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Equilateral Triangles and Kiepert Perspectors
in Complex Numbers

Dao Thanh Oai

Abstract. We construct two equilateral triangles associated with an arbitrary
hexagon, and show that they are perspective.

1. Two equilateral triangles associated with a hexagon

Consider a hexagon A1A2A3A4A5A6 with equilateral triangles BjAjAj+1 con-
structed on the six sides externally. Here we take the subscripts modulo 6. Let Gj

be the centroid of triangle BjAjAj+1. We first establish the following interesting
result.

Theorem 1. The midpoints of the segments G1G4, G2G5, G3G6 form an equilat-
eral triangle.
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Figure 1.

We prove this theorem by using complex number coordinates of the points. Sup-
pose the hexagon is in the complex plane. Each of the vertices Aj , j = 1, 2, . . . , 6,
has a complex affix αj . We shall often simply identify a point with its complex
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affix. Throughout this note, ω denotes a complex cube root of unity. It satisfies
1 + ω + ω2 = 0. The other complex cube root of unity is ω2.

Lemma 2. (a) A triangle with vertices z1, z2, z3 is equilateral if and only if z1 +
ωz2 + ω2z3 = 0 for a complex cube root of unity ω.

(b) The center of an equilateral triangle with αjαj+1 as a side is γj , where

(1− ω)γj = −ωαj + αj+1

for a complex cube root of unity ω.

Proof of Theorem 1. Let M1, M2, M3 be the midpoints of G2G5, G3G6, G1G4

respectively. These have complex affixes zj = 1
2(γj+1 + γj+4) for j = 1, 2, 3. By

Lemma 2(b),

2(1− ω)(z1 + ω2z2 + ωz3)

= (1− ω)((γ2 + γ5) + ω2(γ3 + γ6) + ω(γ4 + γ1))

= (−ωα2 + α3) + (−ωα5 + α6) + ω2(−ωα3 + α4)

+ ω2(−ωα6 + α1) + ω(−ωα4 + α5) + ω(−ωα1 + α2)

= 0.

Therefore, z1 + ω2z2 + ωz3 = 0, and by Lemma 2(a), z1, z2, z3 are the vertices
of an equilateral triangle.

This completes the proof of Theorem 1.

By replacing ω by ω2 in Lemma 2(b), we have an analogous result of Theorem
1 with the equilateral triangle constructed on the sides of the given hexagon inter-
nally. In other words, if for j = 1, 2, . . . , 6, G′

j is the reflection of Gj in the side
AjAj+1, then the midpoints M ′

1 of G′
2G

′
5, M ′

2 of G′
3G

′
6, and M ′

3 of G′
1G

′
4 also

form an equilateral triangle (see Figure 2).
What is more interesting is that the two equilateral triangles M1M2M3 and

M ′
1M

′
2M

′
3 are perspective. We shall prove this by explicitly computing the com-

plex affix of the point of concurrency (Theorem 6 below).

Lemma 3. The line joining α, β and the line joining γ, δ intersect at

θ =
(γδ − δγ)(α− β)− (αβ − βα)(γ − δ)

(γ − δ)(α− β)− (α− β)(γ − δ)
.

Proof. Note that the denominator of θ is purely imaginary. Rewrite the numerator
as

(γδ − δγ)(α− β) + β(γ − δ)α− α(γ − δ)β

= (γδ − δγ + β(γ − δ))α− (γδ − δγ + α(γ − δ))β

= (γδ − δγ + β(γ − δ)− (γ − δ)β)α− (γδ − δγ + α(γ − δ)− (γ − δ)α)β.

This is a linear combination of α and β with purely imaginary coefficients. It
follows that θ is a real linear combination of α and β with coefficient sum equal to
1. It represents a point on the line joining α and β. Since θ is invariant under the
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permutation (α, β) ↔ (γ, δ), it also represents a point on the line joining γ and δ.
Therefore, it is the intersection of the two lines. �

We omit the proof of the next lemma.

Lemma 4. Given two segments αβ and α′β′, let γ(t) and γ′(t) be the points di-
viding the segments αβ and α′β′ in the same ratio

αγ(t) : γ(t)β = α′γ′(t) : γ′(t)β′ = t : 1− t,

the locus of the midpoint of γ(t)γ′(t) is a straight line.

Consider the segments A2A3 and A5A6 with midpoints α = α2+α3
2 and α′ =

α5+α6
2 . Let β = α+ 1

2(α2 − α3)i and β′ = α′ + 1
2(α5 − α6)i. These are vertices

of isosceles right triangles constructed on the segments A2A3 and A5A6. Clearly,
G2 and G5 divide the segment αβ and α′β′ in the same ratio; so do G′

2 and G′
5.

An application of Lemma 4 identifies the line joining the midpoints of G2G5 and
G′

2G
′
5.

Corollary 5. The line M1M
′
1 is the same as the line joining α2+α5+α3+α6

4 and
α2+α5+α3+α6

4 + i · α2+α5−α3−α6
4 .

Theorem 6. The lines M1M
′
1, M2M

′
2, and M3M

′
3 are concurrent at the point

|α1 + α4|2(α2 + α5 − α3 − α6) + |α2 + α5|2(α3 + α6 − α1 − α4) + |(α3 + α6|2(α1 + α4 − α2 − α5)

2((α1 + α4)(α2 + α5 − α3 − α6) + (α2 + α5)(α3 + α6 − α1 − α4) + (α3 + α6)(α1 + α4 − α2 − α5))
.

Proof. Let wj =
αj+αj+3

2 for j = 1, 2, 3. By Corollary 5, M1M
′
1 is the line

joining w2+w3
2 and w2+w3

2 + i · w2−w3
2 . Similarly, M2M

′
2 is the line joining w3+w1

2
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and w3+w1
2 +i· w3−w1

2 , and M3M
′
3 is the one joining w1+w2

2 and w1+w2
2 +i· w1−w2

2 .
By Lemma 3, the intersection of these last two lines is

Q =
|w1|2(w2 + w3) + |w2|2(w3 + w1) + |w3|2(w1 + w2)

w1(w2 + w3) + w2(w3 + w1) + w3(w1 + w2)
.

The cyclic symmetry of Q in w1, w2, w3 shows that it lies also on the line M1M
′
1,

and is therefore the point of concurrency of the three lines. Explicitly in terms of
αj for j = 1, 2, . . . , 6, this is given in the statement of the theorem above. �

2. Kierpert perspectors

2.1. Theorem 1 is a generalization of Napoleon’s theorem. If we put A1 = A4 =
A, A2 = A5 = B, and A3 = A6 = C, then B1 = B4, G1 = G4 = M1. Similarly,
G2 = G5 = M2 and G3 = G6 = M3. In this case, M1M2M3 is the Napoleon
triangle of triangle A1A2A3. The vertices of the other Napoleon equilateral triangle
M ′

1M
′
2M

′
3 are the reflections of M1, M2, M3 in BC, CA, AB respectively. The

two equilateral triangles are perspective at the circumcenter O.
On the other hand, if we put A1 = A2 = A, A3 = A4 = B, and A5 = A6 = C,

then M1M2M3 and M ′
1M

′
2M

′
3 are the inferior of the Napoleon triangles of ABC.

They are perspective at the nine-point center.
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2.2. Let ABC be a given triangle. Assume the circumcircle the unit circle in the
complex plane, so that the vertices are unit complex numbers α, β, γ.

α1 = α, α2 =
α+ γ

2
, α3 = γ, α4 =

β + γ

2
, α5 = β, α6 =

β + α

2
.

For j = 1, 2 . . . , 6, let Gj be the apex of an isosceles triangle with base AjAj+1

and base angle θ. Thus,

Gj =
αj + αj+1

2
+ tan θ · αj − αj+1

2
i.

In this case,

M1 =
1

2
(G2 +G5)

=
1

2

(
α+ 3γ

4
+ tan θ · γ − α

4
i+

α+ 3β

4
+ tan θ · α− β

4
i

)

=
1

8
(2α+ 3β + 3γ − tan θ(β − γ)i)

=
1

4
α+

3

4

(
β + γ

2
− tan θ

3
· β − γ

2
i

)

Note that β+γ
2 − tan θ

3 · β−γ
2 i is the affix of the vertex of the isosceles triangle on

BC with base angle arctan
(
1
3 tan θ

)
, on the same side as A. Similarly, M2 and

M3 lie respectively on the lines joining B, C to the vertices of similar isosceles
triangles on CA, and AB, constructed on the same sides of the vertices (see Figure
4).
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Proposition 7. (a) The triangle M1M2M3 is perspective with ABC at the Kiepert
perspector K

(− arctan
(
1
3 tan θ

))
.

(b) The triangle M ′
1M

′
2M

′
3 is perspective with ABC at the Kiepert perspector

K
(
arctan

(
1
3 tan θ

))
(see Figure 5).
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Finally, we identify the perspector Q of the equilateral triangles M1M2M3 and
M ′

1M
′
2M

′
3 (see Figure 6). The lines in question are

M1M
′
1 joining 2α+3β+3γ

8 and 2α+3β+3γ
8 − i · β−γ

8

M2M
′
2 joining 3α+2β+3γ

8 and 3α+2β+3γ
8 − i · γ−α

8

M3M
′
3 joining 3α+3β+2γ

8 and 3α+3β+2γ
8 − i · α−β

8

By Theorem 6, the perspector Q has complex affix 1
4(α + β + γ). Since the

orthocenter H of triangle ABC has complex affix α + β + γ (see, for example,
[3, p.74]), Q is the point dividing OH in the ratio OQ : OH = 1 : 4. In terms
of the nine-point center N and the centroid G, this satisfies NG : GQ = 2 : 1.
Therefore, Q is the nine-point center of the inferior (medial) triangle. This is the
triangle center X(140) in [2] (see Figure 6).

2.3. Given triangle ABC, consider points X , X ′ on BC, Y , Y ′ on CA, and Z,
Z ′ on AB such that

BX : XX ′ : X ′C = CY : Y Y ′ : Y ′A = AZ : ZZ ′ : Z ′B = t : 1− 2t : t

for some real number t. Construct similar isosceles triangles of base angles θ on
the sides XX ′, X ′Y , Y Y ′, Y ′Z, ZZ ′, Z ′X , all outside or inside the hexagon
according as θ is positive or negative. Denote the new apices of the isosceles
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triangles by A′, C ′′, B′, A′′, C ′, B′′ respectively. If the complex affixes of A, B,
C are α, β, γ respectively, then

A′ =
β + γ

2
+ (1− 2t) tan θ · β − γ

2
i,

A′′ = (1− t)α+ t · β + γ

2
− t tan θ · β − γ

2
.

The midpoint of the segment A′A′′ is

Ma =
1− t

2
α+

1 + t

2
· β + γ

2
+

1− 3t

2
tan θ · β − γ

2
i

=
1− t

2
α+

1 + t

2

(
β + γ

2
+

1− 3t

1 + t
tan θ · β − γ

2
i

)

Note that β+γ
2 + 1−3t

1+t tan θ · β−γ
2 i is the apex of the isosceles triangle on BC

with base angle arctan
(
1−3t
1+t tan θ

)
. Similar expressions hold for the coordi-

nates of the midpoints Mb of B′B′′ and Mc of C ′C ′′. From these we conclude
that the triangles MaMbMc and ABC are perspective at the Kiepert perspector

K
(
arctan

(
1−3t
1+t tan θ

))
. (see Figure 7).

By reversing the sign of θ, we obtain M ′
aM

′
bM

′
c perspective with ABC at the

Kiepert perspector K
(
− arctan

(
1−3t
1+t tan θ

))
. The line joining these two per-

spectors passes through the symmedian point of ABC.
These two triangles are equilateral if θ = ±π

6 .

2.4. Given triangle ABC and an angle θ, consider the Kiepert triangle A′B′C ′ :=
K(θ). On the sides of the hexagon BA′CB′AC ′, construct, similar isosceles tri-
angles of base angles φ. Let Xb be the apex of the triangle on CB′ and Xc the one
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on C ′B. The midpoint of XbXc has affix

β + γ

2
+

1

8
(1− tan θ tanφ)(2α− β − γ)− 1

8
(tan θ + tanφ)(β − γ)i

=
1− tan θ tanφ

4
α+

3 + tan θ tanφ

4

(
β + γ

2
− tan θ + tanφ

3 + tan θ tanφ
· β − γ

2
i

)
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With similar expressions of the midpoints of the two other segments, we con-
clude that the midpoints of the three segments are perspective with ABC at the
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Kiepert perspector

K

(
− arctan

(
tan θ + tanφ

3 + tan θ tanφ

))
.

3. Generalizations

Proposition 8 (Fritsch and Pickert [1]). Given a quadrilateral ABCD, let A′, B′,
C ′, D′ be the centers of squares on the sides AB, BC, CD, DA, all constructed
externally or internally of the quadrilateral. The midpoints of the diagonals of
ABCD and A′B′C ′D′ form a square.

Proposition 9 (van Aubel’s theorem). Given an octagon A1A2 · · ·A8, let Cj , j =
1, 2, . . . , 8 (indices taken modulo 8), be the centers of the squares on AjAj+1,
all externally or internally of the octagon. The midpoints of C1C5, C2C6, C3C7,
C4C8 form a quadrilateral with equal and perpendicular diagonals (see Figure 9).
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Proposition 10 (Thébault’s theorem). Given an octagonA1A2 · · ·A8, letBj be the
midpoint of AjAj+1 for indices j = 1, 2, . . . , 8 (modulo 8). If Cj , j = 1, 2, . . . , 8,
are the centers of the squares on BjBj+1, all externally or internally of the oc-
tagon, then the midpoints of C1C5, C2C6, C3C7, C4C8 are the vertices of a square
(see Figure 10).
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Proposition 8 is a special case of Proposition 10 with A1 = A2, A3 = A4,
A5 = A6, A7 = A8.
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