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A1 Yes. Suppose otherwise. Then there would be an
N such thatS(N) < 80% andS(N + 1) > 80%;
that is, O’Keal’s free throw percentage is under80%
at some point, and after one subsequent free throw
(necessarily made), her percentage is over80%. If
she makesm of her firstN free throws, thenm/N <
4/5 and(m + 1)/(N + 1) > 4/5. This means that
5m < 4n < 5m + 1, which is impossible since then
4n is an integer between the consecutive integers5m
and5m + 1.

Remark: This same argument works for any frac-
tion of the form(n − 1)/n for some integern > 1,
but not for any other real number between0 and1.

A2 First solution: (partly due to Ravi Vakil) Yes, it does
follow. For i = 1, 2, let Pi, Qi, Ri be the vertices of
Ti opposide the sides of lengthai, bi, ci, respectively.

We first check the case wherea1 = a2 (or b1 = b2

or c1 = c2, by the same argument after relabeling).
ImagineT2 as being drawn with the baseQ2R2 hor-
izontal and the pointP2 above the lineQ2R2. We
may then positionT1 so thatQ1 = Q2, R1 = R2,
andP1 lies above the lineQ1R1 = Q2R2. Then
P1 also lies inside the region bounded by the circles
throughP2 centered atQ2 andR2. Since∠Q2 and
∠R2 are acute, the part of this region above the line
Q2R2 lies withinT2. In particular, the distance from
P1 to the lineQ2R2 is less than or equal to the dis-
tance fromP2 to the lineQ2R2; henceA1 ≤ A2.

To deduce the general case, put

r = max{a1/a2, b1/b2, c1/c2}.

Let T3 be the triangle with sidesra2, rb2, rc2, which
has arear2A2. Applying the special case toT1 and
T3, we deduce thatA1 ≤ r2A2; sincer ≤ 1 by
hypothesis, we haveA1 ≤ A2 as desired.

Remark: Another geometric argument in the case
a1 = a2 is that since angles∠Q2 and∠R2 are acute,
the perpendicular toQ2R2 throughP2 separatesQ2

from R2. If A1 > A2, thenP1 lies above the par-
allel to Q2R2 throughP2; if then it lies on or to the
left of the vertical line throughP2, we havec1 > c2

because the inequality holds for both horizontal and
vertical components (possibly with equality for one,
but not both). Similarly, ifP1 lies to the right of the
vertical, thenb1 > b2.

Second solution: (attribution unknown) Retain no-
tation as in the first paragraph of the first solution.
Since the angle measures in any triangle add up to
π, some angle ofT1 must have measure less than or
equal to its counterpart inT2. Without loss of gen-
erality assume that∠P1 ≤ ∠P2. Since the latter
is acute (becauseT2 is acute), we havesin∠P1 ≤
sin∠P2. By the Law of Sines,

A1 =
1
2
b1c1 sin ∠P1 ≤ 1

2
b2c2 sin ∠P2 = A2.

Remark: Many other solutions are possible; for in-
stance, one uses Heron’s formula for the area of a
triangle in terms of its side lengths.

A3 Define a sequencevn by vn = (n − 1)(n −
3) · · · (4)(2) if n is odd andvn = (n − 1)(n −
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3) · · · (3)(1) if n is even; it suffices to prove that
un = vn for all n ≥ 2. Now vn+3vn = (n +
2)(n)(n − 1)! and vn+2vn+1 = (n + 1)!, and so
vn+3vn − vn+2vn+1 = n!. Since we can check
that un = vn for n = 2, 3, 4, andun andvn sat-
isfy the same recurrence, it follows by induction that
un = vn for all n ≥ 2, as desired.

A4 It suffices to verify that

x1 · · ·xn

=
1

2nn!

∑
ei∈{−1,1}

(e1 · · · en)(e1x1 + · · · + enxn)n.

To check this, first note that the right side vanishes
identically for x1 = 0, because each term cancels
the corresponding term withe1 flipped. Hence the
right side, as a polynomial, is divisible byx1; sim-
ilarly it is divisible by x2, . . . , xn. Thus the right
side is equal tox1 · · ·xn times a scalar. (Another
way to see this: the right side is clearly odd as a
polynomial in each individual variable, but the only
degreen monomial in x1, . . . , xn with that prop-
erty is x1 · · ·xn.) Since each summand contributes
1
2n x1 · · ·xn to the sum, the scalar factor is 1 and we
are done.

Remark: Several variants on the above construction
are possible; for instance,

x1 · · ·xn

=
1
n!

∑
ei∈{0,1}

(−1)n−e1−···−en(e1x1 + · · · + enxn)n

by the same argument as above.

Remark: These construction work over any field of
characteristic greater thann (at least forn > 1).
On the other hand, no construction is possible over
a field of characteristicp ≤ n, since the coefficient
of x1 · · ·xn in the expansion of(e1x1+· · ·+enxn)n

is zero for anyei.

Remark: Richard Stanley asks whether one can use
fewer than2n terms, and what the smallest possible
number is.

A5 First solution: First recall that any graph withn ver-
tices ande edges has at leastn−e connected compo-
nents (add each edge one at a time, and note that it re-
duces the number of components by at most 1). Now
imagine the squares of the checkerboard as a graph,
whose vertices are connected if the corresponding
squares share a side and are the same color. LetA
be the number of edges in the graph, and letB be
the number of 4-cycles (formed by monochromatic
2×2 squares). If we remove the bottom edge of each
4-cycle, the resulting graph has the same number of
connected components as the original one; hence this
number is at least

mn − A + B.

By the linearity of expectation, the expected number
of connected components is at least

mn − E(A) + E(B).

Moreover, we may computeE(A) by summing over
the individual pairs of adjacent squares, and we may
computeE(B) by summing over the individual2×2
squares. Thus

E(A) =
1
2
(m(n − 1) + (m − 1)n),

E(B) =
1
8
(m − 1)(n − 1),

and so the expected number of components is at least

mn − 1
2
(m(n − 1) + (m − 1)n) +

1
8
(m − 1)(n − 1)

=
mn + 3m + 3n + 1

8
>

mn

8
.

Remark: A “dual” approach is to consider the graph
whose vertices are the corners of the squares of the
checkerboard, with two vertices joined if they are ad-
jacent and the edge between then does not separate
two squares of the same color. In this approach, the
4-cycles become isolated vertices, and the bound on
components is replaced by a call to Euler’s formula
relating the vertices, edges and faces of a planar fig-
ure. (One must be careful, however, to correctly han-
dle faces which are not simply connected.)

2



Second solution: (by Noam Elkies) Number the
squares of the checkerboard1, . . . , mn by number-
ing the first row from left to right, then the second
row, and so on. We prove by induction oni that if we
just consider the figure formed by the firsti squares,
its expected number of monochromatic components
is at leasti/8. For i = 1, this is clear.

Suppose thei-th square does not abut the left edge or
the top row of the board. Then we may divide into
three cases.

– With probability 1/4, the i-th square is oppo-
site in color from the adjacent squares directly
above and to the left of it. In this case adding
thei-th square adds one component.

– With probability 1/8, the i-th square is the
same in color as the adjacent squares directly
above and to the left of it, but opposite in color
from its diagonal neighbor above and to the
left. In this case, adding thei-th square either
removes a component or leaves the number un-
changed.

– In all other cases, the number of compo-
nents remains unchanged upon adding thei-th
square.

Hence adding thei-th square increases the expected
number of components by1/4 − 1/8 = 1/8.

If the i-th square does abut the left edge of the board,
the situation is even simpler: if thei-th square dif-
fers in color from the square above it, one compo-
nent is added, otherwise the number does not change.
Hence adding thei-th square increases the expected
number of components by1/2; likewise if the i-th
square abuts the top edge of the board. Thus the ex-
pected number of components is at leasti/8 by in-
duction, as desired.

Remark: Some solvers attempted to consider
adding one row at a time, rather than one square;
this must be handled with great care, as it is possi-
ble that the number of components can drop rather
precipitously upon adding an entire row.

A6 By approximating each integral with a Riemann
sum, we may reduce to proving the discrete ana-

logue: forxij ∈ R for i, j = 1, . . . , n,

n

n∑
i=1


 n∑

j=1

xij




2

+ n

n∑
j=1

(
n∑

i=1

xij

)2

≤

 n∑

i=1

n∑
j=1

xij




2

+ n2
n∑

i=1

n∑
j=1

x2
ij .

The difference between the right side and the left
side is

1
4

n∑
i,j,k,l=1

(xij + xkl − xil − xkj)2,

which is evidently nonnegative. If you prefer not to
discretize, you may rewrite the original inequality as

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

F (x, y, z, w)2 dx dy dz dw ≥ 0

for

F (x, y, z, w) = f(x, y)+f(z, w)−f(x,w)−f(z, y).

Remark: (by Po-Ning Chen) The discrete inequal-
ity can be arrived at more systematically by repeat-
edly applying the following identity: for any real
a1, . . . , an,

∑
1≤i<j≤n

(xi − xj)2 = n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

.

Remark: (by David Savitt) The discrete inequal-
ity can also be interpreted as follows. Forc, d ∈
{1, . . . , n − 1} andζn = e2πi/n, put

zc,d =
∑
i,j

ζci+dj
n xij .

Then the given inequality is equivalent to

n−1∑
c,d=1

|zc,d|2 ≥ 0.
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B1 Letk be an integer,0 ≤ k ≤ n−1. SinceP (r)/rk =
0, we have

cnrn−k + cn−1r
n−k+1 + · · · + ck+1r

= −(ck + ck−1r
−1 + · · · + c0r

−k).

Write r = p/q wherep andq are relatively prime.
Then the left hand side of the above equation can be
written as a fraction with denominatorqn−k, while
the right hand side is a fraction with denominatorpk.
Sincep andq are relatively prime, both sides of the
equation must be an integer, and the result follows.

Remark: If we write r = a/b in lowest terms, then
P (x) factors as(bx − a)Q(x), where the polyno-
mial Q has integer coefficients because you can ei-
ther do the long division from the left and get denom-
inators divisible only by primes dividingb, or do it
from the right and get denominators divisible only by
primes dividinga. The numbers given in the prob-
lem are none other thana times the coefficients ofQ.
More generally, ifP (x) is divisible, as a polynomial
over the rationals, by a polynomialR(x) with integer
coefficients, thenP/R also has integer coefficients;
this is known as “Gauss’s lemma” and holds in any
unique factorization domain.

B2 First solution: We have

(m + n)m+n >

(
m + n

m

)
mmnn

because the binomial expansion of(m + n)m+n in-
cludes the term on the right as well as some others.
Rearranging this inequality yields the claim.

Remark: One can also interpret this argument com-
binatorially. Suppose that we choosem + n times
(with replacement) uniformly randomly from a set of
m+n balls, of whichm are red andn are blue. Then
the probability of picking each ball exactly once is
(m + n)!/(m + n)m+n. On the other hand, ifp is
the probability of picking exactlym red balls, then
p < 1 and the probability of picking each ball ex-
actly once isp(mm/m!)(nn/n!).

Second solution:(by David Savitt) Define

Sk = {i/k : i = 1, . . . , k}

and rewrite the desired inequality as∏
x∈Sm

x
∏

y∈Sn

y >
∏

z∈Sm+n

z.

To prove this, it suffices to check that if we sort the
multiplicands on both sides into increasing order, the
i-th term on the left side is greater than or equal to
thei-th term on the right side. (The equality is strict
already fori = 1, so you do get a strict inequality
above.)

Another way to say this is that for anyi, the number
of factors on the left side which are less thani/(m+
n) is less thani. But sincej/m < i/(m + n) is
equivalent toj < im/(m + n), that number is⌈

im

m + n

⌉
− 1 +

⌈
in

m + n

⌉
− 1

≤ im

m + n
+

in

m + n
− 1 = i − 1.

Third solution: Putf(x) = x(log(x + 1) − log x);
then forx > 0,

f ′(x) = log(1 + 1/x) − 1
x + 1

f ′′(x) = − 1
x(x + 1)2

.

Hencef ′′(x) < 0 for all x; sincef ′(x) → 0 as
x → ∞, we havef ′(x) > 0 for x > 0, so f is
strictly increasing.

Putg(m) = m log m − log(m!); theng(m + 1) −
g(m) = f(m), sog(m + 1) − g(m) increases with
m. By induction,g(m+n)− g(m) increases withn
for any positive integern, so in particular

g(m + n) − g(m) > g(n) − g(1) + f(m)
≥ g(n)

sinceg(1) = 0. Exponentiating yields the desired
inequality.

B3 The answer is{a | a > 2}. If a > 2, then the
function f(x) = 2a/(a − 2) has the desired prop-
erty; both perimeter and area ofR in this case are
2a2/(a − 2). Now suppose thata ≤ 2, and letf(x)
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be a nonnegative continuous function on[0, a]. Let
P = (x0, y0) be a point on the graph off(x) with
maximaly-coordinate; then the area ofR is at most
ay0 since it lies below the liney = y0. On the
other hand, the points(0, 0), (a, 0), andP divide the
boundary ofR into three sections. The length of the
section between(0, 0) andP is at least the distance
between(0, 0) andP , which is at leasty0; the length
of the section betweenP and (a, 0) is similarly at
leasty0; and the length of the section between(0, 0)
and(a, 0) is a. Sincea ≤ 2, we have2y0 + a > ay0

and hence the perimeter ofR is strictly greater than
the area ofR.

B4 First solution: Identify thexy-plane with the com-
plex planeC, so thatPk is the real numberk. If
z is sent toz′ by a counterclockwise rotation byθ
about Pk, then z′ − k = eiθ(z − k); hence the
rotationRk sendsz to ζz + k(1 − ζ), whereζ =
e2πi/n. It follows thatR1 followed byR2 sendsz to
ζ(ζz + (1− ζ)) + 2(1− ζ) = ζ2z + (1− ζ)(ζ + 2),
and so forth; an easy induction shows thatR sendsz
to

ζnz +(1− ζ)(ζn−1 +2ζn−2 + · · ·+(n− 1)ζ +n).

Expanding the product(1−ζ)(ζn−1+2ζn−2+ · · ·+
(n−1)ζ +n) yields−ζn − ζn−1−· · ·− ζ +n = n.
ThusR sendsz to z + n; in cartesian coordinates,
R(x, y) = (x + n, y).

Second solution: (by Andy Lutomirski, via Ravi
Vakil) Imagine a regularn-gon of side length 1
placed with its top edge on thex-axis and the left
endpoint of that edge at the origin. Then the rotations
correspond to rolling thisn-gon along thex-axis; af-
ter then rotations, it clearly ends up in its original
rotation and translatedn units to the right. Hence
the whole plane must do so as well.

Third solution: (attribution unknown) Viewing
eachRk as a function of a complex numberz as in
the first solution, the functionRn◦Rn−1◦· · ·◦R1(z)
is linear inz with slopeζn = 1. It thus equalsz + T
for someT ∈ C. Sincef1(1) = 1, we can write
1 + T = Rn ◦ · · · ◦ R2(1). However, we also have

Rn ◦ · · · ◦ R2(1) = Rn−1 ◦ R1(0) + 1

by the symmetry in how theRi are defined. Hence

Rn(1 + T ) = Rn ◦ R1(0) + Rn(1) = T + Rn(1);

that is,Rn(T ) = T . HenceT = n, as desired.

B5 First solution: By taking logarithms, we see
that the desired limit isexp(L), where L =
limx→1−

∑∞
n=0 xn

(
ln(1 + xn+1) − ln(1 + xn)

)
.

Now

N∑
n=0

xn
(
ln(1 + xn+1) − ln(1 + xn)

)

= 1/x

N∑
n=0

xn+1 ln(1 + xn+1) −
N∑

n=0

xn ln(1 + xn)

= xN ln(1 + xN+1) − ln 2 + (1/x − 1)
N∑

n=1

xn ln(1 + xn);

sincelimN→∞(xN ln(1 + xN+1)) = 0 for 0 < x <
1, we conclude thatL = − ln 2 + limx→1− f(x),
where

f(x) = (1/x − 1)
∞∑

n=1

xn ln(1 + xn)

= (1/x − 1)
∞∑

n=1

∞∑
m=1

(−1)m+1xn+mn/m.

This final double sum converges absolutely when
0 < x < 1, since

∞∑
n=1

∞∑
m=1

xn+mn/m =
∞∑

n=1

xn(− ln(1 − xn))

<
∞∑

n=1

xn(− ln(1 − x)),

which converges. (Note that− ln(1 − x) and
− ln(1 − xn) are positive.) Hence we may inter-
change the summations inf(x) to obtain

f(x) = (1/x − 1)
∞∑

m=1

∞∑
n=1

(−1)m+1x(m+1)n

m

= (1/x − 1)
∞∑

m=1

(−1)m+1

m

(
xm(1 − x)
1 − xm+1

)
.
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This last sum converges absolutely uniformly inx,
so it is legitimate to take limits term by term. Since
limx→1− xm1−x

1−xm+1 = 1
m+1 for fixedm, we have

lim
x→1−

f(x) =
∞∑

m=1

(−1)m+1

m(m + 1)

=
∞∑

m=1

(−1)m+1

(
1
m

− 1
m + 1

)

= 2

( ∞∑
m=1

(−1)m+1

m

)
− 1

= 2 ln 2 − 1,

and henceL = ln 2 − 1 and the desired limit is2/e.

Remark: Note that the last series is not absolutely
convergent, so the recombination must be done with-
out rearranging terms.

Second solution: (by Greg Price, via Tony Zhang
and Anders Kaseorg) Puttn(x) = ln(1 + xn); we
can then writexn = exp(tn(x)) − 1, and

L = lim
x→1−

∞∑
n=0

(tn(x) − tn+1(x))(1 − exp(tn(x))).

The expression on the right is a Riemann sum ap-
proximating the integral

∫ ln 2

0
(1 − et) dt, over the

subdivision of[0, ln(2)) given by thetn(x). Asx →
1−, the maximum difference between consecutive
tn(x) tends to 0, so the Riemann sum tends to the
value of the integral. HenceL =

∫ ln 2

0
(1 − et) dt =

ln 2 − 1, as desired.

B6 First solution: (based on a solution of Dan Bern-
stein) Note that for anyb, the condition thatb /∈ B al-
ready forceslim sup N(x)/x to be at most 1/2: pair
off 2mb+n with (2m+1)b+n for n = 1, . . . , b, and
note that at most one member of each pair may be-
long toA. The idea of the proof is to do something
similar with pairs replaced by larger clumps, using
long runs of excluded elements ofB.

Suppose we have positive integersb0 = 1, b1, . . . , bn

with the following properties:

(a) Fori = 1, . . . , n, ci = bi/(2bi−1) is an integer.

(b) Forei ∈ {−1, 0, 1}, |e1b1 + · · · + enbn| /∈ B.

Each nonnegative integera has a unique “base ex-
pansion”

a = a0b0+· · ·+an−1bn−1+mbn (0 ≤ ai < 2ci);

if two integers have expansions with the same value
of m, and values ofai differing by at most 1 fori =
0, . . . , n − 1, then their difference is not inB, so at
most one of them lies inA. In particular, for any
di ∈ {0, . . . , ci−1}, anym0 ∈ {0, 2c0−1} and any
mn, the set

{m0b0 + (2d1 + e1)b0 + · · ·
+ (2dn−1 + en−1)bn−1 + (2mn + en)bn},

where eachei runs over{0, 1}, contains at most
one element ofA; consequently,lim sup N(x)/x ≤
1/2n.

We now produce suchbi recursively, starting with
b0 = 1 (and both (a) and (b) holding vacuously).
Given b0, . . . , bn satisfying (a) and (b), note that
b0 + · · · + bn−1 < bn by induction onn. By the
hypotheses of the problem, we can find a setSn of
6bn consecutive integers, none of which belongs to
B. Let bn+1 be the second-smallest multiple of2bn

in Sn; then bn+1 + x ∈ Sn for −2bn ≤ x ≤ 0
clearly, and also for0 ≤ x ≤ 2bn because there are
most4bn−1 elements ofSn precedingbn+1. In par-
ticular, the analogue of (b) withn replaced byn + 1
holds foren+1 6= 0; of course it holds foren+1 = 0
because (b) was already known. Since the analogue
of (a) holds by construction, we have completed this
step of the construction and the recursion may con-
tinue.

Since we can constructb0, . . . , bn satisfying (a) and
(b) for anyn, we havelim sup N(x)/x ≤ 1/2n for
anyn, yielding lim N(x)/x = 0 as desired.

Second solution:(by Paul Pollack) LetS be the set
of possible values oflim sup N(x)/x; sinceS ⊆
[0, 1] is bounded, it has a least upper boundL. Sup-
pose by way of contradiction thatL > 0; we can then
chooseA,B satisfying the conditions of the problem
such thatlim sup N(x)/x > 3L/4.
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To begin with, we can certainly find some positive
integerm /∈ B, so thatA is disjoint fromA + m =
{a + m : a ∈ A}. Put A′ = A ∪ (A + m)
and letN ′(x) be the size ofA′ ∩ {1, . . . , x}; then
lim sup N ′(x)/x = 3L/2 > L, soA′ cannot obey
the conditions of the problem statement. That is, if
we letB′ be the set of positive integers that occur as
differences between elements ofA′, then there ex-
ists an integern such that among anyn consecutive
integers, at least one lies inB′. But

B′ ⊆ {b + em : b ∈ B, e ∈ {−1, 0, 1}},

so among anyn + 2m consecutive integers, at least
one lies inB. This contradicts the condition of the
problem statement.

We conclude that it is impossible to haveL > 0, so
L = 0 andlim N(x)/x = 0 as desired.

Remark: A hybrid between these two arguments
is to note that if we can producec1, . . . , cn such
that |ci − cj | /∈ B for i, j = 1, . . . , n, then the
translatesA + c1, . . . ,A + cn are disjoint and so
lim sup N(x)/x ≤ 1/n. Given c1 ≤ · · · ≤ cn as
above, we can then choosecn+1 to be the largest el-
ement of a run ofcn + 1 consecutive integers, none
of which lie inB.
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