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Al Find the volume of the region of points (x,y, z) such
that

(22 + % + 2% +8)% < 36(2% +v°).

A2 Alice and Bob play a game in which they take turns
removing stones from a heap that initially has n stones.
The number of stones removed at each turn must be one
less than a prime number. The winner is the player who
takes the last stone. Alice plays first. Prove that there
are infinitely many n such that Bob has a winning strat-
egy. (For example, if n = 17, then Alice might take
6 leaving 11; then Bob might take 1 leaving 10; then
Alice can take the remaining stones to win.)

A3 Let1,2,3,...,2005,2006,2007,2009,2012, 2016, ...
be a sequence defined by x;, = kfork = 1,2,...,2006
and Ty = T + Tx—2005 for £ > 2006. Show that the
sequence has 2005 consecutive terms each divisible by
2006.

Ad Let S = {1,2,...,n} for some integer n > 1. Say a
permutation 7 of S has a local maximum at k € S if

() w(k) >n(k+1)fork =1;
() 7(k —1) < w(k) and w(k) > 7(k + 1) for 1 <
k<mn;
(iil) w(k — 1) < (k) for k = n.

(For example, if n = 5 and 7 takes values at 1,2, 3,4,5
of 2,1,4,5,3, then 7 has a local maximum of 2 at k =
1, and a local maximum of 5 at k = 4.) What is the
average number of local maxima of a permutation of .S,
averaging over all permutations of .S?

A5 Letn be a positive odd integer and let 6 be a real number
such that /7 is irrational. Set a;, = tan(f + kn/n),
k=1,2,...,n. Prove that

a1+a2+...+an
a1az - - Gan

is an integer, and determine its value.

A6 Four points are chosen uniformly and independently at
random in the interior of a given circle. Find the proba-
bility that they are the vertices of a convex quadrilateral.

B1 Show that the curve z® + 3zy + y* = 1 contains only
one set of three distinct points, A, B, and C, which are
vertices of an equilateral triangle, and find its area.

B2 Prove that, for every set X = {xz1,22,...,2,} of n
real numbers, there exists a non-empty subset S of X
and an integer m such that

m—i—Zs

B3 Let S be a finite set of points in the plane. A linear
partition of S is an unordered pair { A, B} of subsets of
Ssuchtht AUB =S5, ANB = (), and A and B
lie on opposite sides of some straight line disjoint from
S (A or B may be empty). Let Lg be the number of
linear partitions of .S. For each positive integer n, find
the maximum of Lg over all sets S of n points.

<

n+1

B4 Let Z denote the set of points in R™ whose coordinates
are 0 or 1. (Thus Z has 2™ elements, which are the
vertices of a unit hypercube in R".) Given a vector sub-
space V of R™, let Z (V') denote the number of members
of Z that lie in V. Let k be given, 0 < k£ < n. Find
the maximum, over all vector subspaces V' C R"™ of
dimension k, of the number of points in V N Z.) [Ed-
itorial note: the proposers probably intended to write
Z(V) for V.N Z, but this changes nothing.]

B5 For each continuous function f : [0,1] — R, let I(f) =
fol 22f(z)dz and J(z) = fol 2 (f(x))? dx. Find the
maximum value of I(f) — J(f) over all such functions

f.

B6 Let k be an integer greater than 1. Suppose ag > 0, and
define

Ap+4+1 = Qn +

1
¥/

for n > 0. Evaluate
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A1l We change to cylindrical coordinates, i.e., we put r =

\/xQTy2 . Then the given inequality is equivalent to
r? 4+ 2% +8 < 6r,

or
(r—3)%+22 <1.

This defines a solid of revolution (a solid torus); the
area being rotated is the disc (v — 3)? + 22 < 1in
the xz-plane. By Pappus’s theorem, the volume of this
equals the area of this disc, which is 7, times the dis-
tance through which the center of mass is being rotated,
which is (27)3. That is, the total volume is 672.

A2 Suppose on the contrary that the set B of values of n

for which Bob has a winning strategy is finite. Then for
every nonnegative integer m not in S, Alice must have
some move on a heap of n stones leading to a position
in which the second player wins. That is, every non-
negative integer not in B can be written as b+ p — 1 for
some b € B and some prime p.

However, there are numerous ways to show that
this cannot happen. For instance, suppose B =
{b1,...,bm}. Let p1,...,pay, be any prime numbers;
then by the Chinese remainder theorem, there exists a
positive integer x such that

r—b =-1 (mod pi1pm+1)

x—b,=-1 (mod pmpam).

For each b € B, the unique integer p such that x =
b 4+ p — 1 is divisible by at least two primes, and so
cannot itself be prime.

A3 We first observe that given any sequence of integers

1, Ta, ... satisfying a recursion

p = f(Tr-1,.. . Then) (k> n),

where n is fixed and f is a fixed polynomial of n vari-
ables with integer coefficients, for any positive integer
N, the sequence modulo [V is eventually periodic. This
is simply because there are only finitely many possible
sequences of n consecutive values modulo N, and once
such a sequence is repeated, every subsequent value is
repeated as well.

We next observe that if one can rewrite the same recur-
sion as
(k > n),

Then = §(Thont1,---,Tk)

where g is also a polynomial with integer coefficients,
then the sequence extends uniquely to a doubly infinite
sequence ...,T_1,Xg,x1,... which is fully periodic
modulo any N. That is the case in the situation at hand,
because we can rewrite the given recursion as

Tp—2005 = Tk+1 — Lk-

It thus suffices to find 2005 consecutive terms divisible
by N in the doubly infinite sequence, for any fixed N
(so in particular for N = 2006). Running the recursion
backwards, we easily find

T1=To=+"+=T_2004 =1

ZT_2005 =" = T—4009 = 0,

yielding the desired result.

A4 By the linearity of expectation, the average number of

A5

local maxima is equal to the sum of the probability
of having a local maximum at k over £k = 1,...,n.
For £ = 1, this probability is 1/2: given the pair
{m(1),n(2)}, it is equally likely that 7(1) or 7(2) is
bigger. Similarly, for & = n, the probability is 1/2.
For 1 < k < n, the probability is 1/3: given the pair
{m(k =1),7(k),w(k+ 1)}, it is equally likely that any
of the three is the largest. Thus the average number of
local maxima is

1 1 n+1
2-—4+n—-2)-- = .

2 + ) 3 3
Since the desired expression involves symmetric func-
tions of ay,...,a,, we start by finding a polynomial
with aq, ..., a, asroots. Note that

1+itanf = e sec
so that

1+itand = e*¥(1 —itan6).

Consequently, if we put w = €27

Qn(z)=(1+iz)" —w(l —ix)"

has among its roots aq, . . ., a,. Since these are distinct
and @), has degree n, these must be exactly the roots.

, then the polynomial

If we write
Qn(m) = Cnxn + -+ c1x + co,

then a3 + -+ + a, = —cp_1/c¢p and ay---a, =
—co/cn, so the ratio we are seeking is ¢,—1/co. By
inspection,

Cno1 =ni""t —wn(—=i)" !t =ni" (1 —w)

co=1—w



SO

ai+---+a, |n n=1 (mod4)
a-an,  |-n n=3 (mod 4).
Remark: The same argument shows that the ratio be-
tween any two odd elementary symmetric functions of
ai, ..., a, is independent of 6.

A6 First solution: (by Daniel Kane) The probability is
1 - 1§’i2. We start with some notation and simplifi-
cations. For simplicity, we assume without loss of gen-
erality that the circle has radius 1. Let E denote the
expected value of a random variable over all choices of

P,Q, R. Write [XY Z] for the area of triangle XY Z.

If P,Q, R, S are the four points, we may ignore the case
where three of them are collinear, as this occurs with
probability zero. Then the only way they can fail to
form the vertices of a convex quadrilateral is if one of
them lies inside the triangle formed by the other three.
There are four such configurations, depending on which
point lies inside the triangle, and they are mutually ex-
clusive. Hence the desired probability is 1 minus four
times the probability that S lies inside triangle PQR.
That latter probability is simply E([PQR]) divided by
the area of the disc.

Let O denote the center of the circle, and let P/, Q’, R’
be the projections of P, Q, R onto the circle from O.
We can write

[PQR] = +[0PQ] + [OQR] + [ORP]

for a suitable choice of signs, determined as follows. If
the points P/, Q’, R’ lie on no semicircle, then all of the
signs are positive. If P’ Q’, R’ lie on a semicircle in
that order and () lies inside the triangle O PR, then the
sign on [OPR] is positive and the others are negative.
If P’,Q’, R’ lie on a semicircle in that order and @ lies
outside the triangle OPR, then the sign on [OPR)] is
negative and the others are positive.

We first calculate
E([OPQ] + [OQR] + [ORP]) = 3E([OPQ]).
Write 11 = OP,ry = 0Q,0 = ZPOQ, so that

[OPQ] = %Tng(SiIl 0).

The distribution of ry is given by 2r; on [0, 1] (e.g.,
by the change of variable formula to polar coordinates),
and similarly for 5. The distribution of € is uniform on
[0, 7]. These three distributions are independent; hence

E([0PQ))

Il
N |
7 N
S—
2.

[N}
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[\v]
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= 2E'(JOPR]) — %E’(X[OPR]) =

and

E(OPQ] + [OQR] + [ORP)) = Bi

™

We now treat the case where P’, ', R’ lie on a semicir-
cle in that order. Put #; = ZPOQ and 0, = ZQOR,
then the distribution of 61, 5 is uniform on the region

0§61, 0§92, 91+92§7T.

In particular, the distribution on § = 6 + 65 is 7%2 on
[0,7]. Putrp = OP,rg = OQ,rr = OR. Again, the
distribution on rp is given by 27p on [0, 1], and simi-
larly for rq, rg; these are independent from each other
and from the joint distribution of 6y, 05. Write E’(X)
for the expectation of a random variable X restricted to
this part of the domain.

Let x be the random variable with value 1 if () is inside
triangle O PR and O otherwise. We now compute

E'([OPR))

—;</012r2dr) (/OFiZsin(Q)dH)

4
97
E'(x[OPR])

= E'(2[OPRJ?/9)

1 o
2(/0 2r dr)

1

8t

2

(/ 2—26’_1 sin?(#) d9>
o T

Also recall that given any triangle XY Z, if T is chosen
uniformly at random inside XY Z, the expectation of
[TXY] is the area of triangle bounded by XY and the
centroid of XY Z, namely §[XY Z].

Let x be the random variable with value 1 if () is inside
triangle O PR and 0 otherwise. Then

E'([0OPQ] + [OQR] + [ORP] - [PQR])
= 2E'(x([OPQ] + [OQR]) + 2E'((1 — x)[OPR])

- 2E’(§X[OPR]) +2E'([OPR]) - 2E'(x[OPR))

29
36w

Finally, note that the case when P’, Q’, R’ lie on a semi-
circle in some order occurs with probability 3/4. (The
case where they lie on a semicircle proceeding clock-
wise from P’ to its antipode has probability 1/4; this
case and its two analogues are exclusive and exhaus-



tive.) Hence

E([PQR])

= E([OPQ] + [OQR] +

— %E’([OPQ] +

_4 29 _ 35
T 31 487 487’

[ORP])

[OQR] + [ORP] - [PQR])

so the original probability is

E([PQR]) 35

p T 1272

Second solution: (by David Savitt) As in the first so-
lution, it suffices to check that for P, ), R chosen uni-
formly at random in the disc, E([PQR]) = 2. Draw
the lines PQ,QR, RP, which with probability 1 di-
vide the interior of the circle into seven regions. Put
a = [PQRY], let by, by, by denote the areas of the three
other regions sharing a side with the triangle, and let
c1, o, cs denote the areas of the other three regions.
Put A = E(a), B = E(b1), C = E(c1), so that
A+3B+3C =m.

Note that ¢; + c2 + c3 + a is the area of the region
in which we can choose a fourth point S so that the
quadrilateral PQRS fails to be convex. By comparing
expectations, we have 3C + A = 44, so A = C and
4A+3B =.

We will compute B + 2A = B + 2C, which is the ex-
pected area of the part of the circle cut off by a chord
through two random points D, E, on the side of the
chord not containing a third random point F'. Let h be
the distance from the center O of the circle to the line
DE. We now determine the distribution of h.

Put r = OD; the distribution of r is 27 on [0, 1]. With-
out loss of generality, suppose O is the origin and D
lies on the positive z-axis. For fixed r, the distribution
of h runs over [0, 7], and can be computed as the area
of the infinitesimal region in which £ can be chosen so
the chord through D E has distance to O between h and
h + dh, divided by 7. This region splits into two sym-
metric pieces, one of which lies between chords making
angles of arcsin(h/r) and arcsin((h + dh)/r) with the
x-axis. The angle between these is dff = dh/(r? — h?).
Draw the chord through D at distance h to O, and let
L4, Ly be the lengths of the parts on opposite sides
of D; then the area we are looking for is 1 (L3L3)d6.
Since

{L1, Ly} = /1 —h2++/r2 -
the area we are seeking (after doubling) is

1472 —2h2

2
=

Dividing by , then integrating over r, we compute the
distribution of h to be

1 —2h2
*/ —l—r rdr

2)3/2
37T( h)

We now return to computing F (B + 2A) Let A(h) de-
note the smaller of the two areas of the disc cut off by
a chord at distance h. The chance that the third point
is in the smaller (resp. larger) portion is A(h) /7 (resp.
1—A(h)/m), and then the area we are trying to compute
is m — A(h) (resp. A(h)). Using the distribution on h,
and the fact that

—2/ V1—"h2dh
hy/1 — h2,

= 5 — arcsin(h) —

we find
2 1 16 9\3/2
B+2A=— A(h)(m — A(h)) — (1 — h*)>/* dh
T 0 37T
35+ 2472
o 27
Since 4A + 3B = m, we solve to obtain A = 487 as in

Bl

the first solution.

Remark: This is one of the oldest problems in geo-
metric probability; it is an instance of Sylvester’s four-
point problem, which nowadays is usually solved us-
ing a device known as Crofton’s formula. We defer to
http://mathworld.wolfram.com/ for further
discussion.

The “curve” 34 3zy+y> —1 = 01is actually reducible,
because the left side factors as

(m+y—1)(ac —zy+yiFaty+1).

Moreover, the second factor is

(@14 + 17 + (4 9)?),

so it only vanishes at (—1, —1). Thus the curve in ques-
tion consists of the single point (—1, —1) together with
the line x 4+ y = 1. To form a triangle with three points
on this curve, one of its vertices must be (—1, —1). The
other two vertices lie on the line x + y = 1, so the
length of the altitude from (—1, —1) is the distance from
(—1,—1)to (1/2,1/2), or 31/2/2. The area of an equi-
lateral triangle of height A is h2\/§/ 6, so the desired

area is 3\/§/4

B2 Let {z} = = — |z] denote the fractional part of =. For

1=0,...,n,puts; = x1 + -+ + x; (so that sg = 0).
Sort the numbers {sp},. .., {s,} into ascending order,



and call the result tg,...,t,. Since 0 = t5 < --- <
t, < 1, the differences

thtl - tOv ce 7tn - tn—l

add up to no more than 1. By the pigeonhole principle,
one of these differences is no more than 1/(n + 1); it
equals £({s;} — {s;}) for some 0 < i < j < n. Put
S ={sit1,...,s;and m = |s;] — |s;]; then

m—i—Zs

ses

=|m+s; — si

= [{sj} — {si}|
1
n+1’

IN

as desired.

B3 The maximum is (g) + 1. If the maximum value of Lg

is achieved by some .S, it is also achieved by any nearby
configuration. Hence by varying the points slightly, we
can always achieve a maximal configuration in which
no two of the lines joining points of S are parallel. It
suffices to prove that in this case Lg is always equal to
(Z) + 1, which will then be the desired maximum in any
configuration. For convenience, we assume n > 3, as
the cases n = 1, 2 are easy.

Let P be the line at infinity in the real projective plane;
i.e., P is the set of possible directions of lines in the
plane, viewed as a circle. Remove the directions corre-
sponding to lines through two points of S this leaves
behind () intervals.

Given a direction in one of the intervals, consider the
set of linear partitions achieved by lines parallel to that
direction. Note that the resulting collection of partitions
depends only on the interval. Then note that the collec-
tions associated to adjacent intervals differ in only one
element.

The trivial partition that puts all of .S on one side is
in every such collection. We now observe that for any
other linear partition {A, B}, the set of intervals to
which {A, B} is:

(a) a consecutive block of intervals, but
(b) not all of them.

For (a), note that if /1, ¢5 are nonparallel lines achieving
the same partition, then we can rotate around their point
of intersection to achieve all of the intermediate direc-
tions on one side or the other. For (b), the case n = 3
is evident; to reduce the general case to this case, take
points P, @), R such that P lies on the opposite side of
the partition from () and R.

It follows now that that each linear partition, except for
the trivial one, occurs in exactly one place as the parti-
tion associated to some interval but not to its immediate
counterclockwise neighbor. In other words, the num-
ber of linear partitions is one more than the number of
intervals, or (g) + 1 as desired.

4

B4 The maximum is 2%, achieved for instance by the sub-
space

{((z1,...,20) ER" 12y = -+ = 2,_, = O}

First solution: More generally, we show that any affine
k-dimensional plane in R™ can contain at most 2*
points in Z. The proof is by induction on k + n; the
case k = n = 0 is clearly true.

Suppose that V' is a k-plane in R™. Denote the hyper-
planes {z,, = 0} and {z,, = 1} by V} and V4, respec-
tively. If V. NV and V N V; are each at most (k — 1)-
dimensional, then VNVyNZ and V NV; N Z each have
cardinality at most 2°~1 by the induction assumption,
and hence V N Z has at most 2% elements. Otherwise,
if VNnVyor VN V;is k-dimensional, then V' C 1
or V' C Vi; now apply the induction hypothesis on V/,
viewed as a subset of R”~! by dropping the last coor-
dinate.

Second solution: Let S be a subset of Z contained in
a k-dimensional subspace of V. This is equivalent to
asking that any tq,...,t,41 € S satisfy a nontrivial
linear dependence cit; + -+ + crpyitrr1 = 0 with
C1y...,cp+1 € R Since t1,...,t,41 € Q7, given
such a dependence we can always find another one with
C1y...,Cpt1 € Q; then by clearing denominators, we
can find one with ¢y, ..., cyy+1 € Z and not all having a
common factor.

Let F5 denote the field of two elements, and let S C F3
be the reductions modulo 2 of the points of S. Then any
t1,.. . tkg1 € S satisfy a nontrivial linear dependence,
because we can take the dependence from the end of
the previous paragraph and reduce modulo 2. Hence S
is contained in a k-dimensional subspace of Fon, and
the latter has cardinality exactly 2¥. Thus S has at most
2k elements, as does S.

B35 The answer is 1/16. We have
1 1
22 f(x)dx — xf(z)?dz
| ataia= [ et
1
— [@ - (@) - o/2P) ds
0

1
g/ 23 /4dr =1/16,
0

with equality when f(z) = z/2.

B6 We start with some easy upper and lower bounds on
ap. We write O(f(n)) and Q(f(n)) for functions g(n)
such that f(n)/g(n) and g(n)/f(n), respectively, are
bounded above. Since a,, is a nondecreasing sequence,
Gp+t1 — ap is bounded above, so a, = O(n). That

means a;, /" = Q(n=*), so

an =9 <Zi1/k> = Q(nF=1/F,

i=1



Write b, = a, — Ln®/*+D_ for a value of L to be
determined later. We have

bn+1
— bn _|_a;1/k _ L((n—|— 1)k/(k+1) _ nk/(k+1))

=e1 + e,
where

e1 = by + az V¥ = [ V/kpm1/ ()

ey = L((n + 1)k/(1€+1) . nk/(kJrl))

_ [~ /ky =1/ (1)
We first estimate e;. For —1 < m < 0, by the convexity
of (1 +z)™and (1 + x)'~™, we have
1+mae<(1+x)™
<14 mz(l+z)™ L

Hence

_%Li(lﬁLl)/knilbn S €1 — bn

1
S *%b7za;(k+1)/k~

Note that both bounds have sign opposite to b,,; more-
over, by the bound a,, = Q(n*~1/*), both bounds
have absolutely value strictly less than that of b,, for n
sufficiently large. Consequently, for n large,

|61| < |bn|

We now work on es. By Taylor’s theorem with remain-
der applied to (1 + )™ forz > 0and 0 < m < 1,

1+ma>1+z)"

-1
21+mx+%m2.

The “main term” of L((n + 1)¥/(k+1) — pk/(k+1))
is ka?n_l/(k“). To make this coincide with

L= Vkp=1/(k+1) we take

L B\ R/ kD)
T \k+1 ’

We then find that
lea| = O(n™?),

and because b, 11 = e + €3, we have |b,11| < |bn| +
le2|. Hence

b,| = O (ZN) =0(n™Y),
i=1

and so

ak+tt Eo\"
lim - — =Lk = ——) .
nl—{go nk k+1

Remark: One can make a similar argument for any se-
quence given by a,+1 = a, + f(ay,), when f is a de-
creasing function.

Remark: Richard Stanley suggests a heuristic for de-
termining the asymptotic behavior of sequences of this
type: replace the given recursion

—1/k
Upi1 — an = ay "/

by the differential equation

y/ :yfl/k:

and determine the asymptotics of the latter.



