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Yes. Suppose otherwise. Then there would be an
N such thatS(N) < 80% and S(N + 1) > 80%;

that is, O’Keal’s free throw percentage is undéfs;

at some point, and after one subsequent free throw
(necessarily made), her percentage is &@#%. If

she makesn of her firstV free throws, them /N <
4/5and(m + 1)/(N + 1) > 4/5. This means that
5m < 4n < 5bm + 1, which is impossible since then
4n is an integer between the consecutive integeis
andbm + 1.

Remark: This same argument works for any frac-
tion of the form(n — 1)/n for some integen > 1,
but not for any other real number betwdeand1.

First solution: (partly due to Ravi Vakil) Yes, it does
follow. Fori = 1,2, let P;, Q;, R; be the vertices of
T; opposide the sides of length, b;, ¢;, respectively.

We first check the case wheiig = as (or by = by

or c; = co, by the same argument after relabeling).
ImagineT; as being drawn with the bagg, R hor-
izontal and the poin, above the lineQsR,. We
may then positior{; so that@Q; = Q2, R1 = R,
and P, lies above the ling)1R; = @Q2Rs. Then

P, also lies inside the region bounded by the circles
through P, centered at), and R,. Since/Q, and
/R, are acute, the part of this region above the line
Q2 R, lies within 7. In particular, the distance from
P, to the lineQ2 R, is less than or equal to the dis-
tance fromP; to the lineQ, Rs; henced; < As,.

To deduce the general case, put A3

r = max{aj/ag, by /ba, c1/ca}.

Let T3 be the triangle with sidesas, rbs, rca, Which
has area2A4,. Applying the special case B, and
T3, we deduce thatl; < r2A4,; sincer < 1 by
hypothesis, we havd; < A, as desired.

Remark: Another geometric argument in the case
a1 = ag is that since angleg@, andZR; are acute,
the perpendicular t@s Rs through P, separates)s
from R,. If A; > A, thenP; lies above the par-
allel to Qs Rs through P if then it lies on or to the
left of the vertical line throughP,, we havec; > ¢y
because the inequality holds for both horizontal and
vertical components (possibly with equality for one,
but not both). Similarly, ifP; lies to the right of the
vertical, therb; > bs.

Second solution: (attribution unknown) Retain no-
tation as in the first paragraph of the first solution.
Since the angle measures in any triangle add up to
m, some angle of; must have measure less than or
equal to its counterpart ift;. Without loss of gen-
erality assume that P, < ZP,. Since the latter

is acute (becausé, is acute), we havein /P; <

sin ZP,. By the Law of Sines,

1 1
A= §b101 sin ZP; < 55202 sin ZPy = As.

Remark: Many other solutions are possible; for in-
stance, one uses Heron’s formula for the area of a
triangle in terms of its side lengths.

Define a sequence, by v,
3)---(4)(2) if n is odd andv,
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3)---
u, = v, foraln > 2. Now v,43v, = (n +
2)(n)(n — 1)! and v 420,41 = (n + 1)1, and so
Un43Un — Uni2Unt1 = nl. Since we can check
thatu,, = v, forn = 2,3,4, andu,, andv,, sat-
isfy the same recurrence, it follows by induction that
u, = v, foralln > 2, as desired.

It suffices to verify that
xl “e. xn
1
= onp Z (e1---en)(e1xy + -+ 4+ epzy)”.

Teie{-1,1}

To check this, first note that the right side vanishes
identically forz; = 0, because each term cancels
the corresponding term witey, flipped. Hence the
right side, as a polynomial, is divisible hy;; sim-
ilarly it is divisible by s, ..., z,. Thus the right
side is equal tor; - - -z, times a scalar. (Another
way to see this: the right side is clearly odd as a
polynomial in each individual variable, but the only
degreen monomial inxy,...,z, with that prop-
erty isz; - --x,.) Since each summand contributes
2%:(:1 .-z, to the sum, the scalar factor is 1 and we
are done.

Remark: Several variants on the above construction
are possible; for instance,

Ty

1
_ = Z (_1)n—61—..,—en (elxl L enxn)n

" e;e{0,1}

by the same argument as above.

Remark: These construction work over any field of
characteristic greater tham (at least forn > 1).

On the other hand, no construction is possible over
a field of characteristip < n, since the coefficient
of z1 - - - x,, inthe expansion dofe; x1 +- - - +e,2,)"

is zero for anye;.

Remark: Richard Stanley asks whether one can use
fewer than2” terms, and what the smallest possible
number is.

(3)(1) if n is even; it suffices to prove that A5 Firstsolution: Firstrecall that any graph with ver-

tices anck edges has at least- ¢ connected compo-
nents (add each edge one at atime, and note that it re-
duces the number of components by at most 1). Now
imagine the squares of the checkerboard as a graph,
whose vertices are connected if the corresponding
squares share a side and are the same colorALet
be the number of edges in the graph, andBebe

the number of 4-cycles (formed by monochromatic
2 x 2 squares). If we remove the bottom edge of each
4-cycle, the resulting graph has the same number of
connected components as the original one; hence this
number is at least

mn — A+ B.

By the linearity of expectation, the expected number
of connected components is at least

mn — E(A) + E(B).

Moreover, we may computé(A) by summing over
the individual pairs of adjacent squares, and we may
computeE'(B) by summing over the individu&lx 2
squares. Thus

B(A4) = S(m(n — 1) + (m — ),
B(B) = (m—1)(n 1),

and so the expected number of components is at least

mn — %(m(n —1)+(m—1)n)+ é(m— 1(n-1)

mn+3m+3n+1 mn
- 8 r

Remark: A “dual” approach is to consider the graph
whose vertices are the corners of the squares of the
checkerboard, with two vertices joined if they are ad-
jacent and the edge between then does not separate
two squares of the same color. In this approach, the
4-cycles become isolated vertices, and the bound on
components is replaced by a call to Euler’'s formula
relating the vertices, edges and faces of a planar fig-
ure. (One must be careful, however, to correctly han-
dle faces which are not simply connected.)
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Second solution: (by Noam Elkies) Number the
squares of the checkerboatd. .., mn by number-

ing the first row from left to right, then the second
row, and so on. We prove by induction éthat if we
just consider the figure formed by the fiisgquares,

its expected number of monochromatic components
is at least /8. Fori = 1, this is clear.

Suppose théth square does not abut the left edge or
the top row of the board. Then we may divide into
three cases.

— With probability 1/4, the i-th square is oppo-
site in color from the adjacent squares directly
above and to the left of it. In this case adding
thei-th square adds one component.

With probability 1/8, the i-th square is the
same in color as the adjacent squares directly
above and to the left of it, but opposite in color
from its diagonal neighbor above and to the
left. In this case, adding theth square either
removes a component or leaves the number un-
changed.

In all other cases, the number of compo-
nents remains unchanged upon adding:ttte
square.

Hence adding théth square increases the expected
number of components ky/4 —1/8 = 1/8.

If the i-th square does abut the left edge of the board,
the situation is even simpler: if thieth square dif-
fers in color from the square above it, one compo-
nentis added, otherwise the number does not change.
Hence adding théth square increases the expected
number of components by/2; likewise if thei-th
square abuts the top edge of the board. Thus the ex-
pected number of components is at leg$ by in-
duction, as desired.

Remark: Some solvers attempted to consider

adding one row at a time, rather than one square;
this must be handled with great care, as it is possi-
ble that the number of components can drop rather
precipitously upon adding an entire row.

By approximating each integral with a Riemann
sum, we may reduce to proving the discrete ana-

logue: forz;; € Rfori,j =1,...,n,

3 (e z(z)
j=1 \i=1

i=1 \j=1
2
n n n n
2 2
SIDIPIETE LD IP I
i=1 j=1 i=1 j=1

The difference between the right side and the left
side is

1 2
1 E (Tij + Tr — Tit — Trz)",
i,k l=1

which is evidently nonnegative. If you prefer not to
discretize, you may rewrite the original inequality as

1 1 1 pl
////F(x,y,z,w)zdxdydzdwz()
o Jo Jo Jo
for

F(x,y,z,w) = f(x,y)+f(z,w)—f(x,w)—f(@y).

Remark: (by Po-Ning Chen) The discrete inequal-
ity can be arrived at more systematically by repeat-
edly applying the following identity: for any real

A1y ...y Qp,
n n 2
2 2
E (i — xj) an x; — E x| .
1<i<j<n i=1 i=1

Remark: (by David Savitt) The discrete inequal-
ity can also be interpreted as follows. Fard €
{1,...,n — 1} and¢, = €>™/", put

_ i+-dj
Zc,d—g Cﬁf ‘7$ij~

.3

Then the given inequality is equivalent to

n—1
Z |Zc,d|2 2 0.

c,d=1
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Letk be anintegen) < k < n—1. SinceP(r)/r*
0, we have

n—k+1 +

ot F 4 cpgr co A g

= —(ch+cp1r o eer™).

Write r = p/q wherep andq are relatively prime.
Then the left hand side of the above equation can be
written as a fraction with denominatgf—*, while

the right hand side is a fraction with denominatér
Sincep andq are relatively prime, both sides of the
equation must be an integer, and the result follows.

Remark: If we write » = a/b in lowest terms, then
P(z) factors as(bx — a)Q(x), where the polyno-
mial @ has integer coefficients because you can ei-
ther do the long division from the left and get denom-
inators divisible only by primes dividing, or do it
from the right and get denominators divisible only by
primes dividinga. The numbers given in the prob-
lem are none other thantimes the coefficients a.
More generally, ifP(x) is divisible, as a polynomial
over the rationals, by a polynomig&i(x) with integer
coefficients, therP/R also has integer coefficients;
this is known as “Gauss’s lemma” and holds in any
unique factorization domain.

First solution: We have

(m + n)m+n > (m + n> m™n"
m

because the binomial expansion(ef + n)™*" in-
cludes the term on the right as well as some others.
Rearranging this inequality yields the claim.

Remark: One can also interpret this argument com-
binatorially. Suppose that we choose+ n times
(with replacement) uniformly randomly from a set of
m+n balls, of whichm are red and: are blue. Then
the probability of picking each ball exactly once is
(m +n)!/(m + n)™*"™. On the other hand, if is
the probability of picking exactlyn red balls, then
p < 1 and the probability of picking each ball ex-
actly once ip(m™ /m!)(n™/n!).

Second solution:(by David Savitt) Define

B3

Sp={i/k:i=1,...,k}

and rewrite the desired inequality as

Ha:Hy> H z.

zE€Sy, yESn ZES'17L+'rL

To prove this, it suffices to check that if we sort the
multiplicands on both sides into increasing order, the
i-th term on the left side is greater than or equal to
thei-th term on the right side. (The equality is strict
already fori = 1, so you do get a strict inequality
above.)

Another way to say this is that for arythe number
of factors on the left side which are less thigtm +
n) is less than. But sincej/m < i/(m + n) is
equivalent toj < im/(m + n), that number is

m mn

| ]
m+mn m+n
Sim mn il
m+4+n m+4+n

Third solution: Putf(z) = z(log(x + 1) — log z);
then forz > 0,

f'(z) = log(1 + 1/z) — %H
1" _ 1

Hence f”(z) < 0 for all z; since f’(z) — 0 as
x — oo, we havef’(x) > 0forz > 0, sofis
strictly increasing.

Putg(m) = mlogm — log(m!); theng(m + 1) —
g(m) = f(m), sog(m + 1) — g(m) increases with
m. By induction,g(m + n) — g(m) increases witm
for any positive integen, so in particular

g(m+n) —g(m) > g(n) — g(1) + f(m)
> g(n)

sinceg(1l) = 0. Exponentiating yields the desired
inequality.

The answer is{a|a > 2}. If a > 2, then the
function f(z) = 2a/(a — 2) has the desired prop-
erty; both perimeter and area &f in this case are
2a?/(a — 2). Now suppose that < 2, and letf(z)



be a nonnegative continuous function [Ona]. Let by the symmetry in how th&; are defined. Hence
P = (x0,y0) be a point on the graph gf(z) with

maximaly-coordinate; then the area &fis at most Ry(1+T) = RnoRi(0) + Ro(1) =T + Rn(1);
ayo since it lies below the lingy = yy. On the . _ _ :

other hand, the point9), 0), (a, 0), andP divide the thatis, 2 (T) = T. HenceTl" = n, as desired.
boundary ofR into three sections. The length of theB5 First solution: By taking logarithms, we see
section betweel0,0) and P is at least the distance that the desired limit isexp(L), where L =
between0, 0) and P, which is at leasty; the length lim, - Yne g™ (In(1+ 2" ) — In(1 + 2™)).

of the section betweef and (a,0) is similarly at Now
leastyo; and the length of the section betwe@n0) N
and(a,0) is a. Sincea < 2, we havey, + a > ayq n (1 n+1 n
’ : : X 1+ —In(1
and hence the perimeter &fis strictly greater than ;x (n( +otT) —n(l+@ ))
the area ofR. N
_ n+1 n+1
First solution: ldentify thezy-plane with the com- =1/z Z @™ In(1 Z " In(1 + 2"
plex planeC, so thatP; is the real numbek. If n=0 N
z is sent toz’ by a counterclockwise rotation ky N N4l n n
about P, thenz’ — k = ¢*(z — k); hence the =27 In(l+2770) —In2+ (1/z —1) Z:lx In(1+2");
rotation R, sendsz to ¢z + k(1 — ¢), where¢ = "=
e2™i/m |t follows that R, followed by R, sends: to sincelimy oo (zV In(1 + 2V *1)) = 0for0 < z <
CCz+(1=0)+2(1=0) =2+ (1-0)(C+2), 1, we conclude thal, = —In2 + lim, ;- f(z),
and so forth; an easy induction shows tRatends: where
to -
=(1/z—1 "In(1 + 2"
"o+ (1= O 22 4+ (= 1)C 4 ). fla) = (/o —1) 3 a"In(l +a7)
oo oo
Expanding the produdtl —¢)(¢" 1 +2¢" 2+ .-+ (1/x —1) _qymtlgntmn
(n—1)¢+n) yields—¢" = ("1 = —(+n =n. W ;;( ) "
Thus R sendsz to z + n, in cartesian coordinates, o
R(z,y) = (z + n,y). ghls flnall dpuble sum converges absolutely when
. s . , since
Second solution: (by Andy Lutomirski, via Ravi Srs
Vakil) Imagine a regulam-gon of side length 1 >© =
placed with its top edge on the-axis and the left DDt /m = Zx —In(1 —2"))
endpoint of that edge at the origin. Then the rotations n=1m=1
correspond to rolling thia-gon along ther-axis; af- B
ter then rotations, it clearly ends up in its original < le —In(l - 2)),

rotation and translated units to the right. Hence
the whole plane must do so as well. which converges. (Note thatIn(l — z) and
—In(1 — 2™) are positive.) Hence we may inter-

Third solution:  (attribution unknown) Viewing ' - ,
change the summations fi{z) to obtain

eachRy as a function of a complex numberas in
the first solution, the functioR,,o R,,_10- - -0 R (2) o oo
is linear inz with slope¢™ = 1. It thus equals + T fla)y=/z-1)> >
for someT € C. Sincef;(1) = 1, we can write m=1ln
1+T =R, o0 Ry(1). However, we also have (1) (2™ (1 — )
=00 3 S ()

Rno"'ORQ(l):Rn710R1(0>+1 m=1

(71)m+1x(m+1)n
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This last sum converges absolutely uniformlyain
so it is legitimate to take limits term by term. Since

lim, ;- L8 = -1 for fixed m, we have
) o (71)m+1
1 = -
R /(@) mz::l m(m+ 1)
= 1 1
= Z (,1)m+1 < _ >
— m m+1
& (_1)m+1
=2 — | -1
2w
=2n2-1,

and hencd. = In2 — 1 and the desired limiti8/e.

Remark: Note that the last series is not absolutely
convergent, so the recombination must be done with-
out rearranging terms.

Second solution: (by Greg Price, via Tony Zhang
and Anders Kaseorg) Puf(z) = In(1 + z™); we
can then writez™ = exp(t,(x)) — 1, and

[e.9]

L= lim Z(tn(x) — tnt1(2))(1 — exp(t,(z))).

e=1” n=0

The expression on the right is a Riemann sum ap-
proximating the integrayolnz(l — et)dt, over the
subdivision of|0, In(2)) given by thet,, (z). Asz —

17, the maximum difference between consecutive
t,(x) tends to 0, so the Riemann sum tends to the
value of the integral. Henck = foln2(1 —et)dt =

In2 — 1, as desired.

First solution: (based on a solution of Dan Bern-
stein) Note that for any, the condition thak ¢ 5 al-
ready forcesim sup N (z)/x to be at most 1/2: pair
off 2mb—+n with (2m+1)b+nforn=1,...,b, and
note that at most one member of each pair may be-
long to.A. The idea of the proof is to do something
similar with pairs replaced by larger clumps, using
long runs of excluded elements Bf

Suppose we have positive integégs= 1, b1, . . .
with the following properties:

b

(@ Fori=1,...,n,¢; =b;/(2b;—1) is aninteger.

(b) Fore; € {71,0, 1}, \elbl + -+ enbn\ ¢ B.

Each nonnegative integerhas a unique “base ex-
pansion”

a = agbp+- - +an_1b,_1+mb, (0 <a; < QCi);

if two integers have expansions with the same value
of m, and values of; differing by at most 1 for =
0,...,n — 1, then their difference is not i, so at
most one of them lies iMd. In particular, for any

d; €{0,...,¢;,— 1}, anymg € {0,2¢o— 1} and any
m,,, the set

{mobo + (2d1 + 61)b0 +---
+ (2dn71 + enfl)bnfl + (27nn + en)bn}7

where eache; runs over{0, 1}, contains at most
one element of4; consequentiylim sup N (z)/x <
1/2m.

We now produce such; recursively, starting with

bp = 1 (and both (a) and (b) holding vacuously).
Given by, ...,b, satisfying (a) and (b), note that
bg + -+ + bn_1 < b, by induction onn. By the
hypotheses of the problem, we can find a Sgtof

6b,, consecutive integers, none of which belongs to
B. Letb, 1 be the second-smallest multiple 21,

in S,; thenb,+1 +z € S, for =2b, < x < 0
clearly, and also fob < = < 2b,, because there are
most4b,, — 1 elements of,, preceding,,, 1. In par-
ticular, the analogue of (b) with replaced by + 1
holds fore,,+1 # 0; of course it holds foe,,; =0
because (b) was already known. Since the analogue
of (a) holds by construction, we have completed this
step of the construction and the recursion may con-
tinue.

Since we can construég, . . . , b, satisfying (a) and
(b) for anyn, we havelim sup N(x)/x < 1/2™ for
anyn, yieldinglim N (x)/z = 0 as desired.

Second solution:(by Paul Pollack) LefS be the set
of possible values ofimsup N(z)/z; sinceS C
[0, 1] is bounded, it has a least upper boundSup-
pose by way of contradiction that > 0; we can then
chooseA, B satisfying the conditions of the problem
such thatim sup N(z)/xz > 3L/4.



To begin with, we can certainly find some positive
integerm ¢ B, so thatA is disjoint fromA + m =
{a+m :a € A}, PutA = AU (A +m)
and letN’(z) be the size ofd’ N {1,...,x}; then
limsup N'(x)/z = 3L/2 > L, so.A’ cannot obey
the conditions of the problem statement. That is, if
we letB’ be the set of positive integers that occur as
differences between elements 4f, then there ex-
ists an integen such that among any consecutive
integers, at least one lies . But

B C{b+em:beB,ec{-1,0,1}},

SO among any: + 2m consecutive integers, at least
one lies inB. This contradicts the condition of the
problem statement.

We conclude that it is impossible to hate> 0, so
L = 0andlim N(z)/z = 0 as desired.

Remark: A hybrid between these two arguments

is to note that if we can produce,...,c, such
that |c; — ¢;| ¢ Bfori,j = 1,...,n, then the
translates4 + ¢4,...,A + ¢, are disjoint and so

limsup N(z)/z < 1/n. Givene; < --- < ¢, as
above, we can then choosg,; to be the largest el-
ement of a run of,, + 1 consecutive integers, none
of which lie in B.



