separately, the cases wihes and is not a
n’—4, i +8n+7, n*—1,n°—2n? perfect square.)

104 Problem Prove thain® — 5n° + 4n is always divisible by] 108 Problem Prove that there is no prime triplet of the form

120. p,p+2,p+4, except for 35,7.
105 Problem Prove that 109 Problem Prove that forn € N, (n!)! is divisible by
— !
(2m)1(3n)! i)
(m!)2(n!)3

110 Problem (AIME 1986) What is the largest positive inte-
is always an integer. gern for which
(n+10)|(n®+100)?

106 Problem Demonstrate that for all integer values
o 7 e (Hint: 3 +y% = (x+Y) (0% — xy+Y?).)
n°—6n‘49n°—4n
111 Problem (Olimpiada matematica espafiola, 1985) If n
is a positive integer, prove th&t+1)(n+2) --- (2n) is divisi-
ble by 2".

is divisible by 8640.
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2.2 Division Algorithm

112 Theorem (Division Algorithm) I a,b are positive integers, then there are unique integarsuch thata = bg+r,0 <
r<b.

Proof: We use the Well-Ordering Principle. Consider the $ét= {a—bk:k € Z and a> bk}. Then.” is a
collection of nonnegative integers amd # @ as a—b-0 € .. By the Well-Ordering Principle has a least
element, say r. Now, there must be someZjsuch that r=a— bq since re .. By construction, £ 0. Let us
prove that r< b. For assume thatp b. Thenr>r—b=a—bgq—b=a—(q+1)b >0, since r—b > 0. But then
a—(g+1)be . and a—(q-+1)b < r which contradicts the fact that r is the smallest membe#6fThus we must
have0 <r < b. To show that r and g are unique, assume thatbgy =a=bp+r2,0<r; <b,0<r, <b. Then
ro—r1=Db(q1—02), thatis B(ra—r1). But|ro—r1| < b, whence $ = r;. From this it also follows that g= qp.
This completes the prodf]

Itis quite plain thatg = ||a/b||, where|a/b|| denotes the integral part afb.
It is important to realise that given an integer- 0, the Division Algorithm makes a partition of all the integaccording

to their remainder upon division by, For example, every integer lies in one of the famili&s3B+ 1 or X+ 2 wherek € Z.
Observe that the familyl3+ 2,k € Z, is the same as the familk3- 1,k € Z. Thus

Z=AUBUC

where
A={...,—9,-6,—-3,0,3/6,9,...}

is the family of integers of the formk3k € 7Z,
B={..—8-5-2147..}
is the family of integers of the formk3+ 1,k € Z and
C={.—-7-4-1258...}

is the family of integers of the formi3-1 k € Z.

113 Example (AHSME 1976) Let r be the remainder when 1039117 and 2312 are divided ly> 1. Find the value ofl —r.

Solution: By the Division Algorithm, 1059 g1d +r,1417= god +r,2312= gsd +r, for some integersj;, gz, gz. From this,
358=1417—1059=d(g2 — q1),1253= 2312—1059=d(gs — 1) and 895= 2312—1417=d(gs — gp). Henced|358=
2.179,d|1253=7-179 and 1895=5-179. Sinceal > 1, we conclude thadl = 179. Thus (for example) 10595- 179+ 164,
which means that = 164 We conclude thatl —r = 179— 164=15.

114 Example Show than? + 23 is divisible by 24 for infinitely many.

Solution:n?+23=n?—1+24= (n—1)(n+1) +24. If we taken=24k+1,k=0,1,2, ..., all these values make the expression
divisible by 24.

115 Definition A primenumberp is a positive integer greater than 1 whose only positivesdrs are 1 ang. If the integer
n> 1 is not prime, then we say that ité®@mposite.

For example, 2, 3,5, 7, 11, 13, 17, 19 are prime, 4, 6, 8, 9,214, 15, 16, 18, 20 are composite. The number 1 is neither
a prime nor a composite.

116 Example Show that ifp > 3 is a prime, then 24p? — 1).
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Solution: By the Division Algorithm, integers come in onesdf flavours: &, 6k + 1, 6k+ 2 or &+ 3. If p > 3 is a prime, then
p is of the formp = 6k + 1 (the other choices are either divisible by 2 or 3). BBk+ 1)2 —1 = 36k? + 12k = 12k(3k— 1).
Since eithek or 3k—1 is even, 1R(3k— 1) is divisible by 24.

117 Example Prove that the square of any integer is of the folod4k + 1.

Solution: By the Division Algorithm, any integer comes ineoof two flavours: 2 or 2a+ 1. Squaring,
(2a)? = 4a?, (2a+1)?> =4(a’®+a)+1)
and so the assertion follows.
118 Example Prove that no integer in the sequence
11,111111111111...

is the square of an integer.

Solution: The square of any integer is of the forknot 4k+ 1. All the numbers in this sequence are of the fotr-4L, and so
they cannot be the square of any integer.

119 Example Show that from any three integers, one can always choosedwmsah — ab® is divisible by 10.

Solution: It is clear thaa®h— ab® = ab(a— b)(a+b) is always even, no matter which integers are substitutednéfof the
three integers is of the formk5then we are done. If not, we are choosing three integerdi¢hatthe residue classe&5 1 or
5k + 2. Two of them must lie in one of these two groups, and so thergt e two whose sum or whose difference is divisible
by 5. The assertion follows.

120 Example Prove that if 3(a® +b?), then 3aand 3b

Solution: Assume = 3k+1 orb=3m=+1. Thena? = 3x+1,b? = 3y+ 1. But themna® +b?> = 3t +1 ora® 4+ b? = 3s+ 2, i.e.,
3 (@ +b?).

Practice

121 Problem Prove the following extension of the Divisignodd integers such that each is the sum of two squares greater

Algorithm: if a andb # 0 are integers, then there are uniduiaan zero.
integersg andr such that=qgb+r,0<r < |b|.

126 Problem Let n> 1 be a positive integer. Prove that if
122 Problem Show that if a and b are positive integers, thesne of the numbers™2-1,2" + 1 is prime, then the other is
there are unique integers q and r, aneé- +1 such thata = | composite.

b
qb+er,fé <r< >
127 Problem Prove that there are infinitely many integers

123 Problem Show that the product of two numbers of tWEUCh that 4°+1 is divisible by both 13 and 5.

form 4k + 3 is of the form &+ 1.
128 Problem Prove that any integer> 11 is the sum of two

124 Problem Prove that the square of any odd integer legyB8Sitive composite numbers.

remainder 1 upon division by 8.
Hint: Think of n—6 if nis even andh—9 if nis odd.

125 Problem Demonstrate that there are no three consecytive
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129 Problem Prove that 3 never divide® + 1. and also

130 Problem Show the existence of infinitely many natuyal x fly+1) and(x+1) fly+1).

numbersx,y such that(x+ 1)|y(y+ 1) but
X fyand(x+1) M, Hint; Try x =36k+ 14,y = (12k+5)(18k+ 7).

2.3 Some Algebraic Identities

In this section we present some examples whose solutiorendegn the use of some elementary algebraic identities.

131 Example Find all the primes of the form®— 1, for integern > 1.

Solution: n®* —1 = (n—1)(n?+n+ 1). If the expression were prime, sinc@+n-+ 1 is always greater than 1, we must have
n—1=1,i.e.n=2. Thus the only such prime is 7.

132 Example Prove than*+4 is a prime only whem = 1 forn e N.

Solution: Observe that

4 n*+4n? + 4— 4n?

(n?+2)%— (2n)?
(N?+2—2n)(n+2+2n)
((n—1)2+1)((n+1)?+1).

n*+4

Each factor is greater than 1 for> 1, and son* + 4 cannot be a prime.
133 Example Find all integers > 1 for whichn® 44" is a prime.

Solution: The expression is only prime foe= 1. Clearly one must take odd. Fom > 3 odd all the numbers below are integers:

n*4+22" = n*42n22" 4+ 222"
(n242M2_ (nz(n+1)/2)2
(n2_|_2n_|_n2(n+l]/2)(n2+2n_n2(n+1)/2).

It is easy to see that if > 3, each factor is greater than 1, so this number cannot be a prime

134 Example Prove that for alh € N, n? divides the quantity

(n+1)"—1.

Solution: Ifn= 1 this is quite evident. Assume> 1. By the Binomial Theorem,
" /n
n+1)"—1= nk
1=y (1)

and every term is divisible by’

135 Example Prove that ifp is an odd prime and if

g:1+1/2+---+1/(p—1),

thenp dividesa.
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Solution: Arrange the sum as
IR SO U S S —
p—1 2 p-2 (p—1)/2 " (p+1)/2
After summing consecutive pairs, the numerator of the tegfractions isp. Each term in the denominator4sp. Sincepis
a prime, thep on the numerator will not be thus cancelled out.

136 Example Prove that

XK=y = (x—y) (X2 x0T ey 2y

Thusx—y always divides X" —y".

Solution: We may assume that£ y, xy # 0, the result being otherwise trivial. In that case, the refaliibws at once from the

identity
n—1 n
K a—1
D = a£l,
— a—1

upon lettinga = x/y and multiplying through by".

D Without calculation we see th876734°— 81073*°is divisible by666
137 Example (E 6tv 6s 1899) Show that
2903'—803'— 464"+ 261"

is divisible by 1897 for all natural numbens

Solution: By the preceding problem, 2903803 is divisible by 2903-803= 2100= 7-300=, and 261 — 464’ is divisible

by 261—464= —203=7-(—29). Thus the expression 2903 803" — 464" 4+ 261" is divisible by 7. Also, 2903— 464" is
divisible by 2903-464=9-271 and 261— 803" is divisible by —542= (—2)271. Thus the expression is also divisible by
271. Since 7 and 271 have no prime factors in common, we cariudmthat the expression is divisible by2771= 1897

138 Example ((UM)?C*1987 Given that 1002004008016032 has a prime faptor 250000 find it.

Solution: Ifa=10°,b =2 then

ab— 1

1002004008016032 &+ a'b-+ a’b® + a’b® +ab* +b° = =

This last expression factorises as

aG_bG
a—b

(a+b)(a®+ab+b?)(a®—ab+b?)

1002- 1002004 998004
4-4.1002-250501: k,

wherek < 250000. Therefor@ = 250501.

139 Example (Grunert, 1856) If X,y,z n are natural numbers> z then the relation
XNyt =2"

does not hold.
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Solution: Itis clear that if the relatiox’ +y" = Z holds for natural numbersy, zthenx < zandy < z By symmetry, we may
suppose that < y. So assume that' +y" = 7" andn > z. Then

Y =(z-y) (@t Hy 2y > 1 s X

contrary to the assertion thet+y" = 2", This establishes the assertion.

140 Example Prove that fon odd,

Xy = (XA y) (X XAy xR xy 2y

Thusif nisodd, x+y divides x" + y".
Solution: This is evident by substitutingy for y in example 1.11 and observing thHaty)" = —y" for n odd.

141 Example Show that 1001 divides
11993_|_ 21993_|_ 31993_|_ et 1000‘[993‘

Solution: Follows at once from the previous problem, sirmeheof 19934 1000992 219934 999'993 50019931 5011993 s
divisible by 1001.

142 Example (S250) Show that for any natural numbeythere is another natural numbesuch that each term of the sequence
X+ 1, X+ 1,x +1,...

is divisible byn.
Solution: It suffices to take = 2n—1.

143 Example Determine infinitely many pairs of integefi, n) such that# andn share their prime factors arith—1,n—1)
share their prime factors.

Solution: Takem=2—1,n= (2X—1)? k= 2,3,.... Thenm,n obviously share their prime factors ant- 1 = 2(2"* —1)
shares its prime factors with— 1 = 2k+1 (21 _1).

Practice
144 Problem Show that the integer number
Tovene- 1—2...2
——
1...1 . ' 2n 1/5 nzls
91 ones is the square of an integer.
is composite.

148 Problem LetO<a<h.

n _ N1
145 Problem Prove that 19+ 2% 1 3% 4 4% is divisible by| ~ + " 'Ove thabi((n-1ja—nbj <a™.

5. 2. Provethatfon=12,...,
n n+1
. . 1+ - 1+ — n=12....
146 Problem Show that if|ab| # 1, thena® 4 4b* is compos- ( * n) < o 1) o
fte. 3. Show that
bn+1_an+l

> (n+1)a

147 Problem Demonstrate that for any natural numimethe b—a
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4. Show that
1 n+1
(1e3) > (
n

149 Problem If a,b are positive integers, prove that

1
1 R
Jrn+1

n+2
) n=12....
(a+1/2)"+ (b+1/2)"

is an integer only for finitely many positive integers
150 Problem Prove that 10@11°— 1.

151 Problem Let A andB be two natural numbers with th
same number of digitsA > B. Suppose tha# and B have
more than half of their digits on the sinistral side in comm
Prove that
Al/n - Bl/n < }
n

foralln=23.4,....

152 Problem Demonstrate that every number in the sequg

49 448944488944448889...,4------ 48--- 89,
——r
n4s n-18s
is the square of an integer.
153 Problem (Polish Mathematical Olympiad) Prove that

if nis an even natural number, then the numbéet 438 is
divisible by 7.

154 Problem Find, with proof, the unique square which is t
product of four consecutive odd numbers.

155 Problem Prove that the number 22225+ 55558222 s
divisible by 7.
(Hint: Consider

22225555+ 45555+ 55552222_42222+42222_45555-)

156 Problem Prove thatifa”+1,1 < a€ N, is prime, thera

is even andh is a power of 2. Primes of the formzk2+ 1 are
calledFermat primes

157 Problem Prove that ifa"— 1,1 < a€ N, is prime, then
a=2 andnis a prime. Primes of the form"2- 1 are called

158 Problem (Putnam, 1989) How many primes amongst
the positive integers, written as usual in base-ten are thath
their digits are alternating 1's and 0's, beginning and rgdin
1?

159 Problem Find the least value achieved by 365 k =
1.2,....

160 Problem Find all the primes of the form®+ 1.

161 Problem Find a closed formula for the product

P=(1+2)(1+2%)(1+2%).--(1+2%).
e
Use this to prove that for all positive integelfr,s’z2n +1 divides

olp]
222n+l )

162 Problem Leta > 1 be a real number. Simplify the ex-
pression

\/a+ 2va—1+ \/a— 2va—1

nce
163 Problem Leta,b,c,d be real numbers such that

a?+b?+c?+d? =ab+bc+cd+da
Prove thah=b=c=d.
164 Problem Leta, b, c be the lengths of the sides of a trian-
gle. Show that

3(ab+bc+ca) < (a+b+c)? < 4(ab+bc+ca).

he
165 Problem (ITT, 1994) Let a,b,c,d be complex numbers
satisfying

a+b+c+d=a’+b3+c+d*=0.

Prove that a pair of tha, b, c,d must add up to 0.

166 Problem Prove that the product of four consecutive nat-
ural numbers is never a perfect square.

Hint: What is(n®+n—1)2?

167 Problem Let k > 2 be an integer. Show that if is a
positive integer, them® can be represented as the summnof
successive odd numbers.

168 Problem (Catalan) Prove that

1 1 1 1 1

Mersenne primes

I-Z+z— S+t

23 4 2n—1 2n
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equals
1

n+1

TR
n+2 n’

169 Problem (IMO, 1979) If a,b are natural numbers sug
that

g—l_}+}_}+ _i_ki
b~ 2 3 4 1318 1319
prove that 197
170 Problem (Polish Mathematical Olympiad) A triangu-

lar numberis one of the form %2+ ...4+n,n € N. Prove
that none of the digits,2,7,9 can be the last digit of a trian
gular number.

171 Problem Demonstrate that there are infinitely mal
square triangular numbers.

172 Problem (Putnam, 1975) Supposing that an integeris
the sum of two triangular numbers,

a?+a b?+b

_|_

)

write 4n+ 1 as the sum of two squared)4 1 = x*> +y? where
x andy are expressed in terms afandb.
Conversely, show that ift4-1 = x° +y?, thenn is the sum

of two triangular numbers.
h

173 Problem (Polish Mathematical Olympiad) Prove that
amongst ten successive natural numbers, there are always at
least one and at most four numbers that are not divisible by
any of the numbers,3,5,7.

174 Problem Show that ifk is odd,

1+2+--+n
Mivides

142K,

175 Problem Are there five consecutive positive integers
such that the sum of the first four, each raised to the fourth

2 2

power, equals the fifth raised to the fourth power?
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Congruence<Zn

3.1 Congruences

The notatiore=b modn is due to GauB3, and it means timta—b). It also indicates thad andb leave the same remainder
upon division byn. For example;—8=—1=6=13 mod 7. Since|(a—b) implies that3k € Z such thank=a—b, we
deduce thaa=b modn if and only if there is an integée such thata = b+ nk.

We start by mentioning some simple properties of congrugnce

176 Lemma Letab,c,d,me Z ke witha=b modmandc=d modm. Then
1. a+c=b+d modm
2. a—c=b—d modm
3. ac=bd modm
4. a&=b" modm
5. If f is a polynomial with integral coefficients thdra) = f(b) modm.
Proof: Asa=b modm and c=d modm, we can find Kk, € Z with a= b+ kim and c=d + kom. Thus

atc=b+d+m(ks ko) and ac=bd+ m(ksb+kid). These equalities give (1), (2) and (3). Property (4) foBow
by successive application of (3), and (5) follows from (4).

Congruences mod 9 can sometimes be used to check muliiptisat~or example 875962753+ 2410520633For if
this were true then

(84+7+5+9+6+1)(2+7+5+3)=2+4+1+0+5+2+0+6+3+3 mod 9
But this says that 8=8 mod 9, which is patently false.

177 Example Find the remainder when'®” is divided by 37.
Solution: & = —1 mod 37. Thus %= 661986 = 6(62)93=6(—1)°= —6=31 mod 37.
178 Example Prove that 7 divides?* 4 2"*2 for all natural numbers.

Solution: Observe that3™1 =3.9"=3.2" mod 7 and 22 =4.2" mod 7. Hence
Nt o2 =7.2"=0 mod 7

for all natural numbers.

26
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179 Example Prove the following result of Euler: 64232+ 1).

Solution: Observe that 64 2 -5+1=2%+5% Hence Z2-5= —1 mod 641 and 5= —2* mod 641. Now, 2.5= —1
mod 641 yields %228 = (5.27)* = (—~1)* =1 mod 641. This last congruence arfti=5—2* mod 641 yield—2*.22% =1
mod 641, which means that 64232+ 1).

180 Example Find the perfect squares mod 13.

Solution: First observe that we only have to square all thalvers up to 6, becausé = (13—r)? mod 13. Squaring the
nonnegative integers up to 6, we obtafre00,1% = 1,22 = 4,3> = 9,4° = 3,5? = 12,6° = 10 mod 13. Therefore the perfect
squares mod 13 are 0, 1, 4, 9, 3, 12, and 10.

181 Example Prove that there are no integers with— 5y> = 2.

Solution: Ifx?> = 2—5y?, thenx? =2 mod 5. But 2 is not a perfect square mod 5.

182 Example Prove that 12225+ 5555222),

Solution: 2222=3 mod 7, 5555= 4 mod 7 and 3=5 mod 7. Now 2222°° 4 5555222 = 35555 42222 — (35)1111
(42)11].1E 511117 5].].11E 0 mod?7.

183 Example Find the units digit of 7 .

Solution: We must find 7 mod 10. Now, # = —1 mod 10, and so0%=72.7= —7=3 mod 10 and 9= (7?)2 =
mod 10. Also, #=1 mod 4 and so 7= (72)2-7 =3 mod 4, which means that there is an integsuch that 7 = 3+ 4t.
Upon assembling all this,

77 =78 = (7. 78=1.3=3 mod 10

Thus the last digit is 3.
184 Example Prove that every year, including any leap year, has at lesstaday 13-th.

Solution: Itis enough to prove that each year has a Sundalsth&low, the first day of a month in each year falls in one of the
following days:

Month Day of theyean mod?7

January |1 1

February | 32 4

March 60 or 61 4or5
April 91 or 92 Oorl
May 121 orl22 2o0r3
June 152 or 153 50r6
July 182 or183 Oorl

August 213 or 214 3or4
September 244 or 245 6or0
October | 274 or 275 lor2
November| 305 or 306 4o0r5
December| 335 or 336 6or0

(The above table means that, depending on whether the yadeap year or not, that March 1st is the 50th or 51st day of the
year, etc.) Now, each remainder class modulo 7 is repredémtbe third column, thus each year, whether leap or notahas
least one Sunday the 1st.
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185 Example Find infinitely many integers such that 2+ 27 is divisible by 7.

Solution: Observe that'2=2,22=4,22=1,2*=22=4,2°=1 mod 7 and so¥ =1 mod 3 for all positive integeris.
Hence 3+ 27=1+427=0 mod 7 for all positive integets This produces the infinitely many values sought.

186 Example Are there positive integersy such that = 2¥ 4+ 15?

Solution: No. The perfect cubes mod 7 are 0, 1, and 6. Nowygvewer of 2 is congruentto 1, 2, or 4 mod 7. Thus
2 +15=23,0r5 mod 7. This is an impossibility.

187 Example Prove that 275, k=0,1,2,... never leaves remainder 1 when divided by 7.

Solution: 2 =2,22=4,22=1 mod 7, and this cycle of three repeats. Thiis-% can leave only remainders 3, 4, or 6 upon
division by 7.
188 Example (AIME, 1994) The increasing sequence

3,15,24,48, ...,

consists of those positive multiples of 3 that are one leas thperfect square. What is the remainder when the 1994nrtiotfer
the sequence is divided by 10007?

Solution: We want 13127 1=(n—1)(n+1). Since 3 is prime, this requiras=3k+1 orn=3k—1k=123,.... The
sequenceB+ 1,k =1,2,... produces the terms? — 1 = (3k+1)? — 1 which are the terms at even places of the sequence of
3,15,24,48,.... The sequencek3-1,k = 1,2, ... produces the term% — 1 = (3k— 1)® — 1 which are the terms at odd places
of the sequence,35,24,48,.... We must find the 997th term of the sequenker3, k =1,2,.... Finally, the term sought is
(3(997)+1)°—1=(3(—3)+1)2—1=8%—1=63 mod 1000. The remainder sought is 63.

189 Example (USAMO, 1979) Determine all nonnegative integral solutions
(N1, Nz, ..., M4)
if any, apart from permutations, of the Diophantine equatio

n{+n3+---+nf, = 1599

Solution: There are no such solutions. All perfect fourttvprs mod 16 are=s 0 or 1 mod 16. This means that
4o i

can be at most 14 mod 16. But 158915 mod 16.

190 Example (Putnam, 1986) What is the units digit of

1020000
L 1000+ 3”'?

12% /200 92 /200
Solution: Se—3 =10, Then[(1020000)/1010‘>+3}:[(a—s)zoo/a}:[gl > :( . > a?00k(—3)k = ( X )algH(—mk.
k=0 k=0

200 199
Slncez (200) 1992 (200> —3199 Asa=3 mod 10,

199

Z 200 al99k(_ k_31992 200 =_-3199=3 mod10
o\ K )
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191 Example Prove that for any,b,c € Z,n € N,n > 3, there is an integet such than f(k+a),n J(k+b),n J(k+c).

Solution: The integera, b, ¢ belong to at most three different residue classes mdsincen > 3, we have more than three
distinct residue classes. Thus there must be a residue stadsfor which —k # a,—k # b,—k % ¢, modn. This solves the
problem.

192 Example (Putnam, 1973) Letaj,ap,...,ax+1 be a set of integers such that if any one of them is removedethaining
ones can be divided into two setsrointegers with equal sums. Prove that=a, = ... = a4 1.

Solution: As the sum of therintegers remaining is always even, no matter which ofghkee taken, all they must have the
same parity. The property stated in the problem is now shHayeg/2 or (ax— 1) /2, depending on whether they are all even, or
all odd. Thus they are all congruent mod 4. Continuing in théner we arrive at the conclusion that gere all congruent
mod X for everyk, and this may only happen if they are all equal.

193 Example Prove that
n—1

(kn)!'=0 mod H(n+r)
r=0
if nkeN,n>k>2

Solution: (kn)! =M(n—1)!In(n+1)---(2n—1) for some integeM > 1. The assertion follows.

194 Example Let
ni! =n!(1/2!—1/3!4---+(=1)"/n!).

Prove that foralhe N,n > 3,
n!=n mod (n—1).

Solution: We have
nl—n!! = n(n—1)(n—2)/(1-1/2

o (D)"Y (n=D+ (—=1)"/n)
= (n—=1) (m+(-1)"*n/(n—1)+(~1)"/(n—1))
= (n=1)(m+(=1)"),

where.Z is an integer, sincén— 2)! is divisible byk!,k <n—2.

195 Example Prove that

6n+2
Z (6”2‘1|(‘ 2) =0 230 31+l g B2
k=0

whennis of the form X, 4k+ 3 or 4+ 1 respectively.

Solution: Using the Binomial Theorem,
3n+1
2
s 22 <6n+ ) — (143524 (1—/3)0+2,

Also, if nis odd, witha=2+1/3,b=2—+/3,
3n+1
}(a3n+1_|_b3n+1) _ 22: 3n+1 o3n+1-2rgr
2 o — 2r

36+1/2 mod 4
(—1)(=1/2° mod 4
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As 25=23"1 (@31 4 p3+1) \we have, for odah,

S= (_1)(n71)/223n+1 mod 2’a‘n+3.
If nis even,
}(a3n+1+b3n+1) - ¥ @”‘Fjl-) Q2r+153n-2r
2r<3n r+
= 2(6n+1)3*" mod 8
= 4n+2 mod 8

So for evem,S=2°""22n+1 mod 2",

Practice

196 Problem Find the number of alh,1 < n < 25 such that
n? 4 15n+ 122 is divisible by 6

(Hint: n®+15n+122=n?+3n+2=(n+1)(n+2) mod6.)

197 Problem (AIME 1983) Let a, = 6"+ 8". Determine thq
remainder whemgs is divided by 49

198 Problem (POLISH MATHEMATICAL OLYMPIAD) What
digits should be put instead afandy in 30x0y03 in order to
give a number divisible by 13?

199 Problem Prove that if 9(a®+b®+ ¢®), then 3abg for
integersa, b, c.

200 Problem Describe all integera such that 1n*°+ 1.

201 Problem Prove that if
a—b,a>—b? a®—bda*—b* ...

are all integers, thea andb must also be integers.
202 Problem Find the last digit of 3°C.

203 Problem (AHSME 1992) What is the size of the large
subset S o{1,2,...,50} such that no pair of distinct elemen
of S has a sum divisible by 7?

204 Problem Prove that there are no integer solutions to
equation® — 7y = 3.

205 Problem  Prove that if Ta? 4+ b? then 7a and 7b.

206 Problem Prove that there are no integers with

207 Problem Prove that the sum of the decimal digits of a
perfect square cannot be equal to 1991.

208 Problem Prove that
7147 + 22" 41

for all natural numbers n.

209 Problem Prove that 5 never divides
23k<

210 Problem Prove thatifpis a prime,(?)) — [%} is divisi-

n

>

2n+ 1)
k=0

2k+1

ble byp, foralln> p.
211 Problem How many perfect squares are there mbd 2

212 Problem Prove that every non-multiple of 3 is a perfect
power of 2 mod 3.

o7

t
1213 Problem  Find the last two digits of §°.

214 Problem (USAMO, 1986) What is the smallest integer
the> 1, for which the root-mean-square of the firspositive
integers is an integer?

Note. The root mean square ofnumbersay, ay, ..., a, is defined to be

(i85)”

ALY
n

80000000732+ y?+ 7.
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215 Problem Find all integersa,b,c,a > 1 and all prime| 219 Problem Letx anda;,i =0,1,...,k be arbitrary integers.

numbersp, g,r which satisfy the equation Prove that
a b c k
P=d _ _ > a(+1)¥
(a,b,c, p,g,r need not necessarily be different). i—o

er X . N
is divisible byx® £ x+ 1 if and only |fZ(fl)'ai is divisible
i=0

216 Problem Show that the number 16 is a perfect 8-th poy
mod p for any primep.
, | byx®+£x+1.
217 Problem (IMO, 1975) Let a1,ap,as,... be an increasing
sequence of positive integers. Prove that for every 1
there are infinitely manyy, that can be written in the form220 Problem ( (UM)?C® 1992 If x,y,z are positive integers
am = Xas+ Y& with positive integers x and y and> s. with

X"y =2"

218 Problem For each integan > 1, prove thah" —n?4-n—1
is divisible by(n—1)2. for an odd integen > 3, prove thatz cannot be a prime-power.

3.2 Divisibility Tests

Working base-ten, we have an ample number of rules of dilityibThe most famous one is perhaps the following.

221 Theorem (Casting-out 9's) A natural numben is divisible by 9 if and only if the sum of it digits is divisiblby 9.

Proof: Letn= a 10 +a 1101+ .. + 2,10+ ag be the base-10 expansion of n. &= 1 mod 9 we have
10 =1 mod 9 It follows that n= a, 10+ - - + 3,10+ ag = ax + - - - + & + 8, whence the theoreml

222 Example (AHSME, 1992) The two-digit integers from 19 to 92 are written consecuyiwe order to form the integer
192021222324 -89909192

What is the largest power of 3 that divides this number?

Solution: By the casting-out-nines rule, this number isgilble by 9 if and only if
19+20+21+-+92=37-3

is. Therefore, the number is divisible by 3 but not by 9.

223 Example (IMO, 1975) When 4444%*4is written in decimal notation, the sum of its digitsAs Let B be the sum of the
digits of A. Find the sum of the digits d8. (A andB are written in decimal notation.)

Solution: We have 4444 7 mod 9, and hence 4434 73 =1 mod 9. Thus 44444 = 4444148Y .4444=1.7=7 mod 9.
Let C be the sum of the digits d.

By the casting-out 9's rule, Z 4444444= A=B=C mod 9. Now, 4444 log,4444< 4444104 ,10* = 17776 This means
that 444444 has at most 17776 digits, so the sum of the digits of 44%4s at most 917776= 159984 whenceA < 159984
Amongst all natural numbers 159984 the one with maximal digit sum is 99999, so it followatB < 45. Of all the natural
numbers< 45, 39 has the largest digital sum, namely 12. Thus the sum ofigfits @f B is at most 12. But sincE=7 mod 9,
it follows thatC = 7.

A criterion for divisibility by 11 can be established sintika For letn = ald+a 1101+ +a;10+ap. As 10= —1
mod 11, we have 10= (—1)) mod 11. Therefora= (—1)¥a+ (—1)*a_1+---—a1+ag mod 11, thatisnis divisible by
11 if and only if the alternating sum of its digits is divis#ly 11. For example, 91228229 —-1+2—-2+8—-24+2—-1+9=7
mod 11 and s0 912282219 is not divisible by Whereas 89243100645398—-9+2—4+3—14+0—-0+6—44+4—-3+9=0
mod 11, and so 8924310064539 is divisible by 11.
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224 Example (Putnam, 1952) Let

n
f(x)=> ax"k
k=0

be a polynomial of degreewith integral coefficients. I&g, an

andf (1) are all odd, prove that(x) = 0 has no rational roots.

Solution: Suppose thdt(a/b) = 0, wherea andb are relatively prime integers. Then=0b"f (a/b) = agh" + ab" a4
an_1ba" "1+ a,a". By the relative primality ol andb it follows thatalag, bja,, whencea andb are both odd. Hence

agh"+agb" ta+ .- +a, 1ba' 1 ana"

but this contradicts that/b is a root of f.

Practice

225 Problem (AHSME 1991) An n-digit integer iscuteif its
ndigits are an arrangement of the $&12, ..., n} and its firstk
digits form an integer that is divisible dyfor all k,1 <k < n.
For example, 321 is a cute three-digit number because
vides 3, 2 divides 32, and 3 divides 321. How many cute
digit integers are there?

Answer: 2.

226 Problem How many ways are there to roll two disti
guishable dice to yield a sum that is divisible by three?

Answer: 12.

227 Problem Prove that a number is divisible b)'f,:k eNif
and only if the number formed by its last k digits is divisili
by 2. Test whether

90908766123456789999872

is divisible by 8.

228 Problem An old receipt has faded. It reads 88 chickg
at the total of 4.2y, wherex andy are unreadable digits. Ho
much did each chicken cost?

Answer: 73 cents.

229 Problem Five sailors plan to divide a pile of coconu
amongst themselves in the morning. During the night, on
them wakes up and decides to take his share. After throw
coconut to a monkey to make the division come out even
takes one fifth of the pile and goes back to sleep. The g
four sailors do likewise, one after the other, each throw

piles. What is the smallest amount of coconuts that could have
been in the original pile?

L Afrswer: 15621
SiX-
230 Problem Prove that a number which consists 8fiBen-
tical digits is divisible by 8. For example, 111 111 111 is
divisible by 9.

1231 Problem ( (UM)?C® 1991) Suppose that, as,...a, are
integers witha, # 0, and let

p(x) =ag+aix+---+anx".

Suppose thaty is a rational number such thptxg) = 0. Show
that if 1L <k <n, then

le

X0+ Ay DG+ - +anx" kL

is an integer.

232 Problem 1953 digits are written in a circular order. Prove
that if the 1953-digit numbers obtained when we read these
Migits in dextrogyral sense beginning with one of the digits
Vdivisible by 27, then if we read these digits in the same direc
tion beginning with any other digit, the new 1953-digit nuenb

is also divisible by 27.

233 Problem (Lagrange) Prove that
ts
e of fareo=fn  mod 10
n

a
ﬂ us the last digit of a Fibonacci number recurs in cycles of

tiRpoth 60.
ing

a coconut to the monkey and taking one fifth of the remai234 Problem Prove that

ing pile. In the morning the five sailors throw a coconut]

the monkey and divide the remaining coconuts into five equal

to

— f2 2
f2n+1 = fn+1 mOd fn .
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3.3 Complete Residues

The following concept will play a central role in our studyinfegers.

235 Definition If a=b modnthenbis called aresidueof a modulon. A setas, ay, ... &, is called acomplete residue system
modulon if for every integerb there is exactly one indexsuch thab = a; modn.

It is clear that given any finite set of integers, this set falm a complete set of residues modulaf and only if the
set hasn members and every member of the set is incongruent madulor example, the se¥ = {0,1,2,3,4,5} forms
a complete set of residues mod 6, since any integercongruent to one and only one memberesf Notice that the set
% = {—40,6,7,15,22 35} forms a complete residue set mod 6, but the®et {—3,—2,—1,1,2,3} does not, as-3=3
mod 6.

+3 (0|12 +6 | 0|1 |2(3]|4]|5

0 |0f1]2 0 |0|1|2|3|4]|5

1 1112110 1 |1(2]3[4]5|0

2 2101 2 12131451011

3 13/4|5|0|1]2

4 415011123

5 15(0|1]2|3]4

Table 3.1: Addition Table foZs Table 3.2: Addition Table foZg

Tied up with the concept of complete residues is thafof As an example, let us take= 3. We now let0 represent all
those integers that are divisible by Brepresent all those integers that leave remainder 1 updésiativby 3, and all those
integers that leave remainder 2 upon division by 3, and denshe seZs = {0,1,2}. We define addition ifZ3 as follows.
Givena,b € Z3z we considea+b mod 3. Now, there is € {0,1,2} such thak+b=c mod 3. We then define+3b to be
equal toc. Table3.3contains all the possible additions.

We observe thdf.; together with the operatiofs as given in Tabl&.3 satisfies the following properties:

1. The elemend € Z; is anidentity elementor Z3, i.e. 0 satisfied +3a =a+30=aforallac Z;

2. Every elemens € Z3 has amadditive inverseb, i.e., an element such thatt; b = b+3a = 0. We denote the additive
inverse ofa by —a. In Zz we note that-0=0,—1=2,—2=1.

3. The operation addition ifi3 is associativethat is, for alla,b,c € Z3 we havea+3 (b+3¢) = (a+3b) +3c.

We then say that Z3, +3 > forms agroupand we call it thegroup of residues under additionrmod 3.
Similarly we define< Z,,+n >, as thegroup of residues under additionmodn. As a further example we present the
addition table for Zg,+¢ > on Table (1.2). We will explore later the multiplicativestture ofZp.

Practice

236 Problem Construct the addition tables i@ andZg. 237 Problem How many distinct ordered paifs, b) # (0,0)
are inZi2 such that +12b =07?
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Unique Factorisation

4.1 GCD and LCM

If a,b € Z, not both zero, the largest positive integer that divide b is called thegreatest common divisor of a andThis
is denoted bya, b) or sometimes by gda, b). Thus ifd|ja andd|b thend|(a,b), because any common divisor@findb must
divide the largest common divisor efandb. For example(68,—6) = 2,gcd (1998 1999 = 1.

If (a,b) =1, we say that andb arerelatively prime or coprimeThus ifa, b are relatively prime, then they have no factor
greater than 1 in common.

If a,b are integers, not both zero, the smallest positive intdgris a multiple ofa, b is called thdeast common multiple
of a and b This is denoted bya, b]. We see then that &|c and ifb|c, then[a, b]|c, sincec is a common multiple of both and
b, it must be divisible by the smallest common multipleacindb.

The most important theorem related to gcd’s is probably dfeviing.

238 Theorem (Bachet-Bezout Theorem) The greatest common divisor of any two integarb can be written as a linear
combination ofa andb, i.e., there are integersy with

(a,b) = ax+by.

Proof: Let.«/ = {ax+byjax+by> 0,x,y € Z}. Clearly one ofta,+b is in 7, as both ab are not zero. By the
Well Ordering Principle,o# has a smallest element, say d. Therefore, there @igysuch that d= axy + byy. We
prove that d= (a,b). To do this we prove that|d,d|b and that if {a,t|b, then td.

We first prove that fa. By the Division Algorithm, we can find integers, @ < r < d such that a= dg+r. Then
r=a—dg=a(l—gx)—by.

If r > 0, then re o is smaller than the smaller element.@af, namely d a contradiction. Thus & 0. This entails
dg=a, i.e. da. We can similarly prove that|t.

Assume that|&,t|b. Then a=tm,b =tn for integers mn. Hence d= axy + bxy = t(mx + nyp), that is, td. The
theorem is thus proved]

D It is clear that any linear combination of b is divisible by(a, b).

239 Lemma (Euclid’'s Lemma) If albcand if (a,b) = 1, thena|c.

Proof: As(a,b) =1, by the Bachet-Bezout Theorem, there are integgrsvith ax+ by = 1. Since dbc, there is
an integer s with as= bc. Then c=c- 1 = cax+ cby= cax+ asy From this it follows that &, as wanted.

34
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240 Theorem If (a,b) =d, then

Proof: By the Bachet-Bezout Theorem, there are integgrsuch that ax-by=d. But then(a/d)x+ (b/d)y =1,
and g/d,b/d are integers. But this is a linear combination ofdab/d and so(a/d,b/d) divides this linear
combination, i.e., divides 1. We conclude ttegtd,b/d) = 1.0

241 Theorem Let ¢ be a positive integer. Then
(ca,ch) =c(a,b).

Proof: Letd, = (cach)and ¢ = (a,b). We prove that gdcd, and cg|d;. As ¢h|a and @|b, then ca@|ca, cds|cb.
Thus cd is a common divisor of ca and cb and hengécd,. By the Bachet-Bezout Theorem we can find integers
X,y with di = acx+ bcy= c(ax+ by). But ax+ by is a linear combination of & and so it is divisible by d There

is an integer s then such thatsé ax+ by. It follows that d = csd, i.e., c|d;. O

D It follows similarly that(ca, cb) = |c|(a,b) for any non-zero integer c.

242 Lemma For nonzero integers a, b, c,
(a,bc) = (a,(a,b)c).

Proof: Since(a, (a,b)c) divides(a, b)c it divides bc. Thugcd(a, (a,b)c) divides a and bc and henged a, (a,b)c)|gcda, be).

On the other hand;a, bc) divides a and bc, hence it divides ac and bc. Therefarbc) divides(ac,bc) = c(a,b).
In conclusion,a, bc) divides a and a,b) and so it dividega, (a,b)c). This finishes the prodi.

243 Theorem (a2,b?) = (a,b)>.

Proof: Assume thatm,n) = 1. Using the preceding lemma twice,
(m?,n?) = (m?, (m?,n)n) = (n?, (n, (m,n)m)n).
As (m,n) = 1, this last quantity equalém?, n). Using the preceding problem again,
(m?,n) = (n,(m,n)m) = 1.
Thus(m,n) = 1 implies(m?,n?) = 1.
By Theoren240,

and hence 2 b2
(faw fame) =+
By Theoren?41, upon multiplying bya, b)?, we deduce
(a°,) = (a.b)?,

which is what we wanted.
244 Example Let (a,b) = 1. Prove thata+b,a®—ab+b?) =1 or 3.

Solution: Letd = (a+b,a® —ab+b?). Nowd divides
(a+b)2—a?+ab—b?=3ah
Henced divides 3(a+ b) —3ab= 3b2. Similarly, d|3a?. But thend|(3a?,3b?) = 3(a?,b?) = 3(a,b)? = 3.




36 Chapter 4

245 Example Leta,a# 1, m,n be positive integers. Prove that

(@"—1,a"—1)=a™ —1.

Solution: Setd = (m,n),sd=m,td = n. Thena™—1 = (a%)s—1 is divisible bya® — 1 and similarly,a” — 1 is divisible by
a—1. Thus(a®—1) |(@"—1,a"—1). Now, by the Bachet-Bezout Theorem there are integgra/ith mx+ ny=d. Notice that

x andy must have opposite signs (they cannot obviously be bothtivegaince therm would be negative. They cannot both be
positive because theth> m+ n, when in fact we have < m,d < n). So, assume without loss of generality tkat 0,y < 0.
Sett = (@"—1,a"—1). Thent|(@™—1) andt|(a ™ —1). Hence,t|((@™—1)—a’(a ™ —1)) = a’ — 1. The assertion is
established.

. 2In+4 .
246 Example (IMO, 1959) Prove that the fractlom is irreducible for every natural number

Solution: Z221n+4) —3(14n+ 3) = —1. Thus the numerator and the denominator have no common faietater than 1.

247 Example (AIME, 1985) The numbers in the sequence
101,104,109 1186,...

are of the forma, = 100+ n>,n=1,2,.... For eacm letd, = (an,any1). Find n;a}xdn.
n>

Solution: We have the followingd, = (100+ n?, 100+ (n+ 1)2) = (100+n?, 100+ n? 4+ 2n+ 1) = (100+n?,2n+1). Thus
dn|(2(1004 n?)—n(2n+1)) = 200—n. Thereforedy|(2(200—n)+(2n+1)) =401. This means thal|401 for alln. Could it be
that large? The answer is yes, fortet 200, thenaygg= 100+ 200 = 100(401) andagg; = 100+ 2072 = 40501= 101(401).

Thus m?)d“ =401

248 Example Prove that ifm andn are natural numbers amdis odd, then2™—1,2"+1) = 1.

Solution: Letd = (2™—1,2" 4 1). It follows thatd must be an odd number, anf' 2 1 = kd, 2" + 1 = Id, for some natural
n—1

numbersk, |. Therefore, " = (kd+1)" =td + 1, wheret =) (T) K™ id" =1 In the same manner™ = (Id —1)™ =
i—o
ud— 1, where we have used the fact tmats odd. Astd+ 1 =ud— 1, we must havel|2, whenced = 1.

249 Example Prove that there are arbitrarily long arithmetic progressiin which the terms are pairwise relatively prime.

Solution: The numbersm +1,k=1,2,..., mform an arithmetic progression of lengtihand common differencel. Suppose
thatd|(Im!41),d|(sm+1),1 <| <s<m. Thend|(s(Im!+1) —I(sm+1)) = (s—1) <m. Thus 1< d < mand sod|m!. But
thend|(sm 4 1—snl) = 1. This means that any two terms of this progression are coprime

250 Example Prove that any two consecutive Fibonacci numbers arevelgprime.

Solution: Letd = (fp, fnt1). As for1— fn = fr_1 andd divides the sinistral side of this equality},f,—1. Thusd|(f,— fn_1) =
fn—2. lterating on this process we deduce ttigy = 1 and sad = 1.
Aliter: By Cassini's Identityf,_1fn 1 — f2 = (—1)". Thusd|(—1)",i.e.,d = 1.

251 Example Prove that
(fm, fn) - f(n’m).

Solution: Set = (fn, fm),c = f(mn),a= (m,n). We will prove thatc|d andd|c.
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Sinceajmandaln, 4| fm andf,| fn by Theoreml02 Thus

fa| ( fm» fm)v

i.e.cld.

Now, by the Bachet-Bezout Theorem, there are integgrsuch thakm+yn=a. Observe that,y cannot be both negative,
otherwisea would be negative. Aa|n,ajmwe havea < n,a < m. They cannot be both positive since treea xm+yn> m+n,
a contradiction. Thus they are of opposite signs, and warssvithout loss of generality that< 0,y > 0.

Observe that
fyn = fa—xm = fa—lf—xm‘|' faf—xm+1

upon using the identity
fore = fs1fi + fsfiin

of Theorem50. As njyn, m|(—xm), we have thaffy| fyn, fm| f_xm. This implies that f, fm)|fyn and( fn, fm)| f_xm. Hence

(fn, fm)|fafxmi1.

We saw earlier thatfy, fm)| f_xm. If it were the case that

( fn» fm)| f—xm+1:

then( f,, ) would be dividing two consecutive Fibonacci numbers, amaahittion to the preceding problem in the case when
(fn, fm) > 1. The case= 1 is a triviality. Thereford fy, fm)| fa, which is what we wanted to prove.

252 Example Prove that no odd Fibonacci number is ever divisible by 17.

Solution: Letd = (17, f), which obviously must be odd. Thet7, fn) = (34, f) = (fo, fn) = f(gn) = f1, f3 Or fo. This means
thatd = (17, f,) = 1,2 or 34. This forcesl = 1.

253 Example TheCatalan number of order is defined as
1 /2n
Cn= n+1 ( n > '
Prove thatC, is an integer for all natural numbens

Solution: By the binomial absorption identity,

2n+1/2n\ (2n+1
n+1\n/ \n+1)
Since 2+ 1 andn+ 1 are relatively prime, and since the dextral side is an ertggmust be the case that- 1 leldes( nn> .

254 Example Letn be a natural number. Find the greatest common divisor of

() (5) o)

. 2n o2n-1
2k—1 ’
k=1

Solution: Since
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the gcd must be of the formP2 Since the gcd must divid€21n> = 2n, we see that it has dividé 2!, wherel is the largest

power of 2 that divides. We claim that 21 divides all of them. We may write = 2'm, where.# is odd. Now,
2l+lm 2|+1m 2|+lm_ 1
<2k—1> B 2k—1< 2k—2 )
But 2k—1 J2'* for k > 1. This establishes the claim.

255 Example Let any fifty one integers be taken from amongst the numbg2s 1,100 Show that there are two that are
relatively prime.

Solution: Arrange the 100 integers into the 50 sets
{1,2},{3,4},{5,6}...,{99,100}.

Since we are choosing fifty one integers, there must be twowthiaie in the same set. Those two are relatively prime, as
consecutive integers are relatively prime.

256 Example Prove that any natural numbar> 6 can be written as the sum of two integers greater than 1, efatie
summands being relatively prime.

Solution: Ifnis odd, we may choose= 2,b =n—2. If nis even, then is either of the fornk4r 4k+ 2. If n = 4k, then take
a=2k+1,b=2k—1. These two are clearly relatively prime (why?)nl 4k+ 2,k > 1 takea= 2k +3,b = 2k— 1.

257 Example How many positive integers 1260 are relatively prime to 12607

Solution: As 1260=22.32.5.7, the problem amounts to finding those numbers less than 12&thware not divisible by
2, 3, 5, or 7. LetA denote the set of integers 1260 which are multiples of 2B the set of multiples of 3, etc. By the
Inclusion-Exclusion Principle,

|[AUBUCUD|

|Al+[B| +|C| + D]
—|ANB|—|ANC|—|AND|
—|BNC|—|BND|—|CND|
+|ANBNC|+|ANBND|+|ANCND|
+|BNCND|—|ANBNCND|

= 630+420+252+180—-210—126—90—84

—60—-36+42+30+18+12—-6=972

The number of integers sought is then 126@72= 288.

Practice

258 Problem Show that 260 Problem Find two positive integera, b such that
(a,b)[a,b] = ab a’+b? =85113 and Icm(a,b) = 1764

for all natural numbers, b. 261 Problem Finda,b € N with (a,b) = 12, [, b] = 432

259 Probl Find | 23141!,29!137!).
roblem - Find lem( ’ ) 262 Problem Prove tha{a,b)" = (a",b") for all natural num-

bersn.
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263 Problem Leta e N. Find, with proof, allb € N such that]

(2°—1)|(22+1).

264 Problem Show thatn®+3n+1,7n°+18n°—n—2) =1.

265 Problem Let the integersy, by be defined by the relatio

an+bnv2=(1+v2)", neN.
Prove that gcth,,by) =1V n.
266 Problem Prove or disprove the following two propog
tions:

1. If a,b e N,a< b, then in any set ob consecutive inte
gers there are two whose product is divisibleay

2. If a,b,c,e N,a < b < c, then in any set of consecu-
tive integers there are three whose product is divis
by abc

267 Problem Let n,k,n> k > 0 be integers. Prove that tH &

greatest common divisor of the numbers

-

n n+1 n+Kk
(") (")
is 1.
(Hint: Prove
k .
(1) <k) (”“) (1)
j=0 I\ K
4.2 Primes

268 Problem Let F, = 22" 11 be then-th Fermat number.

Find (Fn, Fn).

269 Problem
guence

Find the greatest common divisor of the se-

16" +10n—1,n=1.2,....

270 Problem Demonstrate thain! +1,(n+1)!+1) = 1.

271 Problem Prove that any natural numbar> 17 can be
written asn = a+ b+ ¢ wherea, b, c are pairwise relatively
i_prime natural numbers each exceeding 1.

(Hint: Considem mod 12. Write two of the summands in the
form 6k+ sand the third summand as a constant.)

272 Problem Prove that there are no positive integayis, n >
plavith
(@"—bM|(@"+b").

73 Problem Prove that the binomial coefficients have the
following hexagonal property:
n+1 )
k
n

gco'((E_D’ (k-r:l)’ (
() 0

274 Problem (Putnam, 1974) Call a set of integersonspir-
atorial if no three of them are pairwise relatively prime. What
is the largest number of elements in any conspiratorialefubs
of the integers 1 through 16?

equals

Recall that gorime numbers a positive integer greater than 1 whose only positivesding are itself and 1. Clearly 2 is the only
even prime and so 2 and 3 are the only consecutive integechwhé prime. An integer different from 1 which is not prime is
calledcompositelt is clear that ifn > 1 is composite then we can writeasn=ab,1 <a<b<n,abeN.

275 Theorem If n> 1, thenn s divisible by at least one prime.

Pr oof:

Since n> 1, it has at least one divisor 1. By the Well Ordering Principle, n must have a least positive

divisor greater than 1, say q. We claim that q is prime. Foraf then we can write gasgab,1 <a<b < q. But
then a is a divisor of n greater than 1 and smaller than g, witichtradicts the minimality of @l

276 Theorem (Euclid) There are infinitely many primes.

Proof:
N= P1p2

Let p, p2, - - - pk be a list of primes. Construct the integer
e+ 1
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This integer is greater thah and so by the preceding problem, it must have a prime divis@tserve that p must
be different from any of ppz,..., pk since n leaves remainddérupon division by any of the;p Thus we have
shown that no finite list of primes exhausts the set of priireesthat the set of primes is infinite.

277 Lemma The product of two numbers of the fornk 4 1 is again of that form.
Proof: (4a+1)(4b+1)=4(4ab+a+b)+1.0
278 Theorem There are infinitely many primes of the form 4 3.

Proof: Any prime either equalg, or is of the formdk £+ 1. We will show that the collection of primes of the form
4k— lis inexhaustible. Let

{pla p27 e pn}
be any finite collection of primes of the fokk— 1. Construct the number

N =4pipz---pn—1.

Since each jpis > 3,N > 11 Observe that N is not divisible by any of the primes in ourasilbn. Now either N
is a prime, in which case it is a prime of the fok— 1 not on the list, or it is a product of primes. In the latter
case, all of the prime factors of N cannot be of the faikn- 1, for the product of any two primes of this form is
again of this form, in view of the preceding problem. Thus Nt divisible by some prime of the fodk— 1
not on the list. We have thus shown that given any finite liptiafes of the forndlk — 1 we can always construct
an integer which is divisible by some prime of the falka- 1 not on that list. The assertion followsl.

279 Example Prove that there are arbitrarily long strings that do notaiona prime number.

Solution: Letk € N,k > 2. Then each of the numbers
kl+2,...,kl+k

is composite.
280 Theorem If the positive integen is composite, then it must have a prime fagbawith p < /n.

Proof: Suppose that a-ab,1 < a<b < n. If both a and b are> /n, then n=ab > /n\/n=n, a contradiction.
Thus n has a factof 1 and< +/n, and hence a prime factor, whichsy/n. O

281 Example Find the number of prime numbes100.

Solution: Observe that/100= 10. By the preceding theorem, all the composite numbers in thgerd0< n < 100 have
a prime factor amongst, 3,5, or 7. LetAn, denote the multiples af#Z which are< 100. Then|Ay| = 50,|Az| = 33,|As| =
20, |A7| = 14, |Ag| = 16,|A10| = 10, |A1a| =7, |Ass| = 6, [Az1| =4, |Ags| = 2,|Azo| = 3,|Auz2| = 2,|A70| = 1, |A105| = 0, |Az10| =0.
Thus the number of primes 100 is

= 100— ( number of composites< 1) — 1

= 4+4100— multiples of 2 3, 5,0r 7<100—1

= 4+4100—(50+33+20+14)+ (16+10+7+6+4+2)
—(34+2+1+0)—-0-1

= 25

where we have subtracted the 1, because 1 is neither prinmngrosite.

p

282 Lemma If pisa prime,(k

> is divisible byp for all 0 < k < p.
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Proof:

p(p—1)---(p—k+1)

0
{

yields
p
k

k!

)—p(p—l)--'(p—kJrl),

whence (k! (E) Now, as k< p, p Jk!. By Euclid’s Lemma, it must be the case thp(fé) .0

283 Example Prove that ifp is a prime, therp divides 2 — 2.
Solution: By the Binomial Theorem:
P—2=(1+1P-2= (

as (8) = (S) = 1. By the preceding lemma divides each

assertion.

Practice

284 Problem Prove that there are infinitely many primes
the form 61+-5.

285 Problem Use the preceding problem to show that th
are infinitely many primeg such thatp— 2 is not a prime.

286 Problem If p andq are consecutive odd primes, pro|
that the prime factorisation qf+ g has at least three (not ne
essarily distinct) primes.

287 Problem 1. Letpbe a prime and lat € N. Prove, by
induction onn, thatp|(nP —n).

2. Extend this result to all € Z.

)

p
p_

()

of the terms on the dextral side of the aboves 8dtablishes the

of 1).
4. Prove that 4’ —n,n e Z.

ere 5. Prove that 3®° —n,n € Z.

288 Problem Let p be an odd prime and léa, b) = 1. Prove

Véhat o\ b
C- <a+ b, i) dividesp.
a+b

289 Problem Prove that 35,7 is the only prime triplet of the
form p, p+2,p+4.

290 Problem Let n > 2. Prove that if one of the numbers

3. ProveFermat's Little Theoremif p }h, thenp|(nP~1 —

2"—1and 2 +1is prime, then the other is composite.

4.3 Fundamental Theorem of Arithmetic

Consider the integer 133# is clearly divisible by 2 and so we obtain 13322- 666 Now, 666 is clearly divisible by 6, and
S0 1332=2-2-3-111 Finally, 111 is also divisible by 3 and so we obtain 1332-2-3-3-37. We cannot further decompose
1332 as a product of positive integers greater than 1, as&IB2 are prime. We will show now that such decomposition is
always possible for a positive integer greater than 1.

291 Theorem Every integer greater than 1 is a product of prime numbers.

Proof: Letn>1.If nisa prime, then we have nothing to prove. Assume that ongosite and letgbe its least
proper divisor. By Theorem 4.5; s a prime. Set i=¢1n1,1 < ny < n. If ny is a prime, then we arrived at the
result. Otherwise, assume thatis composite, and letxtpe its least prime divisor, as guaranteed by Theorem 4.5.
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We can write then B- 0102z, 1 < nz < N < n. Continuing the argument, we arrive at a chair-my > ny--- > 1,
and this process must stop before n steps, as n is a positegein Eventually we then have-ngigz - - - gs. O

We may arrange the prime factorisation obtained in the pliageTheorem as follows,
n=pp-- p, a >0,8 >0,...,8 >0,

Pr<p2 << Py

where thep; are primes. We call the preceding factorisatiomahecanonical factorisatiorof n. For example RB°5273 s the
canonical factorisation of 617400.

292 Theorem (Fundamental Theorem of Arithmetic) Every integer> 1 can be represented as a product of primes in only
one way, apart from the order of the factors.

Proof: We prove that a positive integer greater than 1 can only haxeaanonical factorisation. Assume that

by b
n— pilpgzm gsqulqzz'“th[

are two canonical factorisations of By Euclid’s Lemma (example 1.2) we conclude that every p beuatq and

every g must be a p. This implies thats. Also, fromp < p2<---<psand q < g < --- < ¢t we conclude that

pj=q;,1<j<s

If a; > b; for some j then, upon dividing bytj)‘p we obtain

a;—bj b; b bj_1 bj
pi‘lng...ij LR gS:pllpzzp]prllJ:ll kS)S’
which is impossible, as the sinistral side is divisible Qyapd the dextral side is not. Similarly, the alternative
aj < bj for some j is ruled out and soj & b for all j. This finishes the proot.]

It is easily seen, by the Fundamental Theorem of Arithmétiat if a has the prime factorisaticm—= pi‘l pgz ---p5" andb

has the prime factorisatidn= p?l p'z’2 e pﬁ”, (it may be the case that some of égeand some of théy are zero) then

(a’ b) _ pTin(aLbl) prznin(azbz) pnmin(an,bn) ) (41)
and also
[a.b] = plmax{al,bl) prznax(az.bz) o pnmax(an.,bn). (4.2)

Sincex+y = max(x,y) + min(x,y), it clearly follows that

ab=(a,b)[a,b].
293 Example Prove that/2 is irrational.

Solution: Assume that/2 = a/b with relatively prime natural numbeigb. Then d? = a%. The sinistral side of this last
equality has an odd number of prime factors (including rigépes), whereas the dextral side has an even number of prime
factors. This contradicts the Fundamental Theorem of Arétic.

294 Example Prove that if the polynomial
p(x) =apX"+ag X" 1+ +an 1x+aq

with integral coefficients assumes the value 7 for four irdegalues ofx, then it cannot take the value 14 for any integral value
of x.
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Solution: First observe that the integer 7 can be decompaseet most three different integer factors=77(1)(—1). Assume
thatp(ayx) — 7 = O for distinctax,1 < k < 4. Then

P(X) =7 = (Xx—ag)(X—az)(x—ag) (x—a4)q(Xx)

for a polynomialg with integer coefficients. Assume that there is an integéwith p(m) = 14. Then
7=p(m) —7=(m—ay)(m—az)(m—ag)(m—as)q(m).

Since the factorm— ay are all distinct, we have decomposed the integer 7 into at fear different factors. This is impossible,
by the Fundamental Theorem of Arithmetic.

295 Example Prove that the product of three consecutive integers isrreperfect power (i.e., a perfect square or a perfect
cube, etc.).

Solution: Let the integer b@r—1)n(n+1) = (n>—1)n. Sincen?— 1 andn are relatively prime, by the Fundamental Theorem of
Arithmetic, n” — 1 is a perfeckth power(k > 2) andn s also a perfedtth power. But thenp®— 1 andn? would beconsecutive
perfectkth powers, sheer nonsense.

296 Example Prove thatm® -+ 3m*n— 5men? — 15n°n® + 4mrf* + 12n° is never equal to 33.

Solution: Observe that
mP + 3m*n — 5m°n? — 15m?n® + 4mrf* 4 12n°

= (m—2n)(m—n)(m+ n)(m+ 2n)(m+3n).

Now, 33 can be decomposed as the product of at most fourelifféntegers 33- (—11)(3)(1)(—1). If n#£0, the factors in the
above product are all different. They cannot be multiply3o3y the Fundamental Theorem of Arithmetic, as 33 is the ycbd
of 4 different factors and the expression above is the prioafug different factors fon £ 0.. If n= 0, the product of the factors
ismP, and 33 is clearly not a fifth power.

297 Example Prove that the sum
S=1/24+1/3+1/4+---+1/n

is never an integer.

Solution: Letk be the largest integer such th&t2 n, andP the product of all the odd natural numbers not exceedinghe
. 1 .
number 2~ 1PSis a sum, all whose terms, except fé‘r_éP?, are integers.

298 Example Prove that there is exactly one natural number n for with 21+ 2" is a perfect square.

Solution: Ifk? = 28 4211 4 2" — 2304+ 2" = 48 + 2", thenk?® — 48% = (k— 48)(k+ 48) = 2". By unique factorisation,
k—48=2% k+48=2' s+t =n. But then 2—25=96=3.2° or (2" 5—1) = 3. 2°. By unique factorisatiors = 5,t —s =2,
givings+t=n=12

299 Example Prove that in any set of 33 distinct integers with prime festamongs5,7,11,13 23}, there must be two
whose product is a square.

Solution: Any number in our set is going to have the form
537°11613F23".

Thus to each number in the set, we associate a vé¢atbrc, d, f). These vectors come in 32 different flavours, according to
the parity of the components. For example (even, odd, odgh,exdd) is one such class. Since we have 33 integers, two (at
least) will have the same parity in their exponents, and thdyrct of these two will be a square.
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300 Example (IMO, 1985) Given a set# of 1985 distinct positive integers, none with a prime fagreater than 26, prove
that.# contains a subset of four distinct elements whose produbeiourth power of an integer.

Solution: Any number in our set is going to be of the form
233P5c74117 1301719123,
Thus if we gather 513 of these numbers, we will have two déffiéiones whose product is a square.

Start weeding out squares. Since we have 19833 numbers, we can find a pair of distirgt b; such thata;b; = ci.
Delete this pair. From the 1983 integers remaining, we cahdipair of distinctay, b, such thatasb, = c% Delete this pair.
From the 1981 integers remaining, we can find a paibs such thatagbs = c%. We can continue this operation as long as
we have at least 513 integers. Thus we may perform this dpenat- 1 times, weren is the largest positive integer such that
1985—2n > 513 i.e.,n = 736. Therefore, we are able to gather 737 pajtdy such thatby = c,f Now, the 737 numbers
¢k have all their prime factors smaller than 26, and since ¥3%13 we may find two distincty, sayc andc;,i # j, such that
cicj = a2, a perfect square. But themc; = a® implies thatajbiajb; = a*, a fourth power. Thus we have found four distinct
numbers in our set whose product is a fourth power.

301 Example Let any fifty one integers be taken from amongst the numbgts 1,100 Show that there must be one that
divides some other.

Solution: Any of the fifty one integers can be written in thenic2?*m, wheremis odd. Since there are only fifty odd integers
between 1 and 100, there are only fifty possibilitiesrforThus two (at least) of the integers chosen must share the edth
part, and thus the smaller will divide the larger.

302 Example (USAMO 1972) Prove that

labd?  (abc)?
[a,b][b,cllc,a]  (a,b)(b,c)(c,a)’

Solution: Put
a=[] pgk, b=T] p c=]]p
with primespg. The assertion is equivalent to showing
2max a, Bk, ) — max a, Bi) —max( ai, ) —max( B, )

= 2min(ay, Bk, ) — min(a, Bc) —min(a, k) —min(B;, %).
By symmetry, we may assume, without loss of generality, that B« > y. The equation to be established reduces thus to the
identity
20— O — Ok — B = 2% — B — Yk — W

303 Example Prove thanh = 24 is the largest natural number divisible by all integrdl < a < v/n.

Solution: Supposa is divisible by all the integers: \/n. Let py =2,p, =3,..., p be all the primes< /n, and letk; be the
unique integers such thﬂf" <yn< plj(j+l. Clearlyn'/? < platlple ™. v+t et lem(1,2,3,..., | vA]| — 1, | vA]) =K.
Clearly thenk = ppk2... pi. Hencep! "1 pi2™™... pli ™1 < K2 and thus'/2 < K2. By hypothesisn must be divisible by
and soK < n. Consequentlyn'/? < n. This implies that < 4 and s < 49. By inspection, we see that the only valid values
fornaren=2,4,6,8,12 24.
304 Example (Irving Kaplansky) A positive integem has the property that for@1 <m<n,

S—I4+(I+1)+...4+m

is never divisible byn. Prove that this is possible if and onlyrifis a power of 2.
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Solution: Setn = s2X with s odd. If s=1,2S= (I + m)(m—1+ 1), which has one factor even and one factor odd, cannot be
divisible by h = 21 since, its even factor is less tham But if s > 1, thenSis divisible byn, with 0 <1 < m< n, if we take

m=(s+21-1)/2

and
[ 1+ m—2ktl g kL
| 1+m—s s< 261,
n+1 .
305 Example LetO<a; <ap < --- < ax < n, wherek > UTJJ, be integers. Prove that
a+aj=a

is soluble.

Solution: Thek— 1 positive integers; —a;,2 < i <Kk, are clearly distinct. These, together with thgiven distincta’s, give
2k— 1 > n positive integers, each not greater tharHence, at least one of the integers is common to both setatat least
oncea, —a; = a;.
The sequencgn/2||+1,||n/2]]+2,...,n, shows that fok = || (n+ 1) /2] the result is false.
306 Example LetO< a; < ap < --- < ap < 2nbe integers such that the least common multiple of any tweeds B. Prove
2n
thata; > Ugﬂ-

Solution: It is clear that no one of the numbers can dividettaero(otherwise we would have an Ics2n). Hence, writing
a, = 2%A,, A odd, we see that all th&, are different. Since there aneof them, they coincide in some order with the set of all
positive odd numbers less than.2

Now, considem; = 21A;. If a; < [2n/3]|, then &1 = 213A; < 2n, and 31 < 2n. Since A\; would then be an odd number
< 2n, 3A; = A| for somej, anda;j = 2'i3A;. Thus eitherlay,aj] = 213A; = 3a; < 2n, or [ay,aj] = 2'13A; = aj < 2n. These
contradictions establish the assertion.

307 Example (Putnam, 1980) Derive a formula for the number of quadruplesb, ¢, d) such that
3'7°=[a,b,c] = [b,c,d] = [c,d,a] = [d,a,b].
Solution: By unique factorisation, each afb, c,d must be of the form37",0 < m<r,0 < n < s. Moreover,.# must equal
4
r for at least two of the four numbers, andnust equak for at least two of the four numbers. There <r5> r? = 6r2 ways

. 4 .
of choosing exactly two of the four numbers to have expone<t3> r = 4r ways of choosing exactly three to have exponent

4 . . :
r and (4) = 1 of choosing the four to have exponentThus there is a total of 4 4r + 6r2 of choosing at least two of the

four numbers to have exponent Similarly, there are ¥ 4s+ 6s> ways of choosing at least two of the four numbers to have
exponens. The required formula is thus
(1+4r +6r%)(1+4s+65%).

Practice

308 Problem Prove that logy, 7 is irrational. 309 Problem Prove that

log3
log2
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is irrational.

310 Problem Find the smallest positive integer such tha2
is a square and/3 is a cube.

311 Problem How many integers from 1 to £8 inclusive,
are not perfect squares, perfect cubes, or perfect fifth Ry

312 Problem Prove that the sum
1/3+1/54+1/7+---+1/(2n+1)

is never an integer.

(Hint: Look at the largest power of 8 n).

313 Problem Find I(mi{136k—5k.
>

(Hint: Why is 36— 1—5% £ 0?)

314 Problem (AIME 1987) Find the number of ordere
triples (a,b,c) of positive integers for which[a,b] =
100Q [b,c] = [a,c] =2000Q

315 Problem Find the number of ways of factoring 13

as the product of two positive relatively prime factors each

greater than 1. Factorisations differing in order are abergid
the same.

Answer: 3.

316 Problem Let pi,p2,...,pr be different primes an

ai,a,...a be natural numbers. Find the number of way{ gf

factoring pél‘l pgz ... p& as the product of two positive relative
prime factors each greater than 1. Factorisations diffieirin
order are considered the same.

Answer: 2711,

317 Problem Letn=p&pZ... pf andm=p2p2...p*, the
p's being different primes. Find the number of the comni
factors ofmandn.

Answer:

t
T (2-+min(ay, by).
k=1

319 Problem Let2=p1,3=py,... be the primesin their nat-
ural order and suppose that- 10 and that k j < n. Set

Ny = p1p2---Pj—1—L N2 =2p1pz---pj—1—1,...

and
Np; = Pjp1p2---pj—1—1
eProve

1. Eachp;, j <i < n, divides at most one of thid,, ,1 <
k<]

2. Thereis g,1 < j < n, for whichp; >n—j+1.

3. Letsbe the smalles} for which p; > n—j+ 1. There
isat,1 <t < ps, such that all ofps, ... p, fail to divide
tpap2---Ps—1—1, and henceni1 < p1pz--- Ps.

4. Thesabove is>4 and sgps—1—2>sandpipz--- ps <
Ps+1-* Pn.

5. (Bonse’s Inequality) Fan> 4, p2, ; < p1--- pn.

(1320 Problem Prove that 30 is the only integarwith the fol-
lowing property: if 1<t < nand(t,n) =1, thent is prime.

321 Problem (USAMO 1984) 1. For which positive inte-
2 gersn is there a finite se%, of n distinct positive inte-
gers such that the geometric mean of any subsgf o

an integer?

. Is there amnfinite setSof distinct positive integers such
that the geometric mean of any finite subseSda$ an
integer.

i

2 Problem 1. (Putnam 1955) Prove that there is no

y triplet of integerga, b, c), except for(a,b,c) = (0,0,0)
for which

a+bv2+cv/3=0.

2. (Putnam 1980) Prove that there exist integers a, b, ¢, not
all zero and each of absolute value less than a million,
such that

la+bv2+cv3| <1071
on
3. (Putnam 1980) Let a,b,c be integers, not all zero and

each of absolute value less than a million. Prove that

la+bv2+cv3| > 1072%

323 Problem (E 6tv6s 1906) Letag,ap,...,a, be any permu-
tation of the numbers,2,...,n. Prove that ifn is odd, the

318 Problem (USAMO 1973) Show that the cube roots
three distinct prime numbers cannot be three terms (notsha
sarily consecutive) of an arithmetic progression.

|

1=oroduct
ce (& —1)(az—2)---(a—n)

is an even number.
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324 Problem Prove that from any sequence formed by [aB26 Problem Prove that from any one hundred integers it is
ranging in a certain way the numbers from 1 to 101, it is alwpgivays possible to choose several humbers (or perhaps, one
possible to choose 11 numbers (which must not necessarflynbenber) whose sum is divisible by 100

consecutive members of the sequence) which form an incfeas-

ing or a decreasing sequence. 327 Problem Given n numbersi, Xo, ..., X, each of which is
equal tot1, prove that if

325 Problem Prove that from any fifty two integers it is &
ways to choose two, whose sum, or else, whose differenge, is

divisible by 100 thennis a multiple of 4.

X1X2 4+ XoX3 4 - - - + XnX1 = O,
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Linear Diophantine Equations

5.1 Euclidean Algorithm

We now examine a procedure that avoids factorising two et order to obtain their greatest common divisor. It Iedahe
Euclidean Algorithnmand it is described as follows. Latb be positive integers. After using the Division Algorithnpeatedly,
we find the sequence of equalities

a = boq+ry, O<ra<hb,
b = roQp+rs 0<rg<ry,
ro = I30z+ra O0<rg<rs,
. . (5.1)
-2 = I-10h—1+ O0<rp<rp_g,

fh—1 = TInOn.

The sequence of remainders will eventually reach,a which will be zero, sincdd,ro,r3,... is @ monotonically decreasing
sequence of integers, and cannot contain more lh@ositive terms.

The Euclidean Algorithm rests on the fact, to be proved belbat(a,b) = (b,r2) = (r2,r3) =+ = (rn_1,fn) = rn.
328 Theorem Prove that ifa, b, n are positive integers, then

(a,b) = (a+nb,b).

Proof: Setd= (a,b),c=(a+nb,b). As da,d|b, it follows that d(a-+ nb). Thus d is a common divisor of both
(a+nb) and b. This implies that|d. On the other hand,|€a+ nb),c|b imply that ¢((a+ nb) —nb) =a. Thus cis
a common divisor of a and b, implying thatlc This completes the prodfl

329 Example Use Theoren328to find (3456 246).

Solution: (3456 246) = (13- 246+ 158 246) = (158 246), by the preceding example. NoWi 58 246) = (158 158+ 88) =
(88,158). Finally, (88,158 = (70,88) = (18,70) = (16,18) = (2,16) = 2. Hence(3456 246) = 2.

330 Theorem |If ry, is the last non-zero remainder found in the process of thédaan Algorithm, then

r=(ab).

48
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Proof: From equation$.1

ro = a—bgy
rs = b—raq
g = T2—1r303
Ml = TI'n-2—TIn-10n-1
Letr=(a,b). From the first equation,|r,. From the second equationjrg. Upon iterating the process, we see that

rro.

But starting at the last equatiof.1 and working up, we see that|rh_1,|fn—2,...rn|r2,rlb,rpla. Thus pis a
common divisor of a and b and sgl(a,b). This gives the desired resulil

331 Example Find (23,29) by means of the Euclidean Algorithm.

Solution: We have
29=1.23+6,

23=3.6+5,
6=1-5+1,
5=5.1.

The last non-zero remainder is 1, tHi@s,29) = 1.
An equation which requires integer solutions is callatigghantine equatianBy the Bachet-Bezout Theorem, we see that
the linear diophantine equation
ax+by=c

has a solution in integers if and only(#, b)|c. The Euclidean Algorithm is an efficient means to find a solutmthis equation.

332 Example Find integers,y that satisfy the linear diophantine equation

23+ 29y = 1.

Solution: We work upwards, starting from the penultimataadiy in the preceding problem:

1=6-1-5,
5=23-3-6,
6=29-1-23
Hence,
1 = 6-1.5
= 6—1-(23-3-6)
4.6—1-23
= 4(29-1-23)—1-23
= 4.29-5.23
This solves the equation, with=—5,y = 4.
333 Example Find integer solutions to
23x+2% =17.

Solution: From the preceding example(2%) +29(4) = 1. Multiplying both sides of this equality by 7,
23(—35) +29(28) =7,

which solves the problem.
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334 Example Find infinitely many integer solutions to

23X+ 2%y = 1.

Solution: By Example332, the pairxg = —5,yp = 4 is a solution. We can find a family of solutions by letting

X=—-5+2%, y=4-23, teZ.
335 Example Can you find integers, y such that 3456+ 246y = 737

Solution: No.(3456246) =2 and 2/73.

336 Theorem Assume thag, b, c are integers such thaa, b)|c. Then given any solutiofixg,Yo) of the linear diophantine
equation
ax+by=c

any other solution of this equation will have the form

x=xo+t2, y=yo—t2
_XO d»y—yO d7

whered = (a,b) andt € Z.

Proof: Itis clear that if (xo,Yo) is a solution of ax-by = ¢, then x=xo+tb/d,y = yp—ta/d is also a solution.
Let us prove that any solution will have this form.

Let (X,y) satisfy ax+ by = c. As ax + byo = ¢ also, we have
a(X —xo) =blyo—Y).
Dividing by d= (a,b),
3 (¢ o) = 2(yo—).
d d
Since(a/d,b/d) =1, g|(yo—)/), in virtue of Euclid’'s Lemma. Thus there is an integer t suit tg =yo—VY,
that is, y=yo—ta/d. From this
3w = 22
d S dd
which is to say %= X +tb/d. This finishes the proofl]

337 Example Find all solutions in integers to
3456¢+ 246y =234

Solution: By inspection, 3456-1) 4 246(15) = 234. By Theorem336, all the solutions are given by= —1+ 123,y =
15—1728,t € Z.

Practice

338 Problem Find the following: 4. (809864307(8173826342
1. (34567987)

2. (560,600 L . .
(560,600 339 Problem Solve the following linear diophantine equa-

3. (4554 36) tions, provided solutions exist:
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1. 24x+25¢=18 tices arg(0,0), (b,a), (x,y) is

|by—ax|

2. 3456+ 246y = 44 _

3. 199&+ 2000/ = 33
+ v 341 Problem A woman pays $2Z8 for some bananas and

eggs. If each banana costs.@® and each egg costs .88,
340 Problem Prove that the area of the triangle whose \erow many eggs and how many bananas did the woman buy?

5.2 Linear Congruences

We recall that the expressi@x=b modn means that there ise Z such thatix= b+ nt. Hence, the congruencial equation
in X, ax=b modn is soluble if and only if the linear diophantine equati@x+ ny = b is soluble. It is clear then that the
congruence

ax=b modn

has a solution if and only ifa, n)|b.

342 Theorem Leta, b, nbe integers. If the congrueneg=b mod n has a solution, then it hds, n) incongruent solutions
modn.

Proof: From Theorenm836we know that the solutions of the linear diophantine equmtig+ ny = b have the
form x=xp+nt/d,y =yp—at/d,d = (a,n),t € Z, where ¥, Yo satisfy ax+ ny = h. Letting t take on the values
t=0,1,...((a,n)—1), we obtain(a, n) mutually incongruent solutions, since the absolute dffiee between any
two of them is less than if x = xg +nt’/d is any other solution, we writé &st =qd+r,0<r < d. Then

X Xo+n(qd+r)/d
Xo+ng+nr/d
Xo+nr/d  mod n.

Thus every solution of the congruence=b modn is congruent modn to one and only one of the d values
Xo+nt/d,0 <t <d-—1. Thus if there is a solution to the congruence, then there ainecdngruent solutions
modn.[]

343 Example Find all solutions to the congruence & 3 mod 7

Solution: Notice that according to Theoredd2, there should only be one solution mod 7,(8s7) = 1. We first solve the
linear diophantine equatiorxs- 7y = 1. By the Euclidean Algorithm

7 = 5142

5 = 2.2+1

2 = 2-1
Hence,

1 = 5-2.2

2 = 7-5-1,
which gives

1=5-2.2=5-2(7-5-1)=5-3-7-2.
Whence 3=5(9) — 7(6). This gives 59 =3 mod 7 which is the same as3=3 mod 7. Thux=2 mod?7.

344 Example Solve the congruence
3x=6 mod 12
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Solution: As(3,12) = 3 and 36, the congruence has three mutually incongruent solutiogsn&ection we see that=2 is
a solution. By Theorer336, all the solutions are thus of the fon= 2+ 4t,t € Z. By lettingt = 0,1, 2, the three incongruent
solutions modulo 12 are= 2,6, 10.

We now add a few theorems and definitions that will be of uskerfature.

345 Theorem Letx, y be integers and let, n be non-zero integers. Then
ax=ay modn

if and only if
X=y mod

(an)

Proof: If ax=ay modn then @x—y) = sn for some integer s. This yields

(x—y) s
(an) (an)
Since(a/(a,n),n/(a,n)) = 1 by Theoren240, we must have
(a7n) |(X_y)a

by Euclid’s Lemma (Lemm239). This implies that

X=y mod @n’

. n .

Conversely ifxsy mod @n implies

ax=ay mod an

ad (an)’

upon multiplying by aAs (a,n) divides a, the above congruence implies a fortiori that-aay = tn for some
integer t. This gives the required resuit.

Theorem345gives immediately the following corollary.

346 Corollary If ax=ay modnand(a,n) =1, thenx=y modn.

Practice

347 Problem Solve the congruence 6= 12 mod 14. 348 Problem How manyx, 38 < x < 289 satisfy

3x=8 mod 12

5.3 A theorem of Frobenius

If (a,b) =d > 1 then the linear fornax+ by skips all non-multiples ofl. If (a,b) =1, there is always an integer solution
to ax+ by = n regardless of the integex We will prove the following theorem of Frobenius that telis when we will find
nonnegative solutions @x+ by =n.

349 Theorem (Frobenius) Let a,b be positive integers. Ifa,b) = 1 then the number of positive integers m that cannot be
written in the formar 4+ bs= mfor nonnegative integersr, s equéts—1)(b—1)/2.
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Proof: Let us say that an integer n &tainabldf there are nonnegative integerssrwith ar+bs=n. Consider
the infinite array

0 1 2 ... k ... a—1
a at+l a+2 ... a+k ... 2a-—-1
2a 2a+1 2a+2 ... 2a+k ... 3a—-1

The columns of this array are arithmetic progressions witihnenon difference a. The numbers directly below a
number n have the form-nka where k is a natural number. Clearly, if n is attainablejsa+ ka, implying thus
that if an integer n is attainable so is every integer dirgdiElow it. Clearly all multiples of b are attainable. We
claim that no two distinct multiples of b and wb with0 < v,w < a— 1 can belong to the same column. If this
were so then we would have ¥bwb moda. Hence &v—w) =0 moda. Since(a,b) = 1 we invoke Corollary
5.1to deduce v w=0 moda. Sinced < v,w < a— 1, we must have ¥ w.

Now we show that any number directly above one of the mustifd® < v < a— 1is non-attainable. For a number
directly above vb is of the form vbka for some natural number k. If vika were attainable, then axby=vb—ka
for some nonnegative integersyxThis yields by< ax+ by = vb—ka < vh Hence,0 <y < v < a. This implies
that y£ v modb. On the other hand, two numbers on the same column are cengrunoda. Therefore we
deduce vb= bv—ka = ax+ by moda which yields bv= by moda. By Corollary346 we obtain v=y moda.
This contradicts the fact th&t<y<v< a.

Thus the number of unattainable numbers is precisely thebesrthat occur just above a number of the form
vb,0 <v<a—1. Now, on the j-th column, there afgb— j)/a values above vb. Hence the number of unattainable

numbers is given by
a—la—1

vb—j (a—1)(b—1)
ZZ a 2 ’

v=0j=0

as we wanted to sholw.

The greatest unattainable integer occurs just aljavel)b, hence the greatest value that is not attainabla@is1)b—a,
which gives the following theorem.

350 Theorem Let a, b be relatively prime positive integers. Then the equation
ax+by=n

is unsoluble in nonnegative integety for n=ab—a—b. If n> ab—a—b, then the equation is soluble in nonnegative integers.

351 Example (Putnam, 1971) A game of solitaire is played as follows. After each play,admng to the outcome, the player
receives eithea or b points, @,b € N,a > b), and his score accumulates from play to play. It has beenatbthat there are
thirty five non-attainable scores and that one of these i&Bftl a andb.

Solution: The attainable scores are the nonnegative irgegfehe formax+ by. If (a,b) > 1, there are infinitely many such
integers. Hencéa, b) = 1. By TheorenB49, the number of non-attainable score&s- 1) (b—1) /2. Therefore(a—1)(b—1) =
70=2(35) =5(14) = 7(10). The conditionsa > b, (a,b) = 1 yield the two possibilitesa =71, b=2 anda=11b=8. As
58=0-71+2- 29, the first alternative is dismissed. The linex}t18y = 58 passes througl6, —1) and(—2,10) and thus it
does not pass through a lattice point in the first quadrarg. urtique solution ia=11b=8.

352 Example (AIME, 1994) Ninety-four bricks, each measuring 4 10’ x 19”, are to be stacked one on top of another to
form a tower 94 bricks tall. Each brick can be oriented so iittdbutes 4 or 10’ or 19’ to the total height of the tower. How
many different tower heights can be achieved using all 94ebiricks?
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Solution: Let there be,y,z bricks of height 4,10", and 19 respectively. We are asking for the number of different sums

4x+10y+ 19z

with the constraintg > 0,y > 0,z> 0,x+y+z=94.

Now, 4x+ 10y + 19z < 19-94 = 1786 Letting x = 94—

y— 2z, we count the number of different nonnegative integral

solutions to the inequality 3763(2y+5z) < 1786y+z < 94, thatis 3/+52< 470 y+z < 94. By Theoren350, every integer

>(2-1)(5-1)

=4 can be written in the formy2+ 5z, and the number of exceptions(B—1)(5—1)/2 =2, namelyn=1 and

n= 3. Thus of the 471 nonnegative integars 470, we see that 469 can be written in the fonm: 2y+5z. Usingx = 96—x—,
n,4 < n <470 will be “good” only if we have 476-n = 3x+ 5z By Theorem349there arg3—1)(5—1)/2 = 4 exceptions,
each< 8, namelyn=1,2,4,7. This means that 463, 466, 468, and 469 are not representeathle form 4+ 10y+ 19z. Then
every integen,0 < n < 470 except for 1, 3, 463, 466, 468, and 469 can be thus repeesemd the number of different sums

is 471—6 =465

E I
353 xamp-e 1991
only if there exist integerm, a, b with

(%)

2. Find the largest positive rational with denominator 1
with denominators less than 1991.

holds then— __4a

Solution: (a) If(x) 1991 181m

+ T’n does the trick. Conversely, fﬁ

1. Let(n,1991) = 1. Prove that— is the sum of two positive integers with denominatod 991 if an

1<m<10,a>1 b>1 mn=1la+18l.

gt cannot be written as the sum of two positive rationathea

b
F—&-gfora,bz 1 (ar)=(b,s) =1,

andr,s < 1991, we may suppoge= 181r1,s= 11s; and themr;s; = 11as; + 181brq, which leads ta'1/11as, and sori|s;.

Similarly, s1|r1, whencer; = s; = m, say, and ) follows.
(b) Any n> 170,(n,1991) = 1 satisfieq*) with b=1 and.#

except ifm=1n < 18Q but thenn would not be of the forrm =

such thaimnis of the formmn= 181 mod 11. Fomn> 181
181 mod 11.

But n= 170 does not satisf{x«); for we would have 176 181b mod 11, sdb = m mod 11, which yield$ > m, but

170m < 181. The answer is thus 170991.

Practice

354 Problem Let a,b,c be positive real numbers. Prove th
there are at leasf’ /2ab pairs of integersx, y) satisfying

x>0,y>0, ax+hy<c.

355 Problem (AIME, 1995) What is largest positive integg
that is not the sum of a positive integral multiple of 42 3
a positive composite integer?

356 Problem Leta> 0,b> 0,(a,b) =1. Then the numbero
nonnegative solutions to the equatiex+ by = nis equal to

Dyor( 2

[ ab

e ]+1.

a&57 Problem Let a,b € N,(a,b) = 1. Let S(n) denote the
number of nonnegative solutions to

ax+hby=n.

'Evaluate
nd

r358 Problem (IMO, 1983) Let a,b,c be pairwise relatively

prime integers. Demonstrate thaatit—ab—bc—cais the
largest integer not of the form

(Hint: [s] —[t] = [s—t] or[s—t]+1.)

bcx+ acy+abz x>0,y>0,z>0.
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5.4 Chinese Remainder Theorem

In this section we consider the case when we have multiplgroemces. Consider the following problem: find an integer
which leaves remainder 2 when divided by 5, is divisible bgvd leaves remainder 4 when divided by 11. In the language of
congruences we are seekixguch that

X = 2 mod 5
Xx =0 mod 7,
X = 4 mod 11

One may check that= 147 satisfies the requirements, and that in fact, so doesatiaengtric familyx = 147+ 385%,t € Z.

We will develop a method to solve congruences like this orfe method is credited to the ancient Chinese, and it is thus
called theChinese Remainder Theorem.

359 Example Find x such that
Xx=3 mod 5ank=7 mod 11

Solution: Sincex = 3+ 5a, we have 1% = 33+ 55a. Asx =7+ 11b, we have X = 35+ 55b. Thusx = 11x— 10x = 33— 70+
55a—11(b. This means thax = —37= 18 mod 55. One verifies that all the numbers: 18+ 55 ,t € Z verify the given
congruences.

360 Example Find a number n such that when divided by 4 leaves remaindeh@n divided by 5 leaves remainder 1, and
when divided by 7 leaves remainder 1.

Solution: We wanh such that

n= 2 mod 4
n= 1 mod 5
n= 1 mod 7

This implies that
35hn= 70 mod 140
28= 28 mod 140
20n= 20 mod 140

As n=21n—20n, we haven = 3(35n—28n) — 20n = 3(70—28) —20= 106 mod 140. Thus alh= 106 mod 140 will
do.

361 Theorem (Chinese Remainder Theorem)  Letm,ny,...mg be pairwise relatively prime positive integers, each esdeee
ing 1, and letas, ay, ... ax be arbitrary integers. Then the system of congruences

X = a mod my
X = a mod m,
X = a mod my

has a unique solution modulom; - - - my.

Proof: SetR=mmp---m¢/m;,1< j <k LetQ be the inverse ofPmodm;, i.e., BQ; =1 modm;, which
we know exists since all the @re pairwise relatively prime. Form the number

X=a1P1Q1+axP>Q2 + - - - + axAQx.

This number clearly satisfies the conditions of the theofEme. uniqueness of the solution modulgm- - - m, can
be easily establishedl
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362 Example Can one find one million consecutive integers that are naregfree?

Solution: Yes. Lep, p2, . . ., P1oooooobe a million different primes. By the Chinese Remainder Taeg there exists a solution
to the following system of congruences.

X = -1 mod p%,
x = 2 mod p3,
X = —1000000  mModp?u00000

The numbers+1,x+2,...,x+ 1000000 are a million consecutive integers, each of whidivisible by the square of a prime.

Practice

363 Problem Solve the following systems: 364 Problem (USAMO 1986) 1. Do there exist fourteen
consecutive positive integers each of which is divisible

1. x=—-1 mod4x=2 mod5 by one or more primep,2 < p < 11?

2. &x=3 mod7;x=10 mod 11 _ -
2. Do there exist twenty-one consecutive integers each of

3. Xx=2 mod8;X=2 mod9x=0 mod 1l which is divisible by one or more primgs2 < p<13?
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Number-Theoretic Functions

6.1 Greatest Integer Function

The largest integer not exceedirgs denoted by x|| or [|X|. We also call this function thBoor function. Thus||x| satisfies
the inequalitiesx— 1 < || x]] < x, which, of course, can also be written [gg]| < x < ||x|| + 1. The fact that|x|| is theunique
integer satisfying these inequalities, is often of use. We atilise the notatiofx} = x— ||x||, to denote the fractional part of
x, and||x|| = rg;ig |x—n| to denote the distance of a real number to its nearest intdgeseful fact is that we can write any real

numberx in the formx = | x|| + {x},0 < {x} < 1.
The greatest integer function enjoys the following projesrt

365 Theorem Leta,B € RjacZ,neN. Then

1. [a+a]=|a]+a
2.1 9=l
8. [lafj+ Bl < la+B < lall+[B]+1

Proof:
1. Letm=||a+a]. Thenm< a+a<m+1 Hence m-a< o < m—a+1. This means thatma=|a|,
which is what we wanted.
2. Writea/nasa/n=|a/n||+6,0< 6 < 1. Since fla/n| is an integer, we deduce by (1) that

lall=|nlla/n]+n6] =n[a/n|+[n6].
Now,0 < ||[nf]| <nb < n,and so0 < [[n8]|/n < 1. If we let® = ||n6]| /n, we obtain

uin”:u%ﬂnte, 0<O<1l

This yields the required result.

3. From the inequalitesr —1 < |la|| < a,B—1<| B <Bwegeta+B—-2< |a]+]|B] <a+p. Since
lla ||+ (8] is an integer less than or equal to+ 3, it must be less than or equal to the integral partof- 3,
i.e. |la+B]. We obtain thug a || + || B]] < |la + B]]- Also,a + B is less than the integefa || + || B]] + 2, so
its integer part|a + B ]| must be less thata || + | B +2, but||a + B < [[a ]+ ||B]]+2yields| a +B] <
lla ]+ [ Bl + 1. This proves the inequalities.

57
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366 Example Find a non-zero polynomidt(x,y) such that

P([LZtJJ»LBtJJ) =0

for all realt.

Solution: We claim that 2t] — 2[3t] = 0,+1 or—2. We can then take
P(x,y) = (3x—2y)(3x—2y—1)(3x— 2y +1)(3X— 2y + 2).

In order to prove the claim, we observe thjat| has unit period, so it is enough to prove the claimtfar(0,1). We divide
[0,1) as
[0,1) =10,1/3)U[1/3,1/2)U[1/2,2/3) U[2/3,1).
If t € [0,1/3), then both||2t]] and||3t]] are=0, and so 2t|| —2||3t]| = 0. If t € [1/3,1/2) then[3t] = 1 and[2t] = 0, and so

3 2t] —2||3t]] =—2. Ift € [1/2,2/3), then[2t] = 1,[3t] = 1, and so B2t | —2|| 3t = 1. If t € [2/3,1), then|| 2t | = 1, |3t ]| = 2,
and 3| 2t|| —2||3t]| =—1.

367 Example Describe all integera such that } | v2n]||2n.

Solution: Let 21=m(1+ | v2n]). If m< [v2n]—1then 22 < (|v2n] —1)(|[v2n[+1) =[vV2n|*~1<2n—-1<2n a
contradiction. lfim> ||v/2n||+ 1, then 2 > (|| v/2n||2+1)? > 2n+ 1, another contradiction. It must be the case that||v/2n|.

Conversely, len = w Sincel < v2n <1411 = ||v2n|. So all the integers with the required property are the

triangular numbers.

368 Example Prove that the integers
1(1+v2)")

with n a nonnegative integer, are alternately even or odd.

Solution: By the Binomial Theorem

n n n
(1+V2)"+(1-v2)" =2 " (2)'<<2k> =2N,

0<k<n/2

an even integer. Sincel < 1—+/2 < 0, it must be the case that —v/2)" is the fractional part of1++/2)" or (1+v/2)"+1
depending on whetheris odd or even, respectively. Thus for odd(1+v2)"—1 < (1+v2)"+(1—v2)" < (14+v2)",
whence(1+v2)"+ (1—v2)" = || (1+v/2)"||, always even, and fareven N := (1+v2)"+ (1—v2)" = || (1+V2)"| + 1,
and sd| (1+v2)"|| = 2N —1, always odd for even.

369 Example Prove that the first thousand digits after the decimal point i
(6+V/35)190

are all 9's.

Solution: Reasoning as in the preceding problem,

(6+V/35)1980+ (6—+/35)19%0= 2,
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an even integer. But & 6—+/35< 1/10, (for if 1—10 < 6—+/35, upon squaring 3508 3481, which is clearly nonsense), and
hence 0< (6 —v/35)1980 < 10~1%8%which yields

2k—1+09...9 =2k— < (64 /35)1980 2k
——
1979 nines

This proves the assertion of the problem.

1
101980

370 Example (Putnam 1948) If nis a positive integer, demonstrate that

[vn+vn+1] =[v4n+2].

Solution: By squaring, it is easy to see that
Van+1l<yn+vn+l<Van+3.
Neither 1+ 2 nor /+ 3 are squares since squares are either congruent to 0 or 1,reod 4
[v4n+2] = [ van+3],

and the result follows.
371 Example Find a formula for then-th non-square.

Solution: LetT, be then-th non-square. There is a natural numivesuch than? < T, < (m+1)2. As there arensquares less
thanT, andn non-squares up 6, we see thal, = n+m. We have them? < n+m< (m+1)2orm’—m< n< mf+m+1.

. . . o 1 1 .
Sincen, m? —m, m? + m+1 are all integers, these inequalities imptf—m-+ = < n < m?+m+ >, that is to say(m— 1/2)2 <

4 4
n< (m+1/2)2 Butthenm=|/\/n+ %Jj. Thus then-th non-square i3, =n+ || v/n+1/2].

372 Example (Putnam 1983) Let f(n) =n+|v/n|. Prove that for every positive integer m, the sequence
m, f(m), f(f(m)), £(F(f(m))),...

contains at least one square of an integer.

Solution: Letm=k?+ j,0< j < 2k. Split them's into two sets, the sek of all themwith excessj,0 < j < k and the seB
with all thosem’s with excessj,k < j < 2k+ 1.

Observe thak? < m< (k+1)2 =k?+2k+1. If j =0, we have nothing to prove. Assume timat B. As || v/m| =k,
f(m) =k?+ j+k=(k+1)°+ j—k—1, with 0 < j —k—1 < k— 1 < k+ 1. This means that eithefm) is a square of (m) € A.
It is thus enough to consider the alternatie A, in which casd| vm+K|| =k and

f(f(m)) = f(m+k) =m+2k=(k+1)°+j—1.

This means that (f(m)) is either a square dr( f(m)) € Awith an excesg— 1 smaller than the exceg®f m. At each iteration
the excess will reduce and eventually it will hit 0, whencere&ch a square.

373 Example Solve the equation
1> —x—2] =[],

for x e R.

Solution: Observe thdta|| = || b] if and only if 3k € Z with a,b € [k, k+ 1) which happens if and only ia—b| < 1. Hence,
the given equation has a solution if and onlyxt — 2x— 2| < 1. Solving these inequalities it is easy to see that the isolis
thus

xe (—1,%(1—\/5)} U [%(1+ JT?),%(H V21).
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374 Theorem If a,b are relatively prime natural numbers then

a—1 b—1
EIEEIE
k=1 k=1

Proof:

1)(b—

1)
5 .

) =3~

Consider the rectangle with vertices @ 0), (0,b), (a,0), (a,b). This rectangle contain&a— 1)(b—1)

. . . . . . : . o . xb
lattice points, i.e., points with integer coordinates. §héctangle is split into two halves by the Ilne:yg.
We claim that there are no lattice points on this line, exdeptthe endpoints. For if there were a lattice point

n
(m,n),0<m<a,0<n<b,thenE

3 Thus ’mis a reduction for the irreducible fractioryl, a contradiction.

The points k= (k, %’), 1<k <a—1are each on this line. Nov&%’ﬂ equals the number of lattice points on the

kb a—1
vertical line that goes fronfk, 0) to (k, a

k=1
b—1

), i.e. Zu'i;

| 'is the number of lattice points on the lower half of the

rectangle. SimilarIyZuk—sﬂ equals the number of lattice points on the upper half of tlotaregle. Since there

k=1

are (a—1)(b—1) lattice points in total, and their number is shared equalythe halves, the assertion follows.

375 Example Find the integral part of

108
>
k=1

1
= VK

Solution: The functionx— x 2 is decreasing. Thus for positive inteder
1 ktlax 1
—< — <.
VKT e VX VK
Summing fromk = 1 tok = 10° — 1 we deduce
§ 1 10° dx<1°6*l 1
vk v VK
The integral is easily seen to be 1998. Hence
108 1
1998+1/10° < Y — <1999
/ ; N
The integral part sought is thus 1998.
Practice
376 Problem Prove that for all real numbersy, 378 Problem If n> 1is a natural number ara > 1 is a real

X0+ [x+yl + Lyl < [[2x[] + [[2y]
holds.

377 Problem If X, y real numbers, when is it true th

IxI Lyl < [Ixyl?

number, prove that
a
[a] > UFJJ.

379 Problem If a, b, n are positive integers, prove that

At
12> a2
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380 Problem Leta be areal number. Prove that] + [—a] = | 390 Problem (Putnam 1973) Prove that ifh € N,
—lorOandthafa|—2||a/2||=0or 1. )
ta]-2a/2) I;(T;IIQ(k‘}’un/kH):H_\/Lln‘l*lﬂ.
381 Problem Prove that
391 Problem (Dirichlet’s principle of the hyperbola) Let

L(2+v3)"]|

is an odd integer.

382 Problem Show that then-th element of the sequence
1,2,2,3,3,3,4,4,4,4,5,5,55)5, ...

where there ara occurrences of the integaiis || vV2n+1/2].

383 Problem ProveHermite’s Identity if x is a real numbe
andnis a natural number then

384 Problem Prove that for all integens, n, the equality

m+4-n n—m+1

1P+ 1) =

holds.

385 Problem If a, b, ¢, d are positive real numbers such th

|[na]] + [ nb]] = [ nc]|| + || nd]|
for all natural numbers, prove that

at+b=c+d.

386 Problem If nis a natural number, prove that

n+42— [Ln/ZSJJJJ u8n—|—24

i I

387 Problem Solve the equation

LL1994JJ uﬁ%ﬂ'

388 Problem Let[a, ] be an interval which contains no inte-
gers. Prove that there is a positive integesuch thaina, nf3]
still contains no integers but has length at leg$.1

389 Problem (IMO 1968) For every natural number, evalu-

ate the sum . )
n+2
Zu 2k+1 JJ
k=0

N be the number of integer solutionsxg < n,x > 0,y > 0.
Prove that

N= ZLLJJ 2 ) uﬂ Lv/nl?.

1<k</f

392 Problem (Circle Problem) Letr >0 and lefT denote the
number of lattice points of the domaif+y? < r2. Prove that

T=1+4r]+8 >  [Vr? x21|+4u\[ﬂ2

0<x<rv/2

393 Problem Letd = (a, b). Prove that

an —1)(b—1) d-—1
> % H— T 5

1<n<b-1

394 Problem (Eisenstein)

an
Z UFH +

1<n<(b—1)/2

If (a,b) =

>

1<n<(a—1)/2

1 anda,b are odd, then

b —1)(b—1
127y = B,

395 problem Let m e N with m> 1 and lety be a positive

real number. Prove that
m/ Y _
SLy=

where the summation runs through all positive integenst
divisible by themth power of an integer exceeding 1.

396 Problem For which natural numberswill 112 divide

—L2+V2)"]?

397 Problem A triangular numberis a number of the form
1+4+2+---4+n,ne N. Find a formula for theth non-triangular
number.

398 Problem (AIME 1985) How many of the first thousand
" positive integers can be expressed in the form

12| + [[4x]] + [16x]| + [ 8x]|?

399 Problem (AIME 1987) What is the largest positive inte-
gern for which there is a unique integkrsuch that

8 n <l?

T5< n+k 13
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400 Problem Prove that ifp is an odd prime, then
[(2+V5)P| —2P*1
is divisible byp.

401 Problem Prove that then-th number not of the form

L[], k=1,2,...is
To=n+[In(n+1+|In(n+1)]})].

402 Problem (Leningrad Olympiad)
integers are there in the sequence

12 22
L7580/ 758t

1980~ "’
403 Problem Letk > 2 be a natural number and x a positi
real number. Prove that

L1 = LA/1UX0.

How many different

198¢

[ o800

404 Problem 1. Find a real numbex # 0 such that
X, 2X, ..., 34x have no 7’s in their decimal expansions

2. Prove that for any real number# O at least one o
X, 2X,...79% has a 7 in its decimal expansion.

3. Can you improve the “gap” between 34 and 79?

405 Problem (AIME 1991) Suppose that is a real numbe
for which

91 K
> Ir+ 750! =546

Find the value of/ 100 ||.

406 Problem (AIME 1995) Let f(n) denote the integer clos-

est ton1/4, whenn is a natural number. Find the exact numer-
ical value of
1995
1
— f(n)
407 Problem Prove that
1
/ (1) L1994 +[/1995] 1993 1994\ v—o.
0 11994/ \ || 1995 ||

408 Problem Prove that

LvVn+vn+1| = [[vn+vVn+2].

ve

409 Problem (Putnam 1976) Prove that

3 (u%‘ﬂ—zugﬂ) —In4—1.

1<k<n

lim

n—o0

410 Problem (Putnam 1983) Prove that

r

You may appeal téWallis Product Formula:

1
lim =
n—oo N

EH dx= logs(4/70).

224460¢6 838

k=19

6.2 De Polignac’s Formula

We will consider now the following result due to De Polignac.

411 Theorem (De Polignac’s Formula)  The highest power

of a primgdividing n! is given by

“..n
;uﬁﬂ'

Proof:
factor of pis||n/p?|], etc.O]

412 Example How many zeroes are at the end of 800

The number of integers contributing a factor of f|is/p||, the number of factors contributing a second

Solution: The number of zeroes is determined by how manystib@edivides into 300. Since there are more factors of 2 it 300
than factors of 5, the number of zeroes is thus determinetidhighest power of 5 in 300By De Polignac’s Formula this is

> "[1300/5%|| =60+ 12+2 =74
k=1
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100
?
7‘ ( 5000) '
Solution: The highest power of 7 dividing into 1008 (| 1000/7|| + || 1000/ 72 || 4 | 1000/ 73|| = 142+ 20+ 2 = 164 Similarly,

100 1000 : o
5000> = 5002’ the highest power of 7 that divides

413 Example Does

the highest power of 7 dividing into 500! is 7110+ 1 = 82. Since(

1000\ . .. /100
< 500% is 164—2.82=0, and so 7 does not leIdé 500%.

414 Example Letn=n;+ny+ .-+ ng where then; are nonnegative integers. Prove that the quantity
n!
nyino!---ng!

is an integer.

Solution: From (3) in Theorer@65we deduce by induction that
lacll + lael] +---+[a] < [[ar+az+---+a .
For any primep, the power ofp dividing n! is
STUn/p =Sl +np+- 4 /pl.
i>1 j>1
The power ofp dividing ny!np!---ny! is
> lna/pl )+ ne/p [+ [/ p' |-
j>1
Since ' ' _ .
[na/p I+ 1n2/ P -+ /P | < [L(n 42+ 1) /p' ],
we see that the power of any prime dividing the numerator of
n!
nyino!--- I’lk!

is at least the power of the same prime dividing the denominatich establishes the assertion.

415 Example Given a positive integem > 3, prove that the least common multiple of the produgts - - - x«(k > 1), whose
factorsy; are the positive integers with
Xp+Xo+ - X <N,

is less tham!.

Solution: We claim that the least common multiple of the nemsbin question is
H pln/pl.
P
p prime

Consider an arbitrary produgtx; - - - X, and an arbitrary prime. Suppose thap“i |x;, piti JXj. Clearly p® +---+ pax <n
and sincep? > ap, we have

n
p(o,1+...ak)gnoral+~--+ak§UBﬂ-

Hence it follows that the exponent of an arbitrary pripis at most|n/p||. But on choosingy =--- =X« = p,k=||n/p]|, we
see that there is at least one product for which equalityhgeaed. This proves the claim.

The assertion of the problem now follows upon applying Dedpeic’'s Formula and the claim.
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Practice

416 Problem (AHSME 1977) Find the largest possiblesuch| is an integer.
that 10' divides 1005.

) ] o 423 Problem (AIME 1992) Define a positive integer n to be a
417 Problem  Find the highest power of 17 that divides™ — | «tactorial tail” if there is some positive integer m such thiae
2)! for a positive integen. base-ten representationrof ends with exactly n zeroes. How
many positive integers less than 1992 aotfactorial tails?
418 Problem Find the exponent of the highest power of p4

that divides 300 : . . :
424 Problem Prove that ifm andn are relatively prime posi-

) ) tive integers then
419 Problem Find the largest power of 7 in 300

(m+n—1)!
min!

420 Problem (AIME 1983) What is the largest two-digit
prime factor of the integer is an integer.

200\,

100/ . : - 2n\ .

425 Problem If pis a prime divisor of ° ') with p > V2n
421 Problem (USAMO 1975) 1. Prove that prove that the exponent of p in the factorisation @%nn)
LS|+ 15yl > I3x+yl] + |3y +x]|. equals 1.

2. Using the result of part 1 or otherwise, prove that

(5m)!(5n)!
min!(3m+n)!(3n+m)! |Cm<<n>7 <n> <n>> _lem(1,2,...,n+1)

] ) o 1/'\2 n n+1
is an integer for all positive integers, n.

426 Problem Prove that

422 Problem Prove thatifn> 1,(n,6) =1, then 427 Problem  Prove the following result of Catalar(:m:n>
—4)!
tn-a)t divides (2™ (2.
n!(n—2)! m n

6.3 Complementary Sequences

We define thespectrunmof a real numbeun to be the infinite multiset of integers

Spe¢a) ={|la],||2a],[|3a],...}.

Two sequenceSpec¢a) and Spe¢f) are said to beeomplementaryf they partition the natural numbers, i.&Spec¢a)n
Spe¢f) = @ andSpeca) USpe¢B) =N.

For example, it appears that the two sequences
Spe¢v2) ={1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24,25,...},

and
Spe¢2+ V2) = {3,6,10,1317,20,23,27,30,34,37,40,44,47,51,...}

are complementary. The following theorem establishestern for spectra to be complementary.
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428 Theorem (Beatty's Theorem, 1926) If a > 1 is irrational and

1

+z=1
a

)

1
B
then the sequences

Speca) andSpeép)

are complementary.

Proof: Sincea > 1,3 > 1, Spe¢a) and Spe(3) are each sequences of distinct terms, and the total number of
terms not exceeding N taken together in both sequendi@s/is || +|[N/B]. ButN/a —1+N/B—1< |[N/a|+

[N/B] < N/a+N/B, the last inequality being strict because bot/3 are irrational. Asl/a+1/8 =1, we gather
thatN—2 < ||[N/a ||+ [ N/B] < N. Since the sandwiched quantity is an integer, we defNge]+[N/B] =N—1.

Thus the total number of terms not exceeding N in &peand Spef) is N—1, as this is true for any N> 1 each

interval (n,n+ 1) contains exactly one such term. It follows that Spet)Spe¢B) =N, Speca)NSpe¢B) = 2.
O

The converse of Beatty's Theorem is also true.

429 Theorem (Bang's Theorem, 1957) If the sequences
Speca) andSpeép)
are complementary, them, 3 are positive irrational numbers with

1 1
—+—==1
a+B

Proof: If botha,f are rational numbers, it is clear that Sper), Spe¢f) eventually contain the same integers,
and so are not disjoint. Thug and 3 must be irrational. If0 < o < 1, given n there is an# for which
ma —1 < n < ma; hence n= [ma], which implies that Spéa) = N, whencea > 1 (and sof3 > 1 also). If
Spec¢a)NSpe¢P) is finite, then

lim

n—oo

In/all+ /Bl _,
n

il

but since(||n/a || + [Ln/BJJ)% —1/a+1/B as n— o, it follows thatl/a+ 1/ =1. O

430 Example Suppose we sieve the positive integers as follows: we chapsel and then deleta; +1 = 2. The next term
is 3, which we callk,, and then we deleta, + 2 = 5. Thus the next available integer is4az, and we deletaz +3 =7, etc.
Thereby we leave the integers314,6,8,9,11,12 14,16,17,.... Find a formula fora,.

Solution: What we are asking for is a sequefifg} which is complementary to the seque{& + n}. By Beatty’s Theorem,

|nt| and||nt || +n=||n(T +1)|| are complementary if &r +1/(7 + 1) = 1. But thent = (1+/5)/2, the Golden ratio. The
n-th term is thusa, = ||n7|.

Practice

B 1++5 Ratio. Prove that the three sequencemn X 1)
431 Problem (Skolem) Let 1 = 5 be the Golder‘ (Lelen b {LTl el ]}, {[T2n]} are complementary.
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6.4 Arithmetic Functions

An arithmeticfunction f is a function whose domain is the set of positive integersvaimase range is a subset of the complex
numbers. The following functions are of considerable intgrace in Number Theory:

d(n) the number of positive divisors of the number n.
o(n) the sum of the positive divisors of n.
@(n) the number of positive integers not exceeding

n and relative prime to n.
w(n) the number of distinct prime divisors of n.
Q(n) the number of primes dividing n, counting multiplicity.

In symbols the above functions are:

dn=>10n=>» d wn=>10Mn=>» a,

dn dn pIn p*|In

and

(The symbol | in p?||nis readexactly dividesand it signifies thap®|n but p® ™1 jh.)

For example, since 1, 2, 4, 5, 10 and 20 are the divisors of 8baved(20) = 6, 0(20) =42, w(20) =2, Q(20) = 3. Since
the numbers B, 7,9, 11 13, 17,19 are the positive integers not exceeding 20 and relatpriiye to 20, we see thagt(20) = 8.

If fis an arithmetic function which is not identically O suchttfimn) = f (m) f (n) for every pair of relatively prime natural
numberam, n, we say thatf is then amultiplicative function.If f(mn) = f(m)f(n) for every pair of natural numbers,n we
say then thaf is totally multiplicative

Let f be multiplicative and leh have the prime factorisatiam= p"i‘l pgz ---p¥*. Then

f(n)=f(pH)f(p52) - f(p%).

A multiplicative function is thus determined by its valuepeme powers. Iff is multiplicative, then there is a positive integer
asuch thatf (a) # 0. Hencef (a) = f(1-a) = f(1) f(a) which entails thaff (1) = 1.

We will now show that the functiond ando are multiplicative. For this we need first the following risu

432 Theorem Let f be a multiplicative function and l€t(n) = Z f(d). ThenF is also multiplicative.
djn

Proof: Suppose that,® are natural numbers witha,b) = 1. By the Fundamental Theorem of Arithmetic, every
divisor d of ab has the form & d;d, where d|a,dy|b, (d1,d2) = 1. Thus there is a one-to-one correspondence
between positive divisors d of ab and paiksdb of positive divisors of a and b. Hence, ifnab, (a,b) = 1 then

Fi) =3 "td) =3 Y f(cida).

dn dya dolb

Since f is multiplicative the dextral side of the above egual

S 3 Hdfidh) = 3 F(d) Y (o) = F(a)F (b).

dija dzlb difa da|b

This completes the proai]
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Since the functiorf (n) = 1 for all natural numbers is clearly multiplicative (indeed, totally multiplicagy, the theorem
above shows thal(n) = Z 1 is a multiplicative function. Ifp is a prime, the divisors 0p* are 1 p,p?, p®,..., p? and so
din
d(p?) = a-+ 1. This entails that if has the prime factorisatian= p§*p3?-- - p&, then

din)=(14+a)(1+a) - (1+a).

For exampled (2904 =d(23-3.112) =d(2%)d(3)d(11%) = (1+3)(1+1)(1+2) = 24
We give now some examples pertaining to the divisor function

433 Example (AHSME 1993) For how many values ofi will an n-sided polygon have interior angles with integral degree
measures?

. L . . (n—2)180 - .
Solution: The measure of an interior angle of a regntarded polygon IS(T). It follows thatn must divide 180. Since
there are 18 divisors of 180, the answer is 16, becaus8& and so we must exclude the divisors 1 and 2.

434 Example Prove thad(n) < 2v/n.

. L . . .. n n .
Solution: Each positive divisa of n can paired with its complementary d|V|sgr Asn=a- > one of these divisors must be
< +/n. This gives at mostZn divisors.

435 Example Find all positive integers n such thétn) = 6.

Solution: Since 6 can be factored as32and 6 1, the desiresh must have only two distinct prime factonsandg, say. Thus
n=p°qgP and either 4 a = 2,1+ B =3 or 1+ a = 6,1+ B = 1. Hence,n must be of one of the formsg’ or p°, wherep, q
are distinct primes.

436 Example Prove that

n

>k =317
=1

k=1

Solution: We have
n n

ddk=>>"1

k=1 k=1 jlk

Interchanging the order of summation

S SEES Sl

j<n j<ksn i<n
k=0 mod j

which is what we wanted to prove.

437 Example (Putnam 1967) A certain locker room contains lockers numbered,2,...,n and are originally locked. An
attendant performs a sequence of operation3y, ..., T, whereby with the operatiofi, 1 < k < n, the condition of being
locked or unlocked is changed for all those lockers and dmbge lockers whose numbers are multiple&.oAfter all the n
operations have been performed it is observed that all lsckbose numbers are perfect squares (and only those Ipekers
now open or unlocked. Prove this mathematically.

Solution: Observe that locken, 1 < m < n, will be unlocked aften operations if and only ifnhas an odd number of divisors.
Now, d(m) is odd if and only ifmis a perfect square. The assertion is proved.
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Since the functiorf (n) = nis multiplicative (indeed, totally multiplicative), thdave theorem entails thatis multiplica-
tive. If pis a prime, then clearlg(p?) = 1+ p+ p?+- - - + p. This entails that if has the prime factorisation= pil pg‘z - p,
then

o(n) = (14 pr+ P+ 4+ Py) (L4 P+ Pa -+ Pi) -+ (L4 pr+ P -+ P ).

This last product also equals

R N U i
p1—1 p2—1 pr—1

We present now some examples related to the funetion

438 Example (Putnam 1969) Let n be a positive integer such that|B4- 1. Prove that the sum of all divisors ofis also
divisible by 24.

Solution: Since 2th+1, n=10r2 mod3and =1,3,50r7 mod 8. Asj(E) =-—1 mod 3or mod 8, the only possibilities

are d
d=1 n/d=2 mod 3 orviceversa

d=1 n/d=7 mod 8 orviceversa
d=3, n/d=5 mod 8 orvice versa
In all casesi+n/d=0 mod3and mod 8, whence 24 divid#s-n/d. Asd # n/d, no divisor is used twice in the pairing.
This implies that 24 " d.
din

We say that a natural numbemsrfectifit is the sum of its proper divisors. For example, 6 is petfeecause 6 Z d=
d|6,d6
1+ 2+ 3. Itis easy to see that a natural number is perfect if and orily & Z d. The following theorem is classical.
djn

439 Theorem An even number is perfect if and only if it is of the forfi2 (2P — 1) where bothp and 2 — 1 are primes.

Proof: Suppose that 2P — 1 are primes. Thew (2P —1) = 1+2P— 1. Since(2P~1,2°P —1) =1, g(2P (2P —
1) =02 YHo(2P—1) = (1+2+22+ - +2° (14 2P—1) = (2P—1)2(2P 1), and2P~1(2P — 1) is perfect.

Conversely, let n be an even perfect number. Write2im,m odd. Thero(n) = o(2%)a(m) = (2571 —1)g(m).
Also, since n perfect igg(n) = 2n = 25"Im. Hence(25"! — 1)a(m) = 25" Im. One deduces th&*1|a(m), and
soo(m) = 25*1b for some natural number. But then(25*1 —1)b = m, and so mb#£m.

We propose to show thatb 1. Observe that b-m= (2571 — 1)b+b=25"'b = g(m). If b # 1, then there are at
least three divisors of mmamelyl, b and m which yieldso(m) > 1+ b+ m, a contradiction. Thus b= 1, and so
m= (251 —1)b=25"1—1is a prime. This means that"! — 1 is a Mersenne prime and hence-4 must be a
prime[]

440 Example Prove that for every natural number n there exist naturalbersx andy such tha—y > nando(x%) = o(y?).

Solution: Lets > n, (s,10) = 1. We takex = 5s,y = 4s. Theno (x°) = g(y?) = 310(s%).

Practice
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441 Problem Find the numerical values df1024), g(1024), d
Q(1024) andp(1024).

442 Problem Describe all natural numbenssuch thatd(n) =
10.

443 Problem Prove that

d(2"—1) >d(n).

444 Problem Prove thatl(n) < v/3nwith equality if and only
if n=12

445 Problem Prove that the followingLambert expansion

holds:

oY)

D

n=1

tn
1—tn’

d(nt" = i
n=1

446 Problem Let di(n) = d(n),dk(n) = d(dk_1(n)),k =
2,3,.... Describedy(n) for sufficiently largek.

447 Problem Letme N be given. Prove that the set
o ={neN:mld(n)}

contains an infinite arithmetic progression.

448 Problem Let n be a perfect number. Show that

1
— =2

25

din

449 Problem Prove that

T[d=ne™72

din

450 Problem Prove that the power of a prime cannot be a g
fect number.

451 Problem (AIME, 1995) Let n = 2°13'°. How many pos

itive integer divisors of? are less than n but do not divig
n?

bdBE24roblem Prove that ifn is composite, thew(n) > n+

NG

453 Problem Prove thato(n) = n+k, k > 1 a fixed natural
number has only finitely many solutions.

454 Problem Characterise alt for which a(n) is odd.

455 Problem Prove thatp is a prime if and only ifa(p) =
1+p.

456 Problem Prove that

) 1

>1+ -
_+2

1

o(n!
+o -
n

n!

457 Problem Prove that an odd perfect number must have at
least two distinct prime factors.

458 Problem Prove that in an odd perfect number, only one
of its prime factors occurs to an odd power; all the othersincc
to an even power.

459 Problem Show that an odd perfect number must contain
one prime factomp such that, if the highest power gfoccur-
ring in nis p?, both p anda are congruent to 1 modulo 4; all
other prime factors must occur to an even power.

460 Problem Prove that every odd perfect number having
three distinct prime factors must have two of its prime festo
3and 5.

461 Problem Prove that there do not exist odd perfect num-
bers having exactly three distinct prime factors.

462 Problem Prove that

er- n n n
S ok =Y il
k=1 j=1 J

e163 Problem Find the number of sets of positive integers
{a,b,c} such thata x b x c =462.

6.5 Euler’'s Function. Reduced Residues

Recall that Euler'sp(n) function counts the number of positive integars n that are relatively prime to. We will prove now
that @ is multiplicative. This requires more work than that donedando.

First we need the following definitions.
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464 Definition Letn> 1. The@(n) integers I=a; < az < --- < ay(n) = N— 1 less tham and relatively prime ta are called
thecanonical reduced residuesodulon.

465 Definition A reduced residue systemodulon, n > 1 is a set ofg(n) incongruent integers modulothat are relatively
prime ton.

For example, the canonical reduced residues mod 12,&@ 11 and the sef—11,5,19,23} forms a reduced residue

system modulo 12.

We are now ready to prove the main result of this section.

466 Theorem The functiong is multiplicative.

Proof: Letn be a natural number withsa ab, (a,b) = 1. We arrange the ab integefls2,...,ab as follows.

1 2 3 ... k ... a

a+1 a+2 a+3 ... a+k ... 2a
2a+1 2a+2 2a+3 ... 2a+k ... 3a
(b—1a+1 (b—21)a+2 (b—1)a+3 ... (b—1)a+k ... ba

Now, an integer r is relatively prime to m if and only if it idaively prime to a and b. We shall determine first the
number of integers in the above array that are relativelynito a and find out how may of them are also relatively
primetob

There arep(a) integers relatively prime to a in the first row. Now considez k-th columnl < k < a. Each integer
on this column is of the form miak,0 < m< b—1. As k= ma+k moda, k will have a common factor with a if
and only if matk does. This means that there are exagilg) columns of integers that are relatively prime to a.
We must determine how many of these integers are relativieheo b.

We claim that no two integers&+k; ..., (b—1)a+k on the k-th column are congruent modulo b. For ifHia =
ja+k modbthendi—j)=0 modb. Sincea,b) =1, we deduce that+ j =0 modb thanks to CorollanB46.
Now i, j € [0,b— 1] which implies thati — j| < b. This forces i= j. This means that the b integers in any of these
¢@(n) columns are, in some order, congruent to the intedefs...,b— 1. But exactlyg(b) of these are relatively
prime to b This means that exactlyg(a)@(b) integers on the array are relatively prime to ab, which is wie
wanted to show]

If pis aprime andna natural number, the integers

p,2p,3p,...,p" 1p

are the only positive integers p™ sharing any prime factors with™. Thus¢(p™) = p™— p™ L. Sinceg is multiplicative, if
n= pi‘l e pﬁk is the factorisation ofi into distinct primes, then

o(n) = (p — pf by (pk — pfhy,

For examplep(48) = @(2*-3) = ¢(2*)p(3) = (2*—2%)(3— 1) = 16, and (550) = @(2-5%-11) = @(2) - 9(5%) - p(11) =
(2—1)(5°—5)(11—1) = 1-20-10= 200.

467 Example Letn be a natural number. How many of the fraction®,2/n, ..., (n—1)/n,n/n are irreducible?

n

Solution: This number is clearIE @(Kk).

k=1
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468 Example Prove that fon > 1,

Solution: Clearly if < a<nand(a,n)=1,1<n—a<nand(n—a,n) = 1. Thus

S= ) a= ) n-a

1<a<n 1<a<n
(a,n)=1 (a,n)=1

whence

2S= Z n=ng(n).
1<a<n

(a,n)=1

The assertion follows.

469 Theorem Letnbe a positive integer. TheE @(d)=n.
din

Proof: For each divisor d of n, letd[n) be the set of positive integersn whose gcd with nis d. As d varies
over the divisors of n, theyTpartition the set{1,2,...,n} and so

Z Ta(n) =n.

din

We claim that §(n) has @(n/d) elements. Note that the elements gfn] are found amongst the integers

d,2d,...gd. Ifk € Tq(n), then k=ad, 1 < a< n/d and(k,n) =d. Butthedg, g) — 1. Thisimplies thata, g) —1
™ =1 But

Therefore counting the elements gff) is the same as counting the integers a wiitdh a < n/d, (a, d

there are exactlyp(n/d) such a We gather that

n=>" o(n/d).

din

But as d runs through the divisors of ry,dhruns through the divisors of n in reverse order, wheneeE o(n/d)=

djn
> o(d).O

din

470 Example If p—1 andp+ 1 are twin primes, ang > 4, prove that ®(p) < p.

Solution: Observe that > 4 must be a multiple of 6, so
p=223m, ab>1, (m,6) = 1.

We then havep(p) < 223°~1p(m) < 223°~Im=p/3.

471 Example Letn e N. Prove that the equation
@(x) =n!

is soluble.
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Solution: We want to solve the equatigrix) = n with the constraint that has precisely the same prime factorsnasThis
restriction implies thaip(x) /x = @(n)/n. It follows thatx = n?/¢(n)

Letn= H pY. Thenx = p 1 . The integex will have the same prime factors agprovided thatH p—21)n. Itis

peIn pelIn pin
clear then that a necessary and sufficient conditiopfal = n to be soluble under the restriction thatas precisely the same

prime factors a® is H(p— 1)|n. If n=Kk!, this last condition is clearly satisfied. An explicit sotutito the problem is thus

pin
x=(k!)%/@(k!).

472 Example Letg(n) = @(@_1(n)),k=1,2,..., whereg(n) = ¢@(n). Show thatvk € N, ¢g(n) > 1 for all sufficiently large
n.

Solution: Letpl p2 .- p&* be the prime factorisation of. Clearly

p?l/zp?/zmp ar /2 S o 1>1 P Pr

B Zplf . pr*]-.

Hence 1 1 1 1 a a
P1—1p2— pr—1 a a Py Py - Py

(n) = 1022 ... n&r > )

¢ pP1 P2 Pr P P2 Pr 2 pil/szZ/z. .. pl‘?"/z

This last quantity equalg/n/2. Thereforeg (n) > %\/(p( —\/—f 1 1/4. In general we can show thak(n) >
1 2 k—

a ' We conclude that > 22 implies thatg(n) > 1

473 Example Find infinitely many integera such that 10p(n)

Solution: Taken=11¢k=1,2,.... Theng(11¥) = 11— 111 = 10. 12k 1.

Practice

474 Problem Prove that 479 Problem If @(n)|n, thenn must be of the form B for
nonnegative integeias b.
1
n=n]] (1— —) )

pin 480 Problem Prove that ifp(n)|n— 1, thenn must be square-
free.

475 Problem Prove that ifnis composite thep(n) <n—+/n.
When is equality achieved? 481 Problem (Mandelbrot 1994) Four hundred people are
standing in a circle. You tag one person, then dkimeople,

then tag another, skik, and so on, continuing until you tag

476 Problem (AIME 1992) Find the sum of all positive '8 sqmeone for the second time. For how many positive values
tional numbers that are less than 10 and have denominatar?@1 . ' . Any p
of'K less than 400 will every person in the circle get tagged at

when written in lowest terms.
least once?

Answer: 400 482 Problem Prove that ifp(n)|n—1 andn is composite, then

n has at least three distinct prime factors.
477 Problem Prove thatp(n) > n2~ <"

483 Problem Prove that ifp(n)|n—1 andn is composite, then
478 Problem  Prove thaip(n) > /n for n > 6. n has at least four prime factors.
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484 Problem Forn>1lletl=a <ap <:--<ayn =Nn—1| (Hint: Use the Chinese Remainder Theorem).
be the positive integers less tharhat are relatively prime t

n. Define the Jacobsthal function - .
485 Problem Prove that a necessary and sufficient condition

g(n):= max ax1—a for nto be a prime is that
1<k<e(n)-1

to be the maximum gap between thg Prove thatw(n) <
g(n). a(n)+ @(n) =nd(n).

6.6 Multiplicationin z,

In section 3.5 we saw th&t, endowed with the operation of additian, becomes a group. We are now going to investigate the
multiplicative structure oZp.

How to define multiplication ir%,? If we want to multiplya -n b we simply multiplya- b and reduce the result madAs
an example, let us consider Talilel. To obtain4 -¢2 we first multiplied 4 2 = 8 and then reduced mod 6 obtaining=&
mod 6. The answer is thdsg2 = 2.

Another look at the table shows the interesting produg2 = 0. Why is it interesting? We have multiplied to non-zero
entities and obtained a zero entity!

DoesZg form a group unders? What is the multiplicative identity? In analogy with theioa@l numbers, we would like
1 to be the multiplicative identity. We would then define theltiplicative inverse ofa to be thatb that has the property that
a-gb=b-ga = 1. But then, we encounter some problems. For example, we see,thd, and4 do not have a multiplicative
inverse. We need to be able to identify the invertible elemefnZ,. For that we need the following.

gl &~ w| |+ ole
o|lo|o|o|o|ojo
G| Blw| | = ol
Aol r~Nvolv
w|o|w|o|w|o|w
SIENE=ITCIENE=]1ES
=N w| s o|o|lv

Table 6.1: Multiplication Table foZg

486 Definition Letn > 1 be a natural number. An integeis said to be the inverse of an integemodulon if ab=1 modn.

Itis easy to see that inverses are unique mokor if X,y are inverses ta modnthenax=1 modnanday=1 modn.
Multiplying by y the first of these congruencdga)x =y modn. Hencex=y modn.

487 Theorem Letn> 1 abe integers. Thea possesses an inverse modalib and only if ais relatively prime ton.

Proof: Assume that b is the inverse ofmodn. Then ab=1 modn, which entails the existence of an integer s
such that ab-1 =sn, i.e. ab-sn= 1. This is a linear combination of a and n and hence divisibldy). This
implies that(a,n) = 1.

Conversely if a,n) = 1, by the Bachet-Bezout Theorem there are integgrswch that ax- ny= 1. This immedi-
ately yields ax=1 modn, i.e., a has an inversemodn.[]

488 Example Find the inverse of 5 mod 7.

Solution: We are looking for a solution to the congruenges5L. mod 7. By inspection we see that thixis 3 mod 7.
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According to the preceding theoremwill have a multiplicative inverse if and only {fa, n) = 1. We thus see that only the
reduced residues mathave an inverse. We Iét) = {a1,a2,...,34(n) }. Itis easy to see that the operatigris associative,
since it inherits associativity from the integers. We codel thatZ;; is a group under the operatian

We now give some assorted examples.

489 Example (IMO 1964) Prove that there is no positive integefor which 2"+ 1 is divisible by 7.

Solution: Observe that'2=2,22=4, 2 =1 mod7,2=2 mod7,2=4 mod7,%=1 mod 7, etc. The pattern 2, 4, 1,
repeats thus cyclically. This says that there is no powengizh is=—-1=6 mod 7.

490 Theorem If ais relatively prime to the positive integar there exists a positive integkr< n such thag“ =1 modn.

Proof: Since(a,n) =1 we must havéal,n) = 1for all j > 1. Consider the sequenceat,a>,...,a™* modn.

As there are i 1 numbers and only n residues mogdthe Pigeonhole Principle two of these powers must have
the same remaindermodn. That is, we can find,swith 1 < s<t < n+1 such that &= a8 modn. Now,
1<t—s<n. Hence d=4a modn gives & %a° = a~%a modn, which is to say 'a= a'~%a" modn. Using
Corollary 346we gather that & =1 modn, which proves the resul.

If (a,n) =1, the preceding theorem tells us that there is a positieg@rk with a= 1 modn. By the Well-Ordering
Principle, there must be a smallest positive integer wiih phoperty. This prompts the following definition.

491 Definition If mis the least positive integer with the property th8t= 1 modn, we say thag has ordem modn.

For example, 3=3,32=2,32=6,3=4,3=53°=1 mod 7, and so the order of 3 mod 7 is 6. We write this fact as
ord;3=6.

Givenn, not all integersa are going to have an order mad This is clear ifn|a, because thea™ = 0 modn for all
positive integersn. The question as to which integers are going to have an orded nriig answered in the following theorem.

492 Theorem Letn > 1 be a positive integer. Thene Z has an order modif and only if (a,n) = 1.

Proof: If (a,n) =1, then a has an order in view of Theoret®0and the Well-Ordering Principle. Hence assume
that a has an order modn. Clearly a# 0. The existence of an order entails the existence of a positteger

m such that # =1 modn. Hence, there is an integer s witf'a sn=1or a-a™ *+sn= 1. This is a linear
combination of a and n and hence divisible(layn). This entails thata,n) = 1. O

The following theorem is of utmost importance.
493 Theorem Let (a,n) =1 and lett be an integer. Thea' =1 modn if and only if ordsalt.

Proof: Assume thabrd,ajt. Then there is an integer s such thatd,a =t. This gives

al =a¥rha = (oha)S=15=1 modn.

Conversely, assume thdta 1 modn and t= x- ord,a+y,0 < y < ord,a. Then

=g 0ha=g. (go%?)X=1.1"%=1 modn.

If y > 0 we would have a positive integer smaller thami,a with the property 4= 1 modn. This contradicts
the definition obrd,a as the smallest positive integer with that property. HeyeeO and thus t= x- ordya, i.e.,
ordhalt.d
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494 Example (IMO 1964) Find all positive integera for which 2'— 1 is divisible by 7.

Solution: Observe that the order of 2 mod 7 is 3. We wdh2l mod 7. It must then be the case th&t.3Thusn =
3,6,9,12,....
The following result will be used repeatedly.

495 Theorem Letn>l.acZ,(an)=11If ry,rp,....,ryn is areduced set of residues moduldhenary,ars, ..., aryy is
also a reduced set of residues modulo

Proof: We just need to show that tpgn) numbers af, ara, . .., ary ) are mutually incongruentmodn. Suppose
that ar = ar; modn for some i j. Since(a,n) =1, we deduce from Corollarg46that r; = r; modn. This
contradicts the fact that the r’s are incongruent, so theotieen followsl

For example, as,5,7,11 is a reduced residue system modulo 12 gi®|5) = 1, the set 525,3555 is also a reduced

residue system modulo 12. Again, thé17,11 are the 525,35,55 in some order and-5-7-11=5-25-35-55 mod 12.
The following corollary to Theorem95should be immediate.

496 Corollary Letn>1labe Z,(an) =1 If ry,ry,...,rym) is a reduced set of residues modulothenar; + b,ar; +
b,...,arym +bis also a reduced set of residues modulo

Practice

497 Problem Find the order of 5 modulo 12.

6.7 MOobius Function

498 Definition TheM®&bius functioris defined for positive integer n as follows:

(1 ifn=1,
pm =¢ (=1 if w(n) =Q(n),
0 if w(n) < Q(n).

Thusyu is 1 forn =1 and square free integers with an even number of prime fctdr for square free integers with an
odd number of prime factors, and 0 for non-square free imgedéhus for examplg(6) = 1, 4(30) = —1 andu(18) = 0.

499 Theorem The M6bius Functioru is multiplicative.

Proof: Assumédm,n) = 1. If both.# and n are square-free then

(=1)@tm*eM = py(mn).

=
3
=
E)
I
|
e
El
2
|
e
g
2
I

If one of mn is not square-free then
p(mjp(n) = 0= p(mn).

This proves the theoreml

500 Theorem

1 ifn=1,
Z“(d):{o ifn> 1
din
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Proof: There are(w:(n)> square-free divisors d of n with exactly k prime factors. &bsuch d u(d) = (—1)%.

The sum in question is thus
w(n)

_ w(n) k
Suia =Y (4) -k
din k=0
By the Binomial Theorem this last sum(is—1)*™ = 0.0
501 Theorem (M&bius Inversion Formula)  Let f be an arithmetical function arfé(n Z f(d). Then
din

n) =Y uld)F(n/d) =Y p(n/d)F (d)

din djn

Proof: We have

Y _u(dF(n/d) = ZZZ f(s)

djn djn d|n
‘d
> u(d)
dsn
= 2. (82 u(d
sin n

i . - n .
In view of theoren®00, the inner sum is different fro@only wheng =1. Hence only the terms n in the outer

sum survives, which means that the above sums simplifynjoCF

We now show the converse to Theorémil.

502 Theorem Let f, F be arithmetic functions witti (n Zu F(n/d) for all natural numbers. ThenF(n

din

Proof: We have

Sofd) = Y uEF(d/

din din sd

= ZZu(d/s)F(s)

din sd

= LD HIF

sn
r|f
S

Using Theorenb00, the inner sum will b® unless s= n, in which case the entire sum reduces tomkO

Practice

503 Problem Prove that

u(d
dZT'

)= f(d)

din

504 Problem If f is an arithmetical function and-(n) =
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: __ ow(n)
S #(In/K), then 506 Problem Prove thaf) ~ |u(d)| = 2*™.
k=1

din
f(n) = i#(])F([n/j])- 507 Problem Prove thatz:u(d)d(d) = (=1)@,
j=1 din

505 Problem If F is an arithmetical function such th&tn) = | 508 Problem Given any positive integer k, prove that there
n

n _ exist infinitely many integers n with
> H(KIF(In/K), prove thaF (n) =  f(j).
k=1 i=1 p(n+1) =p(n+2) =--- = p(n+kj.
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More on Congruences

7.1 Theorems of Fermat and Wilson
509 Theorem (Fermat’s Little Theorem)  Let p be a prime and lep fa. Then

a> =1 modp.

Proof: Since(a,p) =1, the setal,a-2,...,a-(p—1) is also a reduced set of residuesnodp in view of
Theorem495. Hence

(a-1)(a-2)---(a-(p—1))=1-2---(p—1) mod p,

or
a’Yp—1)!=(p—1)! mod p.

As((p—1)!, p) = 1 we may cancel out thgp— 1)!'s in view of Corollary346. This proves the theorem.

As an obvious corollary, we obtain the following.
510 Corollary For every primep and for every integer a,
aP=a mod p.

Proof: Either ga or p Ja. If pjla,a= 0= a” modp and there is nothing to prove. If fa, Fermat's Little
Theorem yields |aP~ — 1. Hence pa(aP~ ! — 1) = a” —a, which again gives the resuil.

The following corollary will also be useful.
511 Corollary Let p be a prime an@ an integer. Assume that fa. Then orga|p— 1.

Proof: This follows immediately from Theoref@3and Fermat’s Little Theorerf.

512 Example Find the order of 8 mod 11.

Solution: By Corollary511ord18 is either 12,5 or 10. Now &=-2 mod118*=4 mod 11 and 8= —1 mod 11. The
order is thus orgh8 = 10.

513 Example Leta; = 4,a,=4%-1 n> 1. Find the remainder wheaygq is divided by 7.

78
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Solution: By Fermat’s Little Theorem®4=1 mod 7. Now, 4 =4 mod 6 for all positive integens, i.e., 4' = 4+ 6t for some
integert. Thus
ag=4%9 =440 =44 (45'=4 mod 7

514 Example Prove that form, n € Z, mn(m®®—n®0) is always divisible by 56786730.

Solution: Leta = 56786730 = 23-5-7-11-13-31-61. LetQ(x,y) = xy(x®°—y?Y). Observe thatx—y)|Q(x,y), (X* —
y2)|Q(X7y)1 (Xa_y3)|Q(Xay)1 (X4_y4)|Q(X7y)1 (Xe_ye)‘Q(X7y)1 (Xlo_y10)|Q(X7y)v (Xlz_y12)|Q(X7y)! and()éo_y30)‘Q(X7y).

If pis any one of the primes dividing, the Corollary to Fermat’s Little Theorem yields" —m=0 modp andnP —
n=0 modp. Thusn(m’ —m)—m(n°—n)=0 modp, i.e.,, mmP~1—nP~1) =0 modp. Hence, we have |thn(m—
n)|Q(m, n), 3jmn(m?—n?)[Q(m, n), 5jmn(m*—n*)|Q(m, n), 7j/mn(m®—n°)|Q(m,n), 12mn(m™®—n'%)|Q(m, n), 13mn(m'2—n*?)|Q(m,n), 31]r
n%)|Q(m, n) and 61mn(m®°®—n®%)|Q(m, n). Since these are all distinct primes, we gather &ianQm, n), which is what we
wanted.

515 Example (Putnam 1972) Show that given an odd primg there are always infinitely many integeror which pjn2"+ 1.

Answer: For any odd prime, taken = (p—1)%*1 k=0,1,2,.... Then

n2"+1=(p—1)&F2p-1)(P-D* L 1= (%1% 1 1=0 mod p.

516 Example Prove that there are no integers- 1 with n|2" — 1.

Solution: If nj2" — 1 for somen > 1, thenn must be odd and have a smallest odd primas a divisor. By Fermat's Little
Theorem, 2~1 =1 modp. By Corollary511, ordy2 has a prime factor in common wifh— 1. Now, p|n|2"—1andso 2= 1
mod p. Again, by Corollary511, ord,2 must have a common prime factor witl{clearly ord,2 > 1). This means that has a
smaller prime factor thap, a contradiction.

517 Example Let p be a prime. Prove that

1.

(p;l) =(—1)" modp, 1<n<p—1

<p:1> =0 modp,2<n<p-—1
3. If p#5is an odd prime, prove that eithéy_, or fy,1 is divisible by p.
Solution: (1)(p—1)(p—2)---(p—n) = (—=1)(=2)---(—n) = (—1)"n! modp. The assertion follows from this.

@) (p+1)(p)(p—1)---(p—n+2)=(1)(0)(—1)---(—n+2) =0 modp. The assertion follows from this.
(3) Using the Binomial Theorem and Binet's Formula

fnzznl_l(G) +5<g> +52<2> +)

(p-1)/2_1
2P2f, 1 =p—1—(5+52+..-+5P3/2) = 7% mod p.

From this and (1),

Using (2),
2P 1 =p+145PV2=5P1/211 modp.
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Thus
2Pfp_1fpr1=5""1—1 mod p.

But by Fermat's Little Theorem,’51 =1 modp for p # 5. The assertion follows.
518 Lemma If a>=1 modp, then eithem=1 modpora=—1 modp.

Proof: We have taz— 1=(a—1)(a+1). Since p is a prime, it must divide at least one of the factotsis T
proves the lemmal

519 Theorem (Wilson's Theorem) If pis a prime, therifp—1)! = -1 modp.

Proof: If p=2or p= 3, the result follows by direct verification. So assume that® Considera2 <a< p—2.
To each such a we associate its unique inversmodp, i.e. @ =1 modp. Observe that & a since then we
would have &= 1 modp which violates the preceding lemma a£4,a+# p— 1. Thus in multiplying all a in the
range2 < a < p— 2, we pair them of with their inverses, and the net contributid this product is thereforg. In
symbols,

2-3---(p—2)=1 modp.

In other words,
(p—1!=1-( J[ i) (p-D=1-1:(p—1)=-1 modp.
2<a<p-2

This gives the result]

520 Example If p=1 mod 4, prove that
<p%1> l=—1 mod p.

Solution: In the productp— 1)! we pair offj,1 < j < (p—1)/2 with p— j. Observe thaj(p—j) = —j

si=tp-ti= [ -P=u® (B2 medp
1<j<(p—-1)/2

2 modp. Hence

As (—1)(P~1/2 — 1, we obtain the result.

521 Example (IMO 1970) Find the set of all positive integerswith the property that the set
{n,n+1n+2,n+3,n+4n+5}

can be partitioned into two sets such that the product of tmehers in one set equals the product of the numbers in the othe
set.

Solution: We will show that no such partition exists. Supptigat we can have such a partition, with one of the subsetsdnav
product of its members equal foand the other having product of its members equd.t&We might have two possibilities.
The first possibility is that exactly one of the numbers insbe{n,n+1,n+2 n+3,n+4,n+ 5} is divisible by 7, in which
case exactly one g or Bis divisible by 7, and sé- B is not divisible by 7, and soA- Bis not a square. The second possibility
is that all of the members of the set are relatively prime tmZhis last case we have

nn+1)---(n+6)=1-2---6=A-B=—-1 mod 7

But if A= B then we are saying that there is an integesuch thatA?> = —1 mod 7, which is an impossibility, as1 is not a
square mod 7. This finishes the proof.

Practice
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522 Problem Find all the natural numbers for which
3|(n2"+1).

523 Problem Prove that there are infinitely many integer
with n|2"+ 2.

524 Problem Find all primesp such thatp|2P + 1.

Answer: p =3 only.

525 Problem If p andqare distinct primes prove that
pql(a”?—aP —al-a)

for all integersa.

526 Problem If pis a prime prove thap|a® + (p—1)!a for
all integersa.

527 Problem If (mn42) =1 prove that 168n° —n®.

7.2 Euler's Theorem

528 Problem Let p andq be distinct primes. Prove that

g 1+p?t=1 mod pg

529 Problem If pis an odd prime prove thaP =n mod 2p
for all integersn.

530 Problem If pis an odd prime angb|mP + nP prove that
p?|mP 4-nP.

531 Problem Prove thatn > 1 is a prime if and only if
(h—1)!'=—-1 modn.
532 Problem Prove that ifp is an odd prime

12.3%2...(p—2)2=22.42... (p—1?=(-1)P" V2 mod p

533 Problem Prove that 15{226k+2 + 3) for all nonnegative
integersk.

In this section we obtain a generalisation of Fermat'’s ¢&iftheorem, due to Euler. The proof is analogous to that of &&sm

Little Theorem.

534 Theorem (Euler's Theorem)

Proof:
forms a set of incongruent reduced residues. Thus

aag-ad---ady(n) = @182+ - Ag(n)

or

a’Mayay - ap(n) = 18- (n)

Let (a,n) = 1. Thena®?™ =1 modn.

Let &, ap,...,345(n) be the canonical reduced residuemodn. As(a,n) = 1, ag,aa,...,adyn) also

mod n,

modn.

As (alaz---a(p(n],n) =1, we may cancel the producia - --a, ) from both sides of the congruence to obtain

Euler’'s Theorentl

Using Theorenb34we obtain the following corollary.
535 Corollary Let(a,n) =1. Then ordal@(n).

536 Example Find the last two digits of 9.

Solution: As¢(100) = 40, by Euler's Theorem,8=1 mod 100. Thus

31090=(3%9)?*=1°=1 mod 100

and so the last two digits are 01.

537 Example Find the last two digits of 7%
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Solution: First observe thap(100) = @(2%)@(5%) = (2% — 2)(5° —5) = 40. Hence, by Euler's Theorem*%= 1 mod 100.
Now, ¢(40) = ¢(2%)@(5) =4-4=16, hence ¥ =1 mod 40. Finally, 1006- 16- 62+ 8. This means that*??°= (7166278 =
15278 = (792 =12 =1 mod 40. This means that® = 1+ 4(x for some integet. Upon assembling all this

771000 — 7l+4(1 = 7 (740)t = 7 mod 100

This means that the last two digits are 07.

538 Example (IMO 1978) m, n are natural numbers with 4 m < n. In their decimal representations, the last three digits of
1978" are equal, respectively, to the last three digits of T9Fd m, n such tham-n has its least value.

Solution: Asm+n = n—m+2m, we minimisen—m. We are given that
1978 —1978" = 1978"(1978" ™ —1)

is divisible by 1000= 2°5°. Since the second factor is odd thust divide the first and sm > 3. Now, orcy»51978 is the
smallest positive integerwith
1978=1 mod 125

By Euler’'s Theorem
1978°=1 mod 125

and so by Corollary 7.8100 Since 1251978 — 1) we have 51978 —1), i.e., 1978 =3°=1 mod 5. Since)|100, this last
congruence implies that= 4,20, or 100. We now rule out the first two possibilities.

Observe that
1978 = (—22)*=2* . 11* = (4-121)>=(—-16)°=6 mod 125

This means thad = 4. Similarly
1978°=1978".(1978)*=6-6"=6-46=26 mod 125

This means that£ 20 and s&= 100. Sincesis the smallest positive integer with 1281 mod 125, we taka—m=s= 100
andm= 3, i.e.,n=103 m= 3, and finallym+n =106

539 Example (IMO 1984) Find one pair of positive integeesb such that:
(i) ab(a+b) is not divisible by 7.
(i) (a+b)"—a’ —b’ is divisible by 7. Justify your answer.

Solution: We first factoris¢a+b)’ —a’ — b’ asab(a+ b)(a® + ab+b?)?. Using the Binomial Theorem we have

(a+b)’—a’—b’ = 7(a’b+ab®+3(a°b?+a’b’) + 5(a*b®+a’b?))

7ab(a’® + b° + 3ab(a® + b%) + 5(a’b?) (a+ b))

7ab(a+b)(a* +b* —a’b—ab® +a?b?
+3ab(a® — ab+ b?) + 5ab)

= 7ab(a+b)(a*+b*+2(a%b+ab’) + 3a%b?)

= T7ab(a+b)(a%+ab+b?)2.

The given hypotheses can be thus simplified to
(i) ab(a+b) is not divisible by 7
(i)' @+ ab+b? is divisible by 7.

As (a+b)? > a’+ab+b? > 73, we obtaina+b > 19. Using trial and error, we find that = 1,b = 18 give an answer, as
12 4+1-18+18 =343="75.
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Let us look for more solutions by means of Euler's Theorema#is b® = (a—b)(a® +ab+b?), (i) is implied by

(i) a®=b> mod 7
azb mod 7

Now ¢(7%) = (7—1)7? = 3-98, and so ifx is not divisible by 7 we havex®®)® = 1 mod 7, which gives the first part of (ii)".
We must verify now the conditions of non-divisibility. Foxample, lettingx = 2 we see that¥ =4 mod 7. Thus letting
a=2% b=1. Lettingx = 3 we find that 38 = 324 mod 7. We leave to the reader to verify that= 324 b = 1 is another
solution.

Practice

540 Problem Show that for all natural numbessthere is an 546 Problem Find the last two digits o&1go1if a1 = 7,a, =
integern divisible bys, such that the sum of the digits af| 721,
equalss.

9 .3 547 Problem Find the remainder of
541 Problem Prove that 50fh® —n°.
, 10104 101 4 ... 4 10107
542 Problem Prove that for odd integer> 0, n|(2™ —1).
upon division by 7.
543 Problem Let p f10 be a prime. Prove thatdivides in-

finitely many numbers of the form
548 Problem Prove that for every natural numbethere ex-

11...11 ists some power of 2 whose finatligits are all ones and twos.

544 Problem  Find all natural numbers that divide 549 Problem (USAMO 1982) Prove that there exists a posi-
T nooa . ”

42" 4o (n—1)" tive integerk such thak- 2" + 1 is composite for every positive

integern.

545 Problem Let (m,n) = 1. Prove that
550 Problem (Putnam 1985) Describe the sequence; =

m?™ +n?M =1 modmn 3,a, =3%1 mod 100 for largen.
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Scales of Notation

8.1 The Decimal Scale

As we all know, any natural numbarcan be written in the form
n=apl0+a;10 1+ ... +a, 110+ay,

where 1< ag < 9,0< a; < 9,j > 1. For example, 65789 6-10% +5-10° +-7- 10> +8-10+9.

551 Example Find all whole numbers which begin with the digit 6 and desee25 times when this digit is deleted.

Solution: Let the number sought hame- 1 digits. Then this number can be written asl6" +y, wherey is a number witm
digits (it may begin with one or several zeroes). The coaditf the problem stipulates that

6-10"+y=25.y

whence
_6-10
Y="2a

From this we gather that> 2 (otherwise, 610" would not be divisible by 24). Far> 2,y = 25.10¢"2, that is,y has the form
250---0(n— 2 zeroes). We conclude that all the numbers sought have tireG25 0...0 .

n—2 zeroes

552 Example (IMO 1968) Find all natural numbers such that the product of their digits (in decimal notatiogyalsx? —
10x—22

Solution: Letx have the form

X=ap+a;10+al0?+---+a, 110", a <9 a, 1 #0.
Let P(x) be the product of the digits of P(x) = x> — 10x—22. Now, P(x) = aga - - -an—1 < 9" *an_1 < 10" 1a,_1 < x (strict
inequality occurs wher has more than one digit). S8 —10x— 22 < x, and we deduce that< 13, whencex has either one
digitorx=10,11,13. If x had one digit, theay = x° — 10x— 22, but this equation has no integral solutionsx # 10, P(x) =0,

butx? —10x— 22+ 0. If x=11,P(x) = 1, butx® — 10x— 22 # 1. If x= 12, P(x) = 2 andx? — 10x— 22 = 2. Thereforex = 12
is the only solution.

553 Example A whole number decreases an integral number of times whéasitsligit is deleted. Find all such numbers.

84
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Solution: Let 0<y <9, and 1&+Yy = mx m andx natural numbers. This requires 3¥/x = m, an integer. We must have
x|y. If y =0, any natural numbecwill do, and we obtain the multiples of 10. yf=1 x= 1, and we obtain 11. l[f=2,x=1
or x =2 and we obtain 12 and 22. Continuing in this fashion, the Bbngmbers are: the multiples of 1, 1213, 1415,
16,17, 1819,2224, 2628, 3336, 3944, 4855, 66 77,88, and 99.

554 Example Let A be a positive integer, ardl be a number written with the aid of the same digits with ararsged in some
other order. Prove that A+ A’ = 10'°, thenA is divisible by 10.

Solution: ClearlyA andA’ must have ten digits. Lét = ajag... a3 be the consecutive digits @fandA’ = ajyay. .. a;. Now,
A+A =10ifand only if there is §,0 < j <9 forwhichay + &y =ay + &y =--- = a; +aj=0,aj11+a]1=10,aj 248}, =
aj43+&3="-=aw+ajn=29 Notice thatj = 0 implies that there are no sums of the foam  + &,k > 2, andj =9
implies that there are no sums of the foam+aj,1 < | < j. On adding all these sums, we gather

a+a+a+ah+--+aotajy=10+9(9—j).

Since theg are a permutation of tha, we see that the sinistral side of the above equality is tha eaumber a3 +az+--- +
ap). This implies thatj must be odd. But this implies that +a] = 0, which gives the resuilt.

555 Example (AIME 1994) Given a positive integen, let p(n) be the product of the non-zero digits mf (If n has only one
digit, thenp(n) is equal to that digit.) Let
S=p(1)+p(2)+---+ p(999).

What is the largest prime factor &8P

Solution: Observe thaton-zeradigits are the ones that matter. So, for example, the nunii&8rs108, 118, 810, 800, and 811
have the same valygn).
We obtain all the three digit numbers from 001 to 999 by expamnthe product

(0+1+2+4---4+9)°-0,
where we subtracted a 0 in order to eliminate 000. Thus
(0+1+2---+9)°—0=001+002+ -+ 999

In order to obtaimp(n) for a particular number, we just have to substitute the (ptegszeroes in the decimal representation, by
1's, and so

p(1)+p(2) +---+p(n) =111+ 112+ - +999= (1 +14+2+4---+9)3 1,
which equals 48— 1. (In the last sum, 111 is repeated various times, once for @de for 011, once for 100, once for 101,
once for 110, etc.) As 46-1 =3%.5.7-103 the number required is 103.

556 Example (AIME 1992) Let Sbe the set of all rational number® < r < 1, that have a repeating decimal expansion of the
form o
0.abcabcabc.. = 0.abc,

where the digits, b, c are not necessarily distinct. To write the elementS a§ fractions in lowest terms, how many different
numerators are required?

. abc . . I I
Solution: Observe that.@bcabcabc.. = 999’ and 999= 3°. 37. If abcis neither divisible by 3 nor 37, the fraction is already
in lowest terms. By the Inclusion-Exclusion Principle,réhare

999— (999/3-+ 999/37) + 999/3- 37 = 648

such numbers. Also, fractions of the fosf87, where 3s,37 Jsare inS. There are 12 fractions of this kind. (Observe that we
do not consider fractions of the foriyi3!,37|s,3 Ji, because fractions of this form are greater than 1, and thiis 1%)
The total number of distinct numerators in the set of reddrasttions is thus 64612 = 660.
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557 Example (Putnam 1956) Prove that every positive integer has a multiple whose daiciepresentation involves all 10
digits.

Solution: Letn be an arbitrary positive integer withdigits. Letm= 123456780101, Then all of then consecutive integers
m-+1,m+2,...m+n begin with 1234567890 and one of them is divisiblerby

558 Example (Putnam 1987) The sequence of digits
12345678910111213141516171819202122

is obtained by writing the positive integers in order. If th@ digit of this sequence occurs in the part in which theligit
numbers are placed, defirfén) to bem. For examplef(2) = 2, because the hundredth digit enters the sequence in the
placement of the two-digit integer 55. Find, with pro6{1987).

Solution: There are 910j_1j-digit positive integers. The total number of digits in nuend with at most digits isg(r) =
r
Zj.9.10*1:r16—10_1 10-1

. As 0< < 10, we get(r — 1)10 < g(r) < r10. Thusg(1983 < 198310983 <

=1
10%- 101983 = 10'%" andg(1984) > 1983 10'%84> 10°- 10984 Thereforef (1987 = 1984

Practice

559 Problem Prove that there is no whole number which §i&65 Problem Lett be a positive real number. Prove that there
creases 35 times when its initial digit is deleted. is a positive integen such that the decimal expansion ruf
containsa 7.

560 Problem A whole number is equal to the arithmetic mejan

of all the numbers obtained from the given number with the|e8@6 Problem (AIME 1988) Find the smallest positive integer
of all possible permutations of its digits. Find all wholenmu| whose cube ends in 888.

bers with that property.

567 Problem (AIME 1987) An ordered paifm,n) of nonneg-
561 Problem (AIME 1989) Suppose than is a positive inte ative integers is callesimpleif the additionm+ n requires no
ger andd is a single digit in base-ten. Firrdif carrying. Find the number of simple ordered pairs of nonneg-

ative integers that sum 1492.

n
310 0.d25d25d25d25. ...

568 Problem (AIME 1986) In the parlor game, the “magi-
562 Problem (AIME 1992) For how many pairs of consec |.cian” asks one of the participants to think of a three-digita
tive integers in berabc wherea, b, c represent the digits of the number in the
order indicated. The magician asks his victim to form the Aum
{10001001 ...,2000; bersach,bac,cab and cba, to add the number and to reveal
their sumN. If told the value ofN, the magician can identity

: . . . -
is no carrying required when the two integers are added* abc Play the magician and determiabcif N — 319.

563 Problem Let mbe a seventeen-digit positive integer g
let N be number obtained fromm by writing the same digits
in reversed order. Prove that at least one digit in the ddc
representation of the numbkr+ N is even.

n969 Problem The integenis the smallest multiple of 15 such
r}}%at every digit o is either 0 or 8. Compute/15.

570 Problem (AIME 1988) For any positive integek, let

: f1(k) denote the square of the sums of the digitkofFor

564 Problem Given that N> 2, let fa(K) = fy(fr_1(K)). Find froas(11).
1 1 1

e=2+ o fgt o,

: : : 571 Problem (IMO 1969) Determine all three-digit numbers

prove thateis irrational. N that are divisible by 11 and such tHdf11 equals the sum
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of the squares of the digits &f. 574 Problem A Liouville numbeiis a real numbex such that
for every positivek there exist integera andb > 2, such that

572 Problem (IMO 1962) Find the smallest natural numbgr

having last digit is 6 and if this 6 is erased and put in frpnt x—a/b| <b™.
of the other digits, the resulting number is four times agegr
as the original number. Prove or disprove that is the sum of two Liouville numbers.

573 Problem 1. Show thaChampernowne’s number | 7 proplem  Given that
X =0.123456789101112131415161718192021

is irrational. 1/49=0.02040816326530612244897959183673469387,7551

2. Letr € Q and lete > 0 be given. Prove that there exigt§ing the last thousand digits of
a positive integen such that

110"x —r| < €. 14504507+ - - +50°%,

8.2 Non-decimal Scales

The fact that most people have ten fingers has fixed our scaletafion to the decimal. Given any positive integer 1, we
can, however, express any number in base

576 Example Express the decimal number 5213 in base-seven.

Solution: Observe that 5213 7°. We thus want to find & a,...,a4 < 6,84 # 0, such that
5213=a 7+ 37> + ap 7’ + a7+ ao.

Now, divide by 7 to obtain
2+ proper fraction= a4 + proper fraction

Sinceay is an integer, it must be the case that=2. Thus 5213-2- 74 =411=a37 + ap7? + a1 7+ ao. Dividing 411 by 7
we obtain
1+ proper fraction= az + proper fraction

Thusaz = 1. Continuing in this way we deduce that 52231125.
577 Example Express the decimal number /M3 in base-six.

Solution: Write

Multiply by 6 to obtain
4+ proper fraction= a; + proper fraction
Thusa; = 4. Hence 1316—4/6 =7/48= % + g + ... Multiply by 62 to obtain

5+ proper fraction= ay + proper fraction

We gather thaf, = 5. Continuing in this fashion, we deduce that/18 = .4513%.
578 Example Prove that 41 is a perfect square in any scale of notation.

Solution: If 4.41 is in scale, then
4 1 1\2
441=4+ -+ - = <2+7) .
rr r
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579 Example Let ||x|] denote the greatest integer less than or equeal Boes the equation
IIx]] 4 (12 + [[4x]] + ||8x]| + [ 16x] + || 32| = 12345

have a solution?

Solution: We show that there is no suchRecall that| x|| satisfies the inequalities— 1 < || x|| < x. Thus
X—142X—1+4+4x—1+---+3%—1 < |[x|]|+[|2x]|+ 4] + [|8X]]
[ 16x]| + [ 32|
< X+2X+4X+ -+ 32

From this we see that &3-6 < 12345< 63x. Hence 195< x < 196.
Write thenx in base-two:

a a2  as
X—195+§+?+?+...,
withay=0o0r 1. Then
I2x] = 2-195+ay,
I4x] = 4-195+2a;+ay,
II8x|] = 8-195+4a;+2ax+ag,
|16x]|] = 16-195+ 8a; +4ay +2a3+ au,

I32x|] = 32-195+ 1621+ 8ay +4az+ 2a4+as.

Adding we find that|x|| + || 2x|| + ||4x|| + | 8% 4[| 16x]| + || 32X|| = 63- 195+ 31a; + 15a, + 7a3 + 3as + as, i.e. 31a;+ 158, +
7az + 3a4 + a5 = 60. This cannot be becausea3¥ 15a, + 7az + 3a4 + a5 < 31+ 15+ 7+3+1 =57 < 60.

580 Example (AHSME 1993) Given 0< Xy < 1, let

. { 2Xn—1 if2xh—1 <1
n —1—1 if2x_1>1

for all integersn > 0. For how manyxg is it true thatg = x5?

Solution: Writexg in base-two,

~ an
Xo=> onan=0o0rl
k=1
The algorithm given just moves the binary point one unit te tight. Forxp to equalxs we need Oy azazauasagay. .. =
0.agazagagaipag1di2- . .- This will happen if and only iky has a repeating expansion wifey,asasas as the repeating block .
There are 2= 32 such blocks. Butify =ay =--- = as = 1, thenxg = 1, which is outsid€0, 1). The total number of values
for whichxg = x5 is thus 32-1 =31

581 Example (AIME 1986) The increasing sequence
1,3,4,9,10,12,13,...
consists of all those positive integers which are powers of 8ums distinct powers of 3. Find the hundredth term of the
seguence.
Solution: If the terms of the sequence are written in bagbed; comprise the positive integers which do not contairdifé
2. Thus, the terms of the sequence in ascending order are thus
1,10,11,100101,110,111,....

In the binary scale, these numbers are, of course, 1, 2, 3, .... To obtih@8-th term of the sequence we just write 100 in
binary 100= 1100100 and translate this into ternary: 11003663°%+ 3°+ 3% =981

Practice




A theorem of Kummer

89

582 Problem (Putnam, 1987) For each positive integer, let
a(n) be the number of zeroes in the base-three represen
of n. For which positive real numbexsdoes the series

o
>
n=1

Xa(n)

3
converge?

583 Problem Prove that foix € R,x > 0, one has

(_gﬁ =1-—2(x—[|x]]).

n=1

584 Problem (Putnam, 1981) Let E(n) denote the largest
such that 5is an integral divisor of 1223%...n". Calculate

585 Problem (AHSME, 1982) The base-eight representati
of a perfect square @h3c with a # 0. Find the value of.

586 Problem (Putnam, 1977) An  ordered triple  off
(X1,X2,X3) of positive irrational numbers witky + X, +x3 =1
is called balanced i, < 1/2 forall 1< n< 3. Ifatriple is not
balanced, say; > 1/2, one performs the following “balanciry
act”:

[L\(/]vherex,-’ = 2x; if % # xj andxj = 2x; — 1. If the new triple is

iohbalanced, one performs the balancing act on it. Does con-
tinuation of this process always lead to a balanced trigter af
a finite number of performances of the balancing act?

587 Problem Let C denote the class of positive integers
which, when written in base-three, do not require the digit 2
Show that no three integers@are in arithmetic progression.

588 Problem Let B(n) be the number of 1's in the base-two
expansion oh. For exampleB(6) = B(11%;) = 2,B(15) =
B(111%) =4.

1. (PUTNAM 1981) Is

exp (

a rational number?

0

>

n=1

B(n)
n2+n

2. (PUTNAM 1984) Express

M1
in the form (—1)™a' (™ (g(m))! wherea is an integer
and f,g are polynomials.

9589 Problem What is the largest integer that | should be per-
mitted to choose so that you may determine my number in

B(X17X27)Q3) - ()(llelZng)v

8.3 A theorem of Kummer

We first establish the following theorem.

twenty “yes” or “no” questions?

590 Theorem (Legendre) Let p be a prime and let = agp*+a;p*~ 1 + - + a,_1p+ ax be the bases expansion of. The

exact power m of a prime p dividing is given by

_n—(ap+

a+---+ay)

m=

p—1

Proof: By De Polignac’s Formula

m:Zu%ﬂ.
k=1
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Now, |[n/p|] = aop * +a1p* 2+ & op+ac1,[n/p?l = aop 2 +ap* 3+ - +aa,...,[In/p] = a.

Thus -
S/ = aoll+p+p* 4+ D ta(ltp+p* 4+ P+
k=1
i
_ =1 pr-1 po—-1 _p-1
B T e e St i S
_ aop‘tap e tac—(atart--+a
- —
_ n—(ag+ay+---+a)
- 1 7
as wanted.]

. - . . . {a+b\ .
591 Theorem (Kummer's Theorem) The exact power of a primp dividing the binomial coefﬁmen( Z > is equal to the
number of “carry-overs” when performing the additionapb written in basep.

Proof: Let a=ao+a1p+---+akpk,b:bo+b1p+~--+bkpk,0§ aj,bj <p—1 and a+bx>0. Let§ =
k k

> aj,% =) bj.Letg,0<cj < p—1, andej =0or 1, be defined as follows:
=0 =0
3 +bo = &P+ Co,
so+ar+bi=¢&p+cy,
&1+ax+by=g&p+cy,
&1+ ax+ by = &p+c

Multiplying all these equalities successivelyby, p?,. .. and adding them:

at+b+epteap’+...+a1p< = ep+eapi+...+ e 1pi+ap<t
+Co+C1p+ -+ + Pt '

We deduce that@b = cy+cip+ - - +cp* + &p< . By adding all the equalities above, we obtain similarly:
S+S+(eotea+-+e&1)=(+e+ -+ &P+ Sarb— &
Upon using Legendre’s result from above,
(p—1m=(a+b)-Sp—a+S—b+S=(p—1)(eo+e+ - +&),

which gives the resulil
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Miscellaneous Problems

592 Example Prove that

diverges.

Solution: Let.%#x denote the family consisting of the integer 1 and the pasititegers all whose prime factors are less than
or equal tox. By the Unique Factorisation Theorem

11 (1+;+ +-- ) Z— (9.1)

p<x ne.%y
p prime

Now,
1 1
> n’ ) n
ne %y n<x
As the harmonic series diverges, the product on the sihitta of 2.3.3 diverges as— . But

1.1 1
11 <1+5+E+m>: > 5O,

p<x p=x
p prime p prime
This finishes the proof.

593 Example Prove that for each positive integlethere exist infinitely many even positive integers which banwritten in
more thark ways as the sum of two odd primes.

Solution: Letay denote the number of ways in whick 2an be written as the sum of two odd primes. Assumedhpat C Vk

for some positive constaft. Then
2

3 oxP Zakxzk <Ci % X4X2

p>2
p prime
This yields
Yo lave— 2
V1-x2
p>2
p prime

91
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Integrating term by term,

1 1 x
~<\C dx=+/C.
Z p— [) V1—x2
p>2
p prime

But the leftmost series is divergent, and we obtain a coittiad.

594 Example (IMO 1976) Determine, with proof, the largest number which is the pmai positive integers whose sum is
1976.

Solution: Suppose that
ata+--+an =197
n
we want to maximisq_[ ax. We shall replace some of tlag so that the product is enlarged, but the sum remains the dyne.

k=1
the arithmetic mean-geometric mean inequality

n 1/n
(Hw) QutEt ot

k=1

with equality if and only ifag = a» = - -- = a5. Thus we want to make theg as equal as possible.

If we have argy > 4, we replace it by two numbers & — 2. Then the sum is not affected, bueR— 2) > ax, since we are
assumingay > 4. Therefore, in order to maximise the product, we must ke 2 oray = 3. We must take as many 2's and
3's as possible.

Now, 242+ 2 =3+ 3, but 2 < 32, thus we should take no more than two 2’s. Since 1936658+ 2, the largest possible
product is 2 35%,

595 Example (USAMO 1983) Consider ampeninterval of length ¥non the real line, whereis a positive integer. Prove that
the number of irreducible fractiors'b, 1 < b < n, contained in the given interval is at mdst+ 1) /2.

Solution: Divide the rational numbers [, x+1/n) into two sets:{ti},k =1,2,...,r, with denominators K ty < n/2 and
k

thoseuy /v, k=1,2,...,swith denominators1/2 < v < n, where all these fractions are in reduced form. Now, for eter
there are integer such than/2 < ¢ty < n. Defineusk = CkSk, Vs+k = Citk, Yk+r = Uk+r/Vik+r- NO two of they;, 1 <| <r+s
are equal, for otherwisg =y, would yield

|ug/vk — Ui /vi| > 1/vi > 1/n,
which contradicts that the open interval is of lengfim1Hence the number of distinct rationalsiss< n—|/n/2]] < (n+1)/2.

Aliter: Suppose to the contrary that we have at lddst+ 1) /2|| + 1 = a fractions. Lets,tc,1 < k < a be the set of
numerators and denominators. The set of denominators issetof

{1,2,...,2(a—1)}.
By the Pigeonhole Principlé/tk for somei, k, sayty = mf. But then
|s/tc—s/ti] = [ms — s/t = 1/,
contradicting the hypothesis that the open interval is gtk 1/n.

596 Example Let

(rs)!
risl

Qr,s ==

Show thatQ; ,s= Qrs mod p, wherep is a prime
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Solution: As

and
! jps—1
Qr,ps: Jl;[l ( ps—l) y
it follows from . ‘
(14+x)1P = (14xP) S (1+x)P* mod p

jps—1\ [js—1
(pos)= (55) moae

that

whence the result.

Practice

597 Problem Find a four-digit number which is a perfef604 Problem Determine two-parameter solutions for the “al-
square such that its first two digits are equal to each othee| amost” Fermat Diophantine equations
its last two digits are equal to each other.

anl _I_ynfl _ Zn’
598 Problem Find all integral solutions of the equation
X Xn+1+yn+1 _ Zn,
K =y
; Xn+l+ynfl -

599 Problem Find all integral solutions of the equation 605 Problem (AIME 1984) What is the largest even integer

which cannot be written as the sum of two odd composite num-

X
> K=y bers?
k=1

600 Problem (USAMO 1985) Determine whether there a H06 Problem  Prove that are infinitely many nonnegative inte-
. . _ 2

any positive integral solutions to the simultaneous equati | 96rSN which cannot be written as= x +y°+2° for nonneg-

, , ative integers, y, z

X436+ +Xogs =Y,

G+ +Xggs =7 607 Problem Find the integral solutions of
with distinct integers, Xo, . . ., X1085
2
x=y'+y +y+y.

601 Problem Show that the Diophantine equation

1 1 1 1 608 Problem Show that there are infinitely many integery

1
—t—4...+ + =4
a & an—_1 an aaz---an such that

has at least one solution for everge N.

ATy =—1.

602 Problem (AIME 1987) Find the largest possible value pf09 Problem Prove that
k for which 3! is expressible as the sumlotonsecutive posf
itive integers. 1.

3,13, 3 2., 12
603 Problem (AIME 1987) Let .# be the smallest positiv a’+b°+c’—3abe=(a+b+c)(a +b*+c*—ab—be—cal.
integer whose cube is of the formtr, wherene N,0 <r <
1/1000. Findn. 2. Findintegers, b, c such that 1987 a+b*+c*—3abc

D
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3. Find polynomial$®, Q,Rin x,y,z such that

P34+ Q3+ R*—3PQR= (x+y3+ 2 —3xy2?

4. Canyou find integera b, c with 1987 = a®+b®+c®—
3abc?

610 Problem Find all integersh such than*+n+ 7 is a per-
fect square.

611 Problem Prove that 199%%! is not the sum of two pert

fect squares.

612 Problem Find infinitely many integers > 1,y>1z>1
such that

xlyl =2z
613 Problem Find all positive integers with

m—nm=1.

614 Problem Find all integers with

X—2y? =1.

615 Problem Prove that for every positive integér there
exists a sequence &f consecutive positive integers none
which can be represented as the sum of two squares.

616 Problem (IMO 1977) In a finite sequence of real nun
bers, the sum of any seven successive terms is negativg
the sum of any eleven successive terms is positive. Deter
the maximum number of terms in the sequence.

617 Problem Determine an infinite series of terms such t

r
each term of the series is a perfect square and the sum ¢f th

series at any point is also a perfect square.

618 Problem Prove that any positive rational integer can
expressed as a finite sum of distinct terms of the harmoni

619 Problem (Wostenholme’s Theorem)
prime. If

Let p> 3 be a
S T U

b-""2"3 p_1’

thenp?|a.

620 Problem Prove that the number of odd binomial coeffi-
cients in any row of Pascal’s Triangle is a power of 2.

621 Problem Prove that the coefficients of a binomial expan-
sion are odd if and only ifi is of the form ¥_1.

622 Problem Let the numbers; be defined by the power se-
ries identity

1

(14+X4+X 4+ +xP 1 /(1—x)P =1+ cix+ e+ -

Show that; =0 mod pforalli > 1.

623 Problem Let p be a prime. Show that

")

forall0<k<p—1

= (-1

mod p

624 Problem (Putnam 1977)
b > 0 be integers. Prove that
a

of
pay _
(5)-() o
N

,G3dProblem Demonstrate that for a primeandk € N,

(

Let p be a prime and lea >

pk

a) =0 mod p,

'#r 0 < a< p

e

626 Problem Letpbeaprimeand ldt,ac N,0<a< p‘—1.
Demonstrate that

L Se- _

(-1  mod p.

ries,11/2,1/3,....

be
p-1
a
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