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A1 We proceed by induction, with base case1 = 2030.
Suppose all integers less thann− 1 can be represented.
If n is even, then we can take a representation ofn/2
and multiply each term by 2 to obtain a representation
of n. If n is odd, putm = blog3 nc, so that3m ≤ n <
3m+1. If 3m = n, we are done. Otherwise, choose a
representation(n−3m)/2 = s1+· · ·+sk in the desired
form. Then

n = 3m + 2s1 + · · ·+ 2sk,

and clearly none of the2si divide each other or3m.
Moreover, since2si ≤ n − 3m < 3m+1 − 3m, we
havesi < 3m, so 3m cannot divide2si either. Thus
n has a representation of the desired form in all cases,
completing the induction.

Remarks: This problem is originally due to Paul Erdős.
Note that the representations need not be unique: for
instance,

11 = 2 + 9 = 3 + 8.

A2 We will assumen ≥ 2 hereafter, since the answer is 0
for n = 1.

First solution: We show that the set of rook tours from
(1, 1) to (n, 1) is in bijection with the set of subsets of
{1, 2, ..., n} that includen and contain an even number
of elements in total. Since the latter set evidently con-
tains2n−2 elements, so does the former.

We now construct the bijection. Given a rook tourP
from (1, 1) to (n, 1), let S = S(P ) denote the set of
all i ∈ {1, 2, . . . , n} for which there is either a directed
edge from(i, 1) to (i, 2) or from (i, 3) to (i, 2). It is
clear that this setS includesn and must contain an
even number of elements. Conversely, given a subset
S = {a1, a2, . . . , a2r = n} ⊂ {1, 2, . . . , n} of this
type witha1 < a2 < · · · < a2r, we notice that there is
a unique pathP containing(ai, 2 + (−1)i), (a1, 2) for
i = 1, 2, . . . , 2r. This establishes the desired bijection.

Second solution:Let An denote the set of rook tours
beginning at(1, 1) and ending at(n, 1), and letBn de-
note the set of rook tours beginning at(1, 1) and ending
at (n, 3).

For n ≥ 2, we construct a bijection betweenAn and
An−1∪Bn−1. Any pathP in An contains either the line
segmentP1 between(n − 1, 1) and(n, 1), or the line
segmentP2 between(n, 2) and (n, 1). In the former
case,P must also contain the subpathP ′

1 which joins
(n − 1, 3), (n, 3), (n, 2), and(n − 1, 2) consecutively;
then deletingP1 and P ′

1 from P and adding the line

segment joining(n−1, 3) to (n−1, 2) results in a path
in An−1. (This construction is reversible, lengthening
any path inAn−1 to a path inAn.) In the latter case,P
contains the subpathP ′

2 which joins(n − 1, 3), (n, 3),
(n, 2), (n, 1) consecutively; deletingP ′

2 results in a path
in Bn−1, and this construction is also reversible. The
desired bijection follows.

Similarly, there is a bijection betweenBn andAn−1 ∪
Bn−1 for n ≥ 2. It follows by induction that forn ≥ 2,
|An| = |Bn| = 2n−2(|A1| + |B1|). But |A1| = 0 and
|B1| = 1, and hence the desired answer is|An| = 2n−2.

Remarks: Other bijective arguments are possible: for
instance, Noam Elkies points out that each element
of An ∪ Bn contains a different one of the possi-
ble sets of segments of the form(i, 2), (i + 1, 2) for
i = 1, . . . , n − 1. Richard Stanley provides the refer-
ence: K.L. Collins and L.B. Krompart, The number of
Hamiltonian paths in a rectangular grid,Discrete Math.
169 (1997), 29–38. This problem is Theorem 1 of that
paper; the cases of4 × n and 5 × n grids are also
treated. The paper can also be found online at the URL
kcollins.web.wesleyan.edu/vita.htm .

A3 Note that it is implicit in the problem thatp is noncon-
stant, one may take any branch of the square root, and
thatz = 0 should be ignored.

First solution: Write p(z) = c
∏n

j=1(z − rj), so that

g′(z)
g(z)

=
1
2z

n∑
j=1

z + rj

z − rj
.

Now if z 6= rj for all j,then

z + rj

z − rj
=

(z + rj)(z − rj)
|z − rj |2

=
|z|2 − 1 + 2Im(zrj)

|z − rj |2
,

and so

Re
zg′(z)
g(z)

=
|z|2 − 1

2

∑
j

1
|z − rj |2

 .

Since the quantity in parentheses is positive,g′(z)/g(z)
can be0 only if |z| = 1. If on the other handz = rj for
somej, then|z| = 1 anyway.

Second solution:Write p(z) = c
∏n

j=1(z−rj), so that

g′(z)
g(z)

=
n∑

j=1

(
1

z − rj
− 1

2z

)
.
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We first check thatg′(z) 6= 0 wheneverz is real and
z > 1. In this case, forrj = eiθj , we havez − rj =
(z − cos(θj)) + sin(θj)i, so the real part of 1

z−rj
− 1

2z

is

z − cos(θj)
z2 − 2z cos(θj) + 1

− 1
2z

=
z2 − 1

2z(z2 − 2z cos(θj) + 1)
> 0.

Henceg′(z)/g(z) has positive real part, sog′(z)/g(z)
and henceg(z) are nonzero.

Applying the same argument after replacingp(z) by
p(eiθz), we deduce thatg′ cannot have any roots out-
side the unit circle. Applying the same argument after
replacingp(z) by znp(1/z), we also deduce thatg′ can-
not have any roots inside the unit circle. Hence all roots
of g′ have absolute value 1, as desired.

Third solution: Write p(z) = c
∏n

j=1(z − rj) and put
rj = e2iθj . Note thatg(e2iθ) is equal to a nonzero
constant times

h(θ) =
n∏

j=1

ei(θ+θj) − e−i(θ+θj)

2i

=
n∏

j=1

sin(θ + θj).

Sinceh has at least2n roots (counting multiplicity) in
the interval[0, 2π), h′ does also by repeated applica-
tion of Rolle’s theorem. Sinceg′(e2iθ) = 2ie2iθh′(θ),
g′(z2) has at least2n roots on the unit circle. Since
g′(z2) is equal toz−n−1 times a polynomial of degree
2n, g′(z2) has all roots on the unit circle, as then does
g′(z).

Remarks: The second solution imitates the proof of
the Gauss-Lucas theorem: the roots of the derivative of
a complex polynomial lie in the convex hull of the roots
of the original polynomial. The second solution is close
to problem B3 from the 2000 Putnam. A hybrid be-
tween the first and third solutions is to check that on the
unit circle, Re(zg′(z)/g(z)) = 0 while between any
two roots ofp, Im(zg′(z)/g(z)) runs from+∞ to−∞
and so must have a zero crossing. (This only works
whenp has distinct roots, but the general case follows
by the continuity of the roots of a polynomial as func-
tions of the coefficients.) One can also construct a solu-
tion using Rouch́e’s theorem.

A4 First solution: Choose a set ofa rowsr1, . . . , ra con-
taining ana× b submatrix whose entries are all 1. Then
for i, j ∈ {1, . . . , a}, we haveri · rj = n if i = j and 0
otherwise. Hence

a∑
i,j=1

ri · rj = an.

On the other hand, the term on the left is the dot product
of r1+ · · ·+ra with itself, i.e., its squared length. Since
this vector hasa in each of its firstb coordinates, the
dot product is at leasta2b. Hencean ≥ a2b, whence
n ≥ ab as desired.

Second solution:(by Richard Stanley) Suppose with-
out loss of generality that thea× b submatrix occupies
the firsta rows and the firstb columns. LetM be the
submatrix occupying the firsta rows and the lastn − b
columns. Then the hypothesis implies that the matrix
MMT hasn− b’s on the main diagonal and−b’s else-
where. Hence the column vectorv of lengtha consist-
ing of all 1’s satisfiesMMT v = (n−ab)v, son−ab is
an eigenvalue ofMMT . But MMT is semidefinite, so
its eigenvalues are all nonnegative real numbers. Hence
n− ab ≥ 0.

Remarks: A matrix as in the problem is called
a Hadamard matrix, because it meets the equality
condition of Hadamard’s inequality: anyn × n matrix
with ±1 entries has absolute determinant at mostnn/2,
with equality if and only if the rows are mutually
orthogonal (from the interpretation of the determinant
as the volume of a paralellepiped whose edges are
parallel to the row vectors). Note that this implies
that the columns are also mutually orthogonal. A
generalization of this problem, with a similar proof,
is known asLindsey’s lemma: the sum of the entries
in any a × b submatrix of a Hadamard matrix is at
most

√
abn. Stanley notes that Ryser (1981) asked

for the smallest size of a Hadamard matrix containing
an r × s submatrix of all 1’s, and refers to the URL
www3.interscience.wiley.com/cgi-bin/
abstract/110550861/ABSTRACT for more
information.

A5 First solution: We make the substitutionx = tan θ,
rewriting the desired integral as∫ π/4

0

log(tan(θ) + 1) dθ.

Write

log(tan(θ) + 1)
= log(sin(θ) + cos(θ))− log(cos(θ))

and then note thatsin(θ) + cos(θ) =
√

2 cos(π/4− θ).
We may thus rewrite the integrand as

1
2

log(2) + log(cos(π/4− θ))− log(cos(θ)).

But over the interval [0, π/4], the integrals of
log(cos(θ)) and log(cos(π/4 − θ)) are equal, so their
contributions cancel out. The desired integral is then
just the integral of12 log(2) over the interval[0, π/4],
which isπ log(2)/8.

Second solution: (by Roger Nelsen) LetI denote the
desired integral. We make the substitutionx = (1 −
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u)/(1 + u) to obtain

I =
∫ 1

0

(1 + u)2 log(2/(1 + u))
2(1 + u2)

2 du

(1 + u)2

=
∫ 1

0

log(2)− log(1 + u)
1 + u2

du

= log(2)
∫ 1

0

du

1 + u2
− I,

yielding

I =
1
2

log(2)
∫ 1

0

du

1 + u2
=

π log(2)
8

.

Third solution: (attributed to Steven Sivek) Define the
function

f(t) =
∫ 1

0

log(xt + 1)
x2 + 1

dx

so thatf(0) = 0 and the desired integral isf(1). Then
by differentiation under the integral,

f ′(t) =
∫ 1

0

x

(xt + 1)(x2 + 1)
dx.

By partial fractions, we obtain

f ′(t) =
2t arctan(x)− 2 log(tx + 1) + log(x2 + 1)

2(t2 + 1)

∣∣∣∣x=1

x=0

=
πt + 2 log(2)− 4 log(t + 1)

4(t2 + 1)
,

whence

f(t) =
log(2) arctan(t)

2
+

π log(t2 + 1)
8

−
∫ t

0

log(t + 1)
t2 + 1

dt

and hence

f(1) =
π log(2)

4
−
∫ 1

0

log(t + 1)
t2 + 1

dt.

But the integral on the right is again the desired integral
f(1), so we may move it to the left to obtain

2f(1) =
π log(2)

4

and hencef(1) = π log(2)/8 as desired.

Fourth solution: (by David Rusin) We have∫ 1

0

log(x + 1)
x2 + 1

dx =
∫ 1

0

( ∞∑
n=1

(−1)n−1xn

n(x2 + 1)

)
dx.

We next justify moving the sum through the integral
sign. Note that

∞∑
n=1

∫ 1

0

(−1)n−1xn dx

n(x2 + 1)

is an alternating series whose terms strictly decrease to
zero, so it converges. Moreover, its partial sums alter-
nately bound the previous integral above and below, so
the sum of the series coincides with the integral.

Put

Jn =
∫ 1

0

xn dx

x2 + 1
;

thenJ0 = arctan(1) = π
4 andJ1 = 1

2 log(2). More-
over,

Jn + Jn+2 =
∫ 1

0

xn dx =
1

n + 1
.

Write

Am =
m∑

i=1

(−1)i−1

2i− 1

Bm =
m∑

i=1

(−1)i−1

2i
;

then

J2n = (−1)n(J0 −An)
J2n+1 = (−1)n(J1 −Bn).

Now the2N -th partial sum of our series equals

N∑
n=1

J2n−1

2n− 1
− J2n

2n

=
N∑

n=1

(−1)n−1

2n− 1
(J1 −Bn−1)−

(−1)n

2n
(J0 −An)

= AN (J1 −BN−1) + BN (J0 −AN ) + ANBN .

As N → ∞, AN → J0 andBN → J1, so the sum
tends toJ0J1 = π log(2)/8.

Remarks: The first two solutions are related by the fact
that if x = tan(θ), then1−x/(1+x) = tan(π/4−θ).
The strategy of the third solution (introducing a parame-
ter then differentiating it) was a favorite of physics No-
belist (and Putnam Fellow) Richard Feynman. Noam
Elkies notes that this integral is number 2.491#8 in
Gradshteyn and Ryzhik,Table of integrals, series, and
products. The Mathematicacomputer algebra system
(version 5.2) successfully computes this integral, but we
do not know how.

A6 First solution: The angle at a vertexP is acute if and
only if all of the other points lie on an open semicir-
cle. We first deduce from this that if there are any
two acute angles at all, they must occur consecutively.
Suppose the contrary; label the verticesQ1, . . . , Qn in
counterclockwise order (starting anywhere), and sup-
pose that the angles atQ1 andQi are acute for some
i with 3 ≤ i ≤ n− 1. Then the open semicircle starting
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at Q2 and proceeding counterclockwise must contain
all of Q3, . . . , Qn, while the open semicircle starting
at Qi and proceeding counterclockwise must contain
Qi+1, . . . , Qn, Q1, . . . , Qi−1. Thus two open semicir-
cles cover the entire circle, contradiction.

It follows that if the polygon has at least one acute an-
gle, then it has either one acute angle or two acute an-
gles occurring consecutively. In particular, there is a
unique pair of consecutive verticesQ1, Q2 in counter-
clockwise order for which∠Q2 is acute and∠Q1 is not
acute. Then the remaining points all lie in the arc from
the antipode ofQ1 to Q1, butQ2 cannot lie in the arc,
and the remaining points cannot all lie in the arc from
the antipode ofQ1 to the antipode ofQ2. Given the
choice ofQ1, Q2, let x be the measure of the counter-
clockwise arc fromQ1 to Q2; then the probability that
the other points fall into position is2−n+2 − xn−2 if
x ≤ 1/2 and 0 otherwise.

Hence the probability that the polygon has at least one
acute angle with agivenchoice of which two points will
act asQ1 andQ2 is∫ 1/2

0

(2−n+2 − xn−2) dx =
n− 2
n− 1

2−n+1.

Since there aren(n − 1) choices for which two points
act asQ1 andQ2, the probability of at least one acute
angle isn(n− 2)2−n+1.

Second solution:(by Calvin Lin) As in the first solu-
tion, we may compute the probability that for a particu-
lar one of the pointsQ1, the angle atQ1 is not acute but
the following angle is, and then multiply byn. Imagine
picking the points by first choosingQ1, then picking
n − 1 pairs of antipodal points and then picking one
member of each pair. LetR2, . . . , Rn be the points of
the pairs which lie in the semicircle, taken in order away
from Q1, and letS2, . . . , Sn be the antipodes of these.
Then to get the desired situation, we must choose from
the pairs to end up with all but one of theSi, and we
cannot takeRn and the otherSi or else∠Q1 will be
acute. That gives us(n− 2) good choices out of2n−1;
since we could have chosenQ1 to be any of then points,
the probability is againn(n− 2)2−n+1.

B1 TakeP (x, y) = (y − 2x)(y − 2x − 1). To see that
this works, first note that ifm = bac, then2m is an
integer less than or equal to2a, so 2m ≤ b2ac. On
the other hand,m + 1 is an integer strictly greater than
a, so2m + 2 is an integer strictly greater than2a, so
b2ac ≤ 2m + 1.

B2 By the arithmetic-harmonic mean inequality or the
Cauchy-Schwarz inequality,

(k1 + · · ·+ kn)
(

1
k1

+ · · ·+ 1
kn

)
≥ n2.

We must thus have5n − 4 ≥ n2, son ≤ 4. Without
loss of generality, we may suppose thatk1 ≤ · · · ≤ kn.

If n = 1, we must havek1 = 1, which works. Note that
hereafter we cannot havek1 = 1.

If n = 2, we have(k1, k2) ∈ {(2, 4), (3, 3)}, neither of
which work.

If n = 3, we have k1 + k2 + k3 = 11,
so 2 ≤ k1 ≤ 3. Hence (k1, k2, k3) ∈
{(2, 2, 7), (2, 3, 6), (2, 4, 5), (3, 3, 5), (3, 4, 4)}, and
only (2, 3, 6) works.

If n = 4, we must have equality in the AM-HM inequal-
ity, which only happens whenk1 = k2 = k3 = k4 = 4.

Hence the solutions aren = 1 andk1 = 1, n = 3 and
(k1, k2, k3) is a permutation of(2, 3, 6), andn = 4 and
(k1, k2, k3, k4) = (4, 4, 4, 4).
Remark: In the casesn = 2, 3, Greg Kuperberg sug-
gests the alternate approach of enumerating the solu-
tions of1/k1+· · ·+1/kn = 1 with k1 ≤ · · · ≤ kn. This
is easily done by proceeding in lexicographic order: one
obtains(2, 2) for n = 2, and(2, 3, 6), (2, 4, 4), (3, 3, 3)
for n = 3, and only(2, 3, 6) contributes to the final an-
swer.

B3 First solution: The functions are preciselyf(x) = cxd

for c, d > 0 arbitrary except that we must takec = 1
in cased = 1. To see that these work, note that
f ′(a/x) = dc(a/x)d−1 andx/f(x) = 1/(cxd−1), so
the given equation holds if and only ifdc2ad−1 = 1.
If d 6= 1, we may solve fora no matter whatc is; if
d = 1, we must havec = 1. (Thanks to Brad Rodgers
for pointing out thed = 1 restriction.)

To check that these are all solutions, putb = log(a) and
y = log(a/x); rewrite the given equation as

f(eb−y)f ′(ey) = eb−y.

Put

g(y) = log f(ey);

then the given equation rewrites as

g(b− y) + log g′(y) + g(y)− y = b− y,

or

log g′(y) = b− g(y)− g(b− y).

By the symmetry of the right side, we haveg′(b− y) =
g′(y). Hence the functiong(y) + g(b − y) has zero
derivative and so is constant, as then isg′(y). From
this we deduce thatf(x) = cxd for somec, d, both
necessarily positive sincef ′(x) > 0 for all x.

Second solution:(suggested by several people) Substi-
tutea/x for x in the given equation:

f ′(x) =
a

xf(a/x)
.

Differentiate:

f ′′(x) = − a

x2f(a/x)
+

a2f ′(a/x)
x3f(a/x)2

.
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Now substitute to eliminate evaluations ata/x:

f ′′(x) = −f ′(x)
x

+
f ′(x)2

f(x)
.

Clear denominators:

xf(x)f ′′(x) + f(x)f ′(x) = xf ′(x)2.

Divide through byf(x)2 and rearrange:

0 =
f ′(x)
f(x)

+
xf ′′(x)
f(x)

− xf ′(x)2

f(x)2
.

The right side is the derivative ofxf ′(x)/f(x), so that
quantity is constant. That is, for somed,

f ′(x)
f(x)

=
d

x
.

Integrating yieldsf(x) = cxd, as desired.

B4 First solution: Definef(m,n, k) as the number ofn-
tuples(x1, x2, . . . , xn) of integers such that|x1|+· · ·+
|xn| ≤ m and exactlyk of x1, . . . , xn are nonzero. To
choose such a tuple, we may choose thek nonzero posi-
tions, the signs of thosek numbers, and then an ordered
k-tuple of positive integers with sum≤ m. There are(
n
k

)
options for the first choice, and2k for the second.

As for the third, we have
(
m
k

)
options by a “stars and

bars” argument: depict thek-tuple by drawing a num-
ber of stars for each term, separated by bars, and adding
stars at the end to get a total ofm stars. Then each tu-
ple corresponds to placingk bars, each in a different
position behind one of them fixed stars.

We conclude that

f(m,n, k) = 2k

(
m

k

)(
n

k

)
= f(n, m, k);

summing overk givesf(m,n) = f(n, m). (One may
also extract easily a bijective interpretation of the equal-
ity.)

Second solution:(by Greg Kuperberg) It will be con-
venient to extend the definition off(m,n) to m,n ≥ 0,
in which case we havef(0,m) = f(n, 0) = 1.

Let Sm,n be the set ofn-tuples(x1, . . . , xn) of inte-
gers such that|x1| + · · · + |xn| ≤ m. Then elements
of Sm,n can be classified into three types. Tuples with
|x1| + · · · + |xn| < m also belong toSm−1,n. Tuples
with |x1| + · · · + |xn| = m andxn ≥ 0 correspond
to elements ofSm,n−1 by droppingxn. Tuples with
|x1| + · · · + |xn| = m andxn < 0 correspond to ele-
ments ofSm−1,n−1 by droppingxn. It follows that

f(m,n)
= f(m− 1, n) + f(m,n− 1) + f(m− 1, n− 1),

so f satisfies a symmetric recurrence with symmetric
boundary conditionsf(0,m) = f(n, 0) = 1. Hencef
is symmetric.

Third solution: (by Greg Martin) As in the second so-
lution, it is convenient to allowf(m, 0) = f(0, n) = 1.
Define the generating function

G(x, y) =
∞∑

m=0

∞∑
n=0

f(m,n)xmyn.

As equalities of formal power series (or convergent se-
ries on, say, the region|x|, |y| < 1

3 ), we have

G(x, y) =
∑
m≥0

∑
n≥0

xmyn
∑

k1, ..., kn∈Z
|k1|+···+|kn|≤m

1

=
∑
n≥0

yn
∑

k1, ..., kn∈Z

∑
m≥|k1|+···+|kn|

xm

=
∑
n≥0

yn
∑

k1, ..., kn∈Z

x|k1|+···+|kn|

1− x

=
1

1− x

∑
n≥0

yn

(∑
k∈Z

x|k|
)n

=
1

1− x

∑
n≥0

yn

(
1 + x

1− x

)n

=
1

1− x
· 1
1− y(1 + x)/(1− x)

=
1

1− x− y − xy
.

SinceG(x, y) = G(y, x), it follows that f(m,n) =
f(n, m) for all m,n ≥ 0.

B5 First solution: Put Q = x2
1 + · · · + x2

n. SinceQ is
homogeneous,P is divisible byQ if and only if each of
the homogeneous components ofP is divisible byQ. It
is thus sufficient to solve the problem in caseP itself is
homogeneous, say of degreed.

Suppose that we have a factorizationP = QmR for
somem > 0, whereR is homogeneous of degreed and
not divisible byQ; note that the homogeneity implies
that

n∑
i=1

xi
∂R

∂xi
= dR.

Write∇2 as shorthand for∂
2

∂x2
1

+ · · ·+ ∂2

∂x2
n

; then

0 = ∇2P

= 2mnQm−1R + Qm∇2R + 2
n∑

i=1

2mxiQ
m−1 ∂R

∂xi

= Qm∇2R + (2mn + 4md)Qm−1R.

Sincem > 0, this forcesR to be divisible byQ, con-
tradiction.

Second solution:(by Noam Elkies) Retain notation as
in the first solution. LetPd be the set of homogeneous
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polynomials of degreed, and letHd be the subset of
Pd of polynomials killed by∇2, which has dimension
≥ dim(Pd) − dim(Pd−2); the given problem amounts
to showing that this inequality is actually an equality.

Consider the operatorQ∇2 (i.e., apply∇2 then multi-
ply by Q) on Pd; its zero eigenspace is preciselyHd.
By the calculation from the first solution, ifR ∈ Pd,
then

∇2(QR)−Q∇2R = (2n + 4d)R.

Consequently,QjHd−2j is contained in the eigenspace
of Q∇2 onPd of eigenvalue

(2n + 4(d− 2j)) + · · ·+ (2n + 4(d− 2)).

In particular, theQjHd−2j lie in distinct eigenspaces,
so are linearly independent withinPd. But by dimen-
sion counting, their total dimension is at least that ofPd.
Hence they exhaustPd, and the zero eigenspace cannot
have dimension greater thandim(Pd)− dim(Pd−2), as
desired.

Third solution: (by Richard Stanley) Writex =
(x1, . . . , xn) and∇ = ( ∂

∂x1
, . . . , ∂

∂xn
). Suppose that

P (x) = Q(x)(x2
1 + · · ·+ x2

n). Then

P (∇)P (x) = Q(∇)(∇2)P (x) = 0.

On the other hand, ifP (x) =
∑

α cαxα (whereα =
(α1, . . . , αn) andxα = xα1

1 · · ·xαn
n ), then the constant

term ofP (∇)P (x) is seen to be
∑

α c2
α. Hencecα = 0

for all α.

Remarks: The first two solutions apply directly over
any field of characteristic zero. (The result fails in char-
acteristicp > 0 because we may takeP = (x2

1 +
· · · + x2

n)p = x2p
1 + · · · + x2p

n .) The third solution
can be extended to complex coefficients by replacing
P (∇) by its complex conjugate, and again the result
may be deduced for any field of characteristic zero.
Stanley also suggests Section 5 of the arXiv e-print
math.CO/0502363 for some algebraic background
for this problem.

B6 First solution: Let I be the identity matrix, and let
Jx be the matrix withx’s on the diagonal and 1’s else-
where. Note thatJx−(x−1)I, being the all 1’s matrix,
has rank 1 and tracen, so hasn − 1 eigenvalues equal
to 0 and one equal ton. HenceJx hasn−1 eigenvalues
equal tox− 1 and one equal tox + n− 1, implying

det Jx = (x + n− 1)(x− 1)n−1.

On the other hand, we may expand the determinant as a
sum indexed by permutations, in which case we get

det Jx =
∑

π∈Sn

sgn(π)xν(π).

Integrating both sides from 0 to 1 (and substitutingy =
1− x) yields

∑
π∈Sn

sgn(π)
ν(π) + 1

=
∫ 1

0

(x + n− 1)(x− 1)n−1 dx

=
∫ 1

0

(−1)n+1(n− y)yn−1 dy

= (−1)n+1 n

n + 1
,

as desired.

Second solution: We start by recalling a form of the
principle of inclusion-exclusion: iff is a function on
the power set of{1, . . . , n}, then

f(S) =
∑
T⊇S

(−1)|T |−|S|
∑
U⊇T

f(U).

In this case we takef(S) to be the sum ofσ(π) over all
permutationsπ whose fixed points are exactlyS. Then∑

U⊇T f(U) = 1 if |T | ≥ n−1 and 0 otherwise (since
a permutation group on 2 or more symbols has as many
even and odd permutations), so

f(S) = (−1)n−|S|(1− n + |S|).

The desired sum can thus be written, by grouping over
fixed point sets, as

n∑
i=0

(
n

i

)
(−1)n−i 1− n + i

i + 1

=
n∑

i=0

(−1)n−i

(
n

i

)
−

n∑
i=0

(−1)n−i n

i + 1

(
n

i

)

= 0−
n∑

i=0

(−1)n−i n

n + 1

(
n + 1
i + 1

)
= (−1)n+1 n

n + 1
.

Third solution: (by Richard Stanley) Thecycle indica-
tor of the symmetric groupSn is defined by

Zn(x1, . . . , xn) =
∑

π∈Sn

x
c1(π)
1 · · ·xcn(π)

n ,

whereci(π) is the number of cycles ofπ of length i.
Put

Fn =
∑

π∈Sn

σ(π)xν(π) = Zn(x,−1, 1,−1, 1, . . . )

and

f(n) =
∑

π∈Sn

σ(π)
ν(π) + 1

=
∫ 1

0

Fn(x) dx.
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A standard argument in enumerative combinatorics (the
Exponential Formula) gives

∞∑
n=0

Zn(x1, . . . , xn)
tn

n!
= exp

∞∑
k=1

xk
tk

k
,

yielding

∞∑
n=0

f(n)
tn

n!
=
∫ 1

0

exp
(

xt− t2

2
+

t3

3
− · · ·

)
dx

=
∫ 1

0

e(x−1)t+log(1+t) dx

=
∫ 1

0

(1 + t)e(x−1)t dx

=
1
t
(1− e−t)(1 + t).

Expanding the right side as a Taylor series and compar-
ing coefficients yields the desired result.

Fourth solution (sketch): (by David Savitt) We prove
the identity of rational functions∑

π∈Sn

σ(π)
ν(π) + x

=
(−1)n+1n!(x + n− 1)
x(x + 1) · · · (x + n)

by induction onn, which forx = 1 implies the desired
result. (This can also be deduced as in the other solu-
tions, but in this argument it is necessary to formulate
the strong induction hypothesis.)

Let R(n, x) be the right hand side of the above equa-
tion. It is easy to verify that

R(x, n) = R(x + 1, n− 1) + (n− 1)!
(−1)n+1

x

+
n−1∑
l=2

(−1)l−1 (n− 1)!
(n− l)!

R(x, n− l),

since the sum telescopes. To prove the desired equality,
it suffices to show that the left hand side satisfies the
same recurrence. This follows because we can classify
eachπ ∈ Sn as either fixingn, being ann-cycle, or hav-
ing n in an l-cycle for one ofl = 2, . . . , n− 1; writing
the sum over these classes gives the desired recurrence.


