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A1 By differentiating Pn(x)/(xk − 1)n+1, we find that
Pn+1(x) = (xk − 1)P ′n(x) − (n + 1)kxk−1Pn(x);
substituting x = 1 yields Pn+1(1) = −(n +
1)kPn(1). Since P0(1) = 1, an easy induction gives
Pn(1) = (−k)nn! for all n ≥ 0.

Note: one can also argue by expanding in Taylor se-
ries around 1. Namely, we have

1
xk − 1

=
1

k(x− 1) + · · ·
=

1
k

(x− 1)−1 + · · · ,

so
dn

dxn

1
xk − 1

=
(−1)nn!

k(x− 1)−n−1

and

Pn(x) = (xk − 1)n+1 dn

dxn

1
xk − 1

= (k(x− 1) + · · · )n+1(
(−1)nn!

k
(x− 1)−n−1 + · · ·

)
= (−k)nn! + · · · .

A2 Draw a great circle through two of the points. There
are two closed hemispheres with this great circle as
boundary, and each of the other three points lies in
one of them. By the pigeonhole principle, two of
those three points lie in the same hemisphere, and
that hemisphere thus contains four of the five given
points.

Note: by a similar argument, one can prove that
among any n+3 points on an n-dimensional sphere,

some n+2 of them lie on a closed hemisphere. (One
cannot get by with only n + 2 points: put them at
the vertices of a regular simplex.) Namely, any n
of the points lie on a great sphere, which forms the
boundary of two hemispheres; of the remaining three
points, some two lie in the same hemisphere.

A3 Note that each of the sets {1}, {2}, . . . , {n} has the
desired property. Moreover, for each set S with inte-
ger average m that does not contain m, S∪{m} also
has average m, while for each set T of more than
one element with integer average m that contains m,
T \ {m} also has average m. Thus the subsets other
than {1}, {2}, . . . , {n} can be grouped in pairs, so
Tn − n is even.

A4 (partly due to David Savitt) Player 0 wins with op-
timal play. In fact, we prove that Player 1 cannot
prevent Player 0 from creating a row of all zeroes,
a column of all zeroes, or a 2 × 2 submatrix of all
zeroes. Each of these forces the determinant of the
matrix to be zero.

For i, j = 1, 2, 3, let Aij denote the position in row
i and column j. Without loss of generality, we may
assume that Player 1’s first move is at A11. Player 0
then plays at A22: 1 ∗ ∗

∗ 0 ∗
∗ ∗ ∗


After Player 1’s second move, at least one of A23 and
A32 remains vacant. Without loss of generality, as-
sume A23 remains vacant; Player 0 then plays there.
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After Player 1’s third move, Player 0 wins by play-
ing at A21 if that position is unoccupied. So as-
sume instead that Player 1 has played there. Thus
of Player 1’s three moves so far, two are at A11 and
A21. Hence for i equal to one of 1 or 3, and for j
equal to one of 2 or 3, the following are both true:

(a) The 2 × 2 submatrix formed by rows 2 and i
and by columns 2 and 3 contains two zeroes
and two empty positions.

(b) Column j contains one zero and two empty po-
sitions.

Player 0 next plays at Aij . To prevent a zero column,
Player 1 must play in column j, upon which Player
0 completes the 2× 2 submatrix in (a) for the win.

Note: one can also solve this problem directly by
making a tree of possible play sequences. This tree
can be considerably collapsed using symmetries: the
symmetry between rows and columns, the invariance
of the outcome under reordering of rows or columns,
and the fact that the scenario after a sequence of
moves does not depend on the order of the moves
(sometimes called “transposition invariance”).

Note (due to Paul Cheng): one can reduce Deter-
minant Tic-Tac-Toe to a variant of ordinary tic-tac-
toe. Namely, consider a tic-tac-toe grid labeled as
follows:

A11 A22 A33

A23 A31 A12

A32 A13 A21

Then each term in the expansion of the determinant
occurs in a row or column of the grid. Suppose
Player 1 first plays in the top left. Player 0 wins by
playing first in the top row, and second in the left col-
umn. Then there are only one row and column left
for Player 1 to threaten, and Player 1 cannot already
threaten both on the third move, so Player 0 has time
to block both.

A5 It suffices to prove that for any relatively prime posi-
tive integers r, s, there exists an integer n with an =
r and an+1 = s. We prove this by induction on
r + s, the case r + s = 2 following from the fact
that a0 = a1 = 1. Given r and s not both 1 with
gcd(r, s) = 1, we must have r 6= s. If r > s, then

by the induction hypothesis we have an = r − s
and an+1 = s for some n; then a2n+2 = r and
a2n+3 = s. If r < s, then we have an = r and
an+1 = s − r for some n; then a2n+1 = r and
a2n+2 = s.

Note: a related problem is as follows. Starting with
the sequence

0
1
,
1
0
,

repeat the following operation: insert between each
pair a

b and c
d the pair a+c

b+d . Prove that each positive
rational number eventually appears.

Observe that by induction, if a
b and c

d are consecu-
tive terms in the sequence, then bc − ad = 1. The
same holds for consecutive terms of the n-th Farey
sequence, the sequence of rational numbers in [0, 1]
with denominator (in lowest terms) at most n.

A6 The sum converges for b = 2 and diverges for b ≥ 3.
We first consider b ≥ 3. Suppose the sum converges;
then the fact that f(n) = nf(d) whenever bd−1 ≤
n ≤ bd − 1 yields

∞∑
n=1

1
f(n)

=
∞∑

d=1

1
f(d)

bd−1∑
n=bd−1

1
n

. (1)

However, by comparing the integral of 1/x with a
Riemann sum, we see that

bd−1∑
n=bd−1

1
n

>

∫ bd

bd−1

dx

x

= log(bd)− log(bd−1) = log b,

where log denotes the natural logarithm. Thus (1)
yields

∞∑
n=1

1
f(n)

> (log b)
∞∑

n=1

1
f(n)

,

a contradiction since log b > 1 for b ≥ 3. Therefore
the sum diverges.

For b = 2, we have a slightly different identity be-
cause f(2) 6= 2f(2). Instead, for any positive integer
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i, we have

2i−1∑
n=1

1
f(n)

= 1 +
1
2

+
1
6

+
i∑

d=3

1
f(d)

2d−1∑
n=2d−1

1
n

. (2)

Again comparing an integral to a Riemann sum, we
see that for d ≥ 3,

2d−1∑
n=2d−1

1
n

<
1

2d−1
− 1

2d
+

∫ 2d

2d−1

dx

x

=
1
2d

+ log 2

≤ 1
8

+ log 2 < 0.125 + 0.7 < 1.

Put c = 1
8 + log 2 and L = 1 + 1

2 + 1
6(1−c) . Then

we can prove that
∑2i−1

n=1
1

f(n) < L for all i ≥ 2
by induction on i. The case i = 2 is clear. For the
induction, note that by (2),

2i−1∑
n=1

1
f(n)

< 1 +
1
2

+
1
6

+ c

i∑
d=3

1
f(d)

< 1 +
1
2

+
1
6

+ c
1

6(1− c)

= 1 +
1
2

+
1

6(1− c)
= L,

as desired. We conclude that
∑∞

n=1
1

f(n) converges
to a limit less than or equal to L.

Note: the above argument proves that the sum for
b = 2 is at most L < 2.417. One can also obtain
a lower bound by the same technique, namely 1 +
1
2 + 1

6(1−c′) with c′ = log 2. This bound exceeds
2.043. (By contrast, summing the first 100000 terms
of the series only yields a lower bound of 1.906.)
Repeating the same arguments with d ≥ 4 as the
cutoff yields the upper bound 2.185 and the lower
bound 2.079.

B1 The probability is 1/99. In fact, we show by induc-
tion on n that after n shots, the probability of having
made any number of shots from 1 to n − 1 is equal
to 1/(n − 1). This is evident for n = 2. Given the

result for n, we see that the probability of making i
shots after n + 1 attempts is

i− 1
n

1
n− 1

+
(

1− i

n

)
1

n− 1
=

(i− 1) + (n− i)
n(n− 1)

=
1
n

,

as claimed.

B2 (Note: the problem statement assumes that all poly-
hedra are connected and that no two edges share
more than one face, so we will do likewise. In par-
ticular, these are true for all convex polyhedra.) We
show that in fact the first player can win on the third
move. Suppose the polyhedron has a face A with
at least four edges. If the first player plays there
first, after the second player’s first move there will be
three consecutive faces B,C,D adjacent to A which
are all unoccupied. The first player wins by playing
in C; after the second player’s second move, at least
one of B and D remains unoccupied, and either is a
winning move for the first player.

It remains to show that the polyhedron has a face
with at least four edges. (Thanks to Russ Mann for
suggesting the following argument.) Suppose on the
contrary that each face has only three edges. Starting
with any face F1 with vertices v1, v2, v3, let v4 be
the other endpoint of the third edge out of v1. Then
the faces adjacent to F1 must have vertices v1, v2, v4;
v1, v3, v4; and v2, v3, v4. Thus v1, v2, v3, v4 form a
polyhedron by themselves, contradicting the fact that
the given polyhedron is connected and has at least
five vertices. (One can also deduce this using Euler’s
formula V −E +F = 2−2g, where V,E, F are the
numbers of vertices, edges and faces, respectively,
and g is the genus of the polyhedron. For a convex
polyhedron, g = 0 and you get the “usual” Euler’s
formula.)

Note: Walter Stromquist points out the following
counterexample if one relaxes the assumption that a
pair of faces may not share multiple edges. Take a
tetrahedron and remove a smaller tetrahedron from
the center of an edge; this creates two small trian-
gular faces and turns two of the original faces into
hexagons. Then the second player can draw by sign-
ing one of the hexagons, one of the large triangles,
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and one of the small triangles. (He does this by “mir-
roring”: wherever the first player signs, the second
player signs the other face of the same type.)

B3 The desired inequalities can be rewritten as

1− 1
n

< exp
(

1 + n log
(

1− 1
n

))
< 1− 1

2n
.

By taking logarithms, we can rewrite the desired in-
equalities as

− log
(

1− 1
2n

)
< −1− n log

(
1− 1

n

)
< − log

(
1− 1

n

)
.

Rewriting these in terms of the Taylor expansion of
− log(1 − x), we see that the desired result is also
equivalent to

∞∑
i=1

1
i2ini

<

∞∑
i=1

1
(i + 1)ni

<

∞∑
i=1

1
ini

,

which is evident because the inequalities hold term
by term.

Note: David Savitt points out that the upper bound
can be improved from 1/(ne) to 2/(3ne) with a
slightly more complicated argument. (In fact, for any
c > 1/2, one has an upper bound of c/(ne), but only
for n above a certain bound depending on c.)

B4 Use the following strategy: guess 1, 3, 4, 6, 7, 9, . . .
until the target number n is revealed to be equal
to or lower than one of these guesses. If n ≡ 1
(mod 3), it will be guessed on an odd turn. If n ≡ 0
(mod 3), it will be guessed on an even turn. If
n ≡ 2 (mod 3), then n + 1 will be guessed on
an even turn, forcing a guess of n on the next turn.
Thus the probability of success with this strategy is
1335/2002 > 2/3.

Note: for any positive integer m, this strategy wins
when the number is being guessed from [1,m] with
probability 1

mb 2m+1
3 c. We can prove that this is best

possible as follows. Let am denote m times the prob-
ability of winning when playing optimally. Also, let
bm denote m times the corresponding probability of

winning if the objective is to select the number in
an even number of guesses instead. (For definite-
ness, extend the definitions to incorporate a0 = 0
and b0 = 0.)

We first claim that am = 1 + max1≤k≤m{bk−1 +
bm−k} and bm = max1≤k≤m{ak−1 + am−k} for
m ≥ 1. To establish the first recursive identity, sup-
pose that our first guess is some integer k. We au-
tomatically win if n = k, with probability 1/m. If
n < k, with probability (k − 1)/m, then we wish
to guess an integer in [1, k − 1] in an even number
of guesses; the probability of success when playing
optimally is bk−1/(k−1), by assumption. Similarly,
if n < k, with probability (m− k)/m, then the sub-
sequent probability of winning is bm−k/(m− k). In
sum, the overall probability of winning if k is our
first guess is (1 + bk−1 + bm−k)/m. For optimal
strategy, we choose k such that this quantity is max-
imized. (Note that this argument still holds if k = 1
or k = m, by our definitions of a0 and b0.) The first
recursion follows, and the second recursion is estab-
lished similarly.

We now prove by induction that am = b(2m+1)/3c
and bm = b2m/3c for m ≥ 0. The inductive step
relies on the inequality bxc + byc ≤ bx + yc, with
equality when one of x, y is an integer. Now suppose
that ai = b(2i + 1)/3c and bi = b2i/3c for i < m.
Then

1 + bk−1 + bm−k = 1 +
⌊

2(k − 1)
3

⌋
+

⌊
2(m− k)

3

⌋
≤

⌊
2m

3

⌋
and similarly ak−1 + am−k ≤ b(2m + 1)/3c, with
equality in both cases attained, e.g., when k = 1.
The inductive formula for am and bm follows.

B5 (due to Dan Bernstein) Put N = 2002!. Then for
d = 1, . . . , 2002, the number N2 written in base b =
N/d−1 has digits d2, 2d2, d2. (Note that these really
are digits because 2(2002)2 < (2002!)2/2002− 1.)

Note: one can also produce an integer N which has
base b digits 1, ∗, 1 for n different values of b, as
follows. Choose c with 0 < c < 21/n. For m a
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large positive integer, put N = 1+(m+1) · · · (m+
n)bcmcn−2. For m sufficiently large, the bases

b =
N − 1

(m + i)mn−2
=

∏
j 6=i

(m + j)

for i = 1, . . . , n will have the properties that N ≡ 1
(mod b) and b2 < N < 2b2 for m sufficiently large.

Note (due to Russ Mann): one can also give a “non-
constructive” argument. Let N be a large positive
integer. For b ∈ (N2, N3), the number of 3-digit
base-b palindromes in the range [b2, N6 − 1] is at
least ⌊

N6 − b2

b

⌋
− 1 ≥ N6

b2
− b− 2,

since there is a palindrome in each interval [kb, (k +
1)b − 1] for k = b, . . . , b2 − 1. Thus the average
number of bases for which a number in [1, N6 − 1]
is at least

1
N6

N3−1∑
b=N2+1

(
N6

b
− b− 2

)
≥ log(N)− c

for some constant c > 0. Take N so that the
right side exceeds 2002; then at least one number in
[1, N6 − 1] is a base-b palindrome for at least 2002
values of b.

B6 We prove that the determinant is congruent modulo
p to

x

p−1∏
i=0

(y + ix)
p−1∏

i,j=0

(z + ix + jy). (3)

We first check that

p−1∏
i=0

(y + ix) ≡ yp − xp−1y (mod p). (4)

Since both sides are homogeneous as polynomials
in x and y, it suffices to check (4) for x = 1, as
a congruence between polynomials. Now note that
the right side has 0, 1, . . . , p − 1 as roots modulo p,
as does the left side. Moreover, both sides have the
same leading coefficient. Since they both have de-
gree only p, they must then coincide.

We thus have

x

p−1∏
i=0

(y + ix)
p−1∏

i,j=0

(z + ix + jy)

≡ x(yp − xp−1y)
p−1∏
j=0

((z + jy)p − xp−1(z + jy))

≡ (xyp − xpy)
p−1∏
j=0

(zp − xp−1z + jyp − jxp−1y)

≡ (xyp − xpy)((zp − xp−1z)p

− (yp − xp−1y)p−1(zp − xp−1z))

≡ (xyp − xpy)(zp2
− xp2−pzp)

− x(yp − xp−1y)p(zp − xp−1z)

≡ xypzp2
− xpyzp2

− xp2−p+1ypzp + xp2
yzp

− xyp2
zp + xp2−p+1ypzp + xpyp2

z − xp2
ypz

≡ xypzp2
+ yzpxp2

+ zxpyp2

− xzpyp2
− yxpzp2

− zypxp2
,

which is precisely the desired determinant.

Note: a simpler conceptual proof is as follows. (Ev-
erything in this paragraph will be modulo p.) Note
that for any integers a, b, c, the column vector [ax +
by + cz, (ax + by + cz)p, (ax + by + cz)p2

] is a
linear combination of the columns of the given ma-
trix. Thus ax + by + cz divides the determinant. In
particular, all of the factors of (3) divide the determi-
nant; since both (3) and the determinant have degree
p2 + p + 1, they agree up to a scalar multiple. More-
over, they have the same coefficient of zp2

ypx (since
this term only appears in the expansion of (3) when
you choose the first term in each factor). Thus the
determinant is congruent to (3), as desired.

Either argument can be used to generalize to a corre-
sponding n×n determinant, called a Moore determi-
nant; we leave the precise formulation to the reader.
Note the similarity with the classical Vandermonde
determinant: if A is the n× n matrix with Aij = xj

i

for i, j = 0, . . . , n− 1, then

det(A) =
∏

1≤i<j≤n

(xj − xi).

5


