Conic Construction of a Triangle from
the Feet of I1ts Angle Bisectors

Paul Yiu

Abstract. We study an extension of the problem of construction of antyie
from the feet of its internal angle bisectors. Given a trland BC, we give
a conic construction of points which are the incenter or eters of their own
anticevian triangles with respect t#oBC. If the given triangle contains a right
angle, a very simple ruler-and-compass construction isiples We also exam-
ine the case when the feet of the three external angle biseate three given
points on a line.

1. The angle bisectors problem

In this note we address the problem of construction of agi@from the end-
points of its angle bisectors. This is Problem 138 in WerBitikt [3]. The corre-
sponding problem of determining a triangle from the lengthi¢s angle bisectors
have been settled by Mironescu and Panaitopol [2].
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Figure 1. The angle bisectors problem

Given a triangleABC, we seek, more generally, a triangléB’C’ such that
the linesA’ A, B'B, C'C bisect the angle®’A'C’, C’A’B’, A’C'B’, internally or
externally. In this note, we refer to this as thagle bisectors problem. With refer-
ence to triangled BC, A’ B'C" is the anticevian triangle of a poitit, which is the
incenter or an excenter of trianglé B'C". It is an excenter if two of the lined’ P,
B'P, C'P are external angle bisectors and the remaining one an aitangle bi-
sector. For a nondegenerate trianglBC, we show ing3 that the angle bisectors
problem always have real solutions, as intersections eéthubics. We proceed to
provide a conic solution i§54, 5, 6. The particular case of right triangles has an
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elegant ruler-and-compass solution which we providg7inFinally, the construc-
tion of a triangle from the feet of its external angle bisestwill be considered in
§8. In this case, the three feet are collinear. We make freefustandard notations
of triangle geometry (see [4]) and work in homogeneous taryic coordinates
with respect taA BC.

2. Thecubic .7,

We begin with the solution of a locus problem: to find the locfigoints at
which two of the sides of a given triangle subtend equal angle

Proposition 1. Givenatriangle ABC with b # ¢, the locus of a point ¢ for which
QA isabisector of the angles between QB and QC is the isogonal conjugate of
the A-Apollonian circle.

Proof. The point A lies on a bisector of angl®QC if and only if cos AQB =
+ cos AQC, i.e, cos®? AQB = cos? AQC. In terms of the distances, this is equiv-
alent to

(QA" = QB*-QC*)(QB* — QC?) = 2QA*(V* - QB — ¢ - QC?)
—2(0* — A)QB?-QC* +bv*-QB* — - QC* =o. (1)
Let @ have homogeneous barycentric coordindtes y : z) with respect to
triangle ABC'. We make use of the distance formula in barycentric cootem
[4, §7.1, Exercise 1]:

2 __
QA" = (x+y+2)?

and analogous expressions @132 and QC?. Substitution into (1) leads to the
cubic

Hy z(Py? — 022 +yz(( +a® =)y — (a®> +b* — *)2) =0

after canceling afacto?(“+b+c)(bt;jr‘;lfcz;;a_b)(“+b_c) - z. Note that the factor
can be suppressed because point®6hdo not lie on the locus.

We obtain the isogonal conjugate of the culi¢ by replacing, in its equation,
x, y, z respectively bya’yz, b*zx, c2xy. After clearing a factob?c’z?yz, we
obtain

(b? — A)(a®yz + b2z + Fay) + d*(z + y + 2)(Py — b*2) = 0.

This is the circle througld = (1 : 0: 0) and(0 : b : %), the feet of the bisectors
of angleA on the sidelineBC'. It is the A-Apollonian circle of triangleABC, and
is the circle orthogonal to the circumcircle dtand with center on the lin&C'.
See Figure 2. O

Remark. If b = ¢, this locus is the circumcircle.
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Figure 2. The cubic#, and theA-Apollonian circle

3. Existence of solutionsto the angle bisectors problem

Let P = (z : y : 2) be a point whose anticevian trianglé B'C" is such that
the line A’ A is a bisector, internal or external, of angkA’C’, which is the same
as angleC'A’B. By Proposition 1 withQ = A’ = (—z : y : 2), we have the
equationF, = 0 below. Similarly, if B’B andC’C are angle bisectors ¢f’ B’ A’
and A’C’' B’, then by cyclic permutations af, b, c andz, y, z, we obtainF}, = 0
andrF, = 0. Here,

Fyi= —a(y? — 0222) +yz((2 + a® — By — (a® + b2 — 2)2),
Fy = — y(a222 — C2x2) + ZJC((CL2 + v — 62)2 - (b2 + - az)x)a
F. = — z(0*2* — a*y®) + zy((b* + & — a®)z — (¢* + a* — b*)y).

Theorem 2. The angle bisectors praoblem for a nondegenerate triangle ABC al-
ways has real solutions, i.e., the system of equations F,, = F, = F. = 0 has at
least one nonzero real solution.

Proof. This is clear for equilateral triangles. We shall assurrentyie ABC non-
equilateral, andB > g > (C. FromF, = 0, we write z in terms ofy and z.
Substitutions into the other two equations lead to the samn®lgeneous equation
in y andz of the form

AP+ a® =122 — 2yt 4+ B2+ 5 — AP — a2 = 0. (2)
Note that
A +a? =) - 2a®) = da®(2c0s2B + 1) <0,
b2 ((a® + % — )% — a®b?) = a®b*(2cos2C + 1) > 0.

It follows that a nonzero real solutiafy, z) of (2) exists, leading to a nonzero real
solution(z, y, z) of the systen¥, = F, = F. = 0. O
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Figure 3 illustrates a case of two real intersections. Ferwith four real inter-
sections, see 6.
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Figure 3. The cubic$, =0, F, =0andF. =0

4. Thehyperbola %,

The isogonal conjugate of the cubic curkig = 0 is the conic
Go: falz,y,2) = a® (PP =22+ (E+a? =)z — A (a® +b2—P)zy = 0.
See Figure 4.
Proposition 3. The conic %, is the hyperbola through the following points: the

vertex A, the endpoints of the two bisectors of angle A, the point X which divides
the A-altitude in theratio 2 : 1, and itstraces on sidelines C A and AB.

Proof. Rewriting the equation of, in the form
a?(b* —*)yz+b*(2a* —b* +c*)ze — (26> +b* — )y +a* (z +y+2)(Fy —b%z) = 0,
we see that it is homothetic to the circumconic which is tlegdal conjugate of
the line
(b — Az + (262 = b? + Ay — (2a®> + b* — )z = 0.

This is the perpendicular through the centroidBd’. Hence, the circumconic
and %, are hyperbolas. The hyperbdd, clearly contains the verted and the
endpoints of thed-bisectors, namely0 : b : +¢). It intersects the sidelineS' A
andABRB at

Y=(a?:0:2+a>-1V*) and Z=(a®:a®>+b>—c*:0)

respectively. These are the traces\of= (a? : a® +b> — ¢ : 2 + a® — b?), which
divides theA-altitude AH,, in the ratioAX : XH, = 2: 1. See Figure 5. O
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N

Figure 4. The cubid, = 0 and its isogonal conjugate corit,

Figure 5. The hyperbol&,

Remark. The tangents of the hyperbotg,
(i) at (0 : b : £c) pass through the midpoint of thé-altitude,
(i) at A and X intersect at the trace of the circumcenteon the sidelineBC.

5. Conic solution of the angle bisectors problem

Suppose nowP is a point which is the incenter (or an excenter) of its own an-
ticevian triangle with respect td BC. From the analysis of the preceding section,
its isogonal conjugate lies on the hyperb@laas well as the two analogous hyper-
bolas

G folz,y, 2) = 020?22 =)+ A (®+0? —A)zy—a? (VP + P —a?)yz = 0,
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and
. folz,y,2) = E0*22—d®y?)+a>(V*+ 2 —a?)yz—b* (P +a*—b?)zz = 0.

Sincef, + f» + f. = 0, the three hyperbolas generate a pencil. The isogonal
conjugates of the common points of the pencil are the poiresdolve the angle
bisectors problem. Theorem 2 guarantees the existencerohoa points. To dis-
tinguish between the incenter and the excenter cases, wéhaita nondegenerate
triangle ABC divides the planes into seven regions (see Figure 6), whlabel
in accordance with the signs of the homogeneous barycemtoiclinates of points
in the regions:

+++H —+H -+t -+, =+

In each case, the sum of the homogeneous barycentric catediof a point is
adjusted to be positive.

Figure 6. Partition of the plane by the sidelines of a triangl

In the remainder of this section, we shall denote by, . a triple of plus and
minus signs, not all minuses.

Lemma 4. A paint is in the e,e,¢. region of its own anticevian triangle (with
respect to ABC) if and only if it isin the e,&pe.. region of the medial triangle of
ABC.

The isogonal conjugates (with respectA®@C) of the sidelines of the medial
triangle divide the plane into seven regions, which we abel:,c,c., So that the
isogonal conjugates of points in thgs,e. region are in the corresponding region
partitioned by the lines of the medial triangle. See Figure 7

Proposition 5. Let () be a common point of the conics &, €, 6. in the e epe.
region of the partitioned by the hyperbolas. Theisogonal conjugate of ) isa point
whose anticevian triangle A’ B'C’ has P as incenter or excenter according as all
or not of g,, €, €. are plus signs.
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Figure 7. Partition of the plane by three branches of hydagho

6. Examples

Figure 8 shows an example in which the hyperb&fgas%,, %. have four com-
mon pointsQ)y, Q., @, Q., One in each of the regions + +, — + +, + — +,
+ + —. The isogonal conjugat&, of )y is the incenter of its own anticevian
triangle with respect tel BC'. See Figure 9.

Figure 8. Pencil of hyperbolas with four real intersections
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Figure 9. P, as incenter of its own anticevian triangle

Figure 10 shows the hyperbol&§, %, 4. corresponding to the cubics in Figure
3. They have only two real intersectiof§ and(),, none of which is in the region
+ + +. This means that there is no triangléB’C’ for which A, B, C are the feet
of the internal angle bisectors. The isogonal conjudatef (), has anticevian
triangle A1 B1Cy and is itsA;-excenter. LikewiseP is the isogonal conjugate of
(2, with anticevian triangled, BoCs, and is itsBy-excenter.

Figure 10. Pencil of hyperbolas with two real intersections
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7. Theangle bisectors problem for aright triangle

If the given triangleA BC contains a right angle, say, at ver@xthen the point
P can be constructed by ruler and compass. Here is an easyusiitst. In fact,
if ¢2 = a? + b, the cubicsF, = 0, F, = 0, F. = 0 are the curves
z((a® +b*)y? — b22?) — 2a%y*2 = 0,
y((a® +bH)a? — a?2?) — 2b%2%2 = 0,
2(b?2? — a*y?) — 22y (b?x — a’y) = 0.
A simple calculation shows that there are two real intersest
P =(a(vV3a —b) : b(v3b—a): (V3a—b)(V3b—a)),
Py =(a(v3a +b): b(v3b+a): —(vV3a+b)(V3b+a)).

These two points can be easily constructed as follows. ARC; and ABCs
be equilateral triangles on the hypotenu&B of the given triangle (witkC; and
C on opposite sides ol B). ThenP; and P, are the reflections af'; andC in
C. See Figure 11. Each of these points is an excenter of its oticesian triangle
with respect tad BC', except that in the case &1, it is the incenter when the acute

anglesA4 andB are in the rangerctan @ < A, B < arctan %

Figure 11. The angle bisectors problems for a right triangle

Remark. The cevian triangle of the incenter contains a right anggad only if the
triangle contains an interior angle t20° angle (see [1]).
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8. Trianglesfrom thefeet of external angle bisectors

In this section we make a change of notations. Figure 12 skimsvsollinearity
of the feetX, Y, Z of the external bisectors of triangleBC'. The linel containing
them is the trilinear polar of the incenter, namelys+ ¥ 4- 2 = 0. If the internal
bisectors of the angles intersetcat X', Y/, Z’ respectively, thenX, X’ divide
Y, Z harmonically, so dd’, Y’ divide Z, X, andZ, Z' divide X, Y. Since
the anglesX AX’, Y BY' andZC Z' are right angles, the vertice§, B, C lie on
the circles with diameterX X', YY’, ZZ' respectively. This leads to the simple
solution of the external angle bisectors problem.

Figure 12. The external angle bisectors problem

We shall make use of the angle bisector theorem in the fatigvWorm. Let
¢ = +1. Thee-bisector of an angle is the internal or external bisectopeting as
e=+1or—1.

Lemma 6 (Angle bisector theorem)Given triangle ABC with a point X on the
line BC. Theline AX isan e-bisector of angle BAC' if and only if

BX __ AB
xXc ¢ Ac

Here the left hand side is a signed ratio of directed segmantsthe ratioﬁ—g
on the right hand side is unsigned.

Given three distinct pointX’, Y, Z on a line/ (assuming, without loss of gen-
erality, Y in between, nearer t& than toZ, as shown in Figure 12), let’, Y, Z’
be the harmonic conjugates &f, Y, Zin Y Z, ZX, XY respectively. Here is a
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very simple construction of these harmonic conjugates heditcles with diame-
tersXX',YY', ZZ'. These three circles are coaxial, with two common paints
and F” which can be constructed as follows: XfY' M andY ZN are equilateral
triangles erected on the same side of the Mg 7, thenF and F’ are the Fermat
point of triangleY M N and its reflection in the line. See Figure 13.

N

Y’ X\ zZ Y | X/ Z

Figure 13. Coaxial circles with diamete’ksX’, YY', ZZ'

Note that the circlg X X’) is the locus of pointsA for which the bisectors of
angleY AZ pass throughX and X’. SinceX’ is betweenY” and Z, the internal
bisector of anglé” AZ passes througK’ and the external bisector through Let
the half-lineY A intersect the circléZZ’) atC. ThenCZ is the external bisector
of angleXCY'. Let B be the intersection of the line$Z andC X.

Lemma7. The point B lies on the circle with diameter YY",

Proof. Applying Menelaus’ theorem to triangld BC' and the transversaX'yY Z

(with X on BC, Y onCA, Z on AB), we have
AY CX BZ
YC XB ZA

Here, each component ratio is negative. See Figure 12. Weangg the numer-

ators and denominators, keeping the signs of the ratiogrdmiing the lengths of
the various segments without signs:

_AVN(CCXN (B2
AZ cY BX) 7
Applying the angle bisector theorem to the first two ratios,have

YX XZ ( BZ\_ |
xz zv \'Bx)

Hence, &% = £Z, andBY is the internal bisector of angl& BZ. This shows

that B lies on the circle with diametérY”. O
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The facts thatX, Y, Z are on the line$3C, C A, AB, and thatAX'’, BY, CZ'
are bisectors show thatX, BY, C'Z are the external bisectors of triangda3C.
This leads to a solution of a generalization of the externgleabisector problem.

Figure 14. Solutions of the external angle bisectors prable

Let A be a point on the circléX X’). Construct the liné” A to intersect the
circle (ZZ') atC andC’ (so thatA, C are on the same side &f). The lineAZ
intersectsC X and C’X at points B and B’ on the circle(YY’). The triangle
ABC hasAX, BY, CZ as external angle bisectors. At the same tirh8/C’ has
internal bisectorsi X, B'Y’, and external bisectaf’Z. See Figure 14.

We conclude with a characterization of the solutions to Kiereal angle bisec-
tors problem.

Proposition 8. The triangles ABC with external bisectors AX, BY, CZ are
characterized by

a—b:b—cia—-c=XY:YZ:XZ.

Proof. Without loss of generality, we assume> b > ¢. See Figure 12. The point
Y is betweenX and Z. SinceAX andCZ are the external bisector of angles
BAC and ACB respectively, we havéds = =¢ and 4% = =L. From these,

& = _(b"_c) and 28 = 2=t Applying Menelaus’ theorem to triangl& Z B
with transversal” AZ, we have

XY 24 BC

YZ AB CX

Xy _ _CX AB _ a-b ' imi
Hence, 57 = — 55 - 72 = 71— he other two ratios follow similarly. O
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