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Al The only suchy are2/3,3/2, (13 £ v/601)/12.

First solution: Let C; andC, be the curveg = ax? +
ax + 57 andz = ay® + ay + 55, respectively, and let
L be the liney = x. We consider three cases.

If C1 is tangent tal, then the point of tangendyt, x)
satisfies

x:aa:2+a:17+—;

2 =1
ar + « , 21

by symmetry(s is tangent td. there, sa’y, andC- are
tangent. Writinga = 1/(2z + 1) in the first equation
and substituting into the second, we must have

x2—|—x+ 1
T = —
20 +1 24’

which simplifies td) = 2422 —2x—1 = (6x+1)(4x —
1),orz € {1/4,—1/6}. Thisyieldsa =1/(2z+1) €
{2/3,3/2}.

If C;, does notintersedt, thenC; andC;, are separated
by L and so cannot be tangent.

If Cy intersectsL in two distinct pointsP;, P, then it

is not tangent td_ at either point. Suppose at one of
these points, sa¥, the tangent t@’; is perpendicular
to L; then by symmetry, the same will be true®@f, so
C1 andCs will be tangent atP; . In this case, the point
P, = (z,z) satisfies

9 1
T=oax"+ar+ —;

2 =-1
ar + « R 21

writing o = —1/(2x + 1) in the first equation and sub-
stituting into the second, we have

- x2+x+1
Co2e4+1 0 247

orz = (=234 1/601)/72. This yieldsa = —1/(2z +
1) = (13 + v/601)/12.

If instead the tangents 16, at P;, P, are not perpen-
dicular to L, then we claim there cannot be any point
whereC; andCj are tangent. Indeed, if we count inter-
sections ofC; andC; (by usingC; to substitute fory

in Cy, then solving fory), we get at most four solutions
counting multiplicity. Two of these ar&; and P, and
any point of tangency counts for two more. However,
off of L, any point of tangency would have a mirror im-

age which is also a point of tangency, and there cannot

Second solution: For any nonzero value af, the two
conics will intersect in four points in the complex pro-
jective planeP?(C). To determine thg-coordinates of
these intersection points, subtract the two equations to
obtain

(y—2)=alz-y)(r+y) +alx—y).

Therefore, at a point of intersection we have either
r =y, orz = —1/a — (y + 1). Substituting these
two possible linear conditions into the second equation
shows that thg-coordinate of a point of intersection is
a root of eitherQ,(y) = ay® + (a« — 1)y + 1/24 or
Q2(y) = ay® + (a+ 1)y +25/24 + 1/a.

If two curves are tangent, then thecoordinates of at
least two of the intersection points will coincide; the
converse is also true because one of the curves is the
graph of a function inc. The coincidence occurs pre-
cisely when either the discriminant of at least one of
Q1 or Q5 is zero, or there is a common root f, and
Q2. Computing the discriminants @p; and@- yields
(up to constant factorsj; (o) = 6a? — 13a + 6 and
f2(a) = 6a% — 13 — 18, respectively. If on the other
hand@; and Q- have a common root, it must be also
a root of Q2(y) — Q1(y) = 2y + 1 + 1/a, yielding
y=—(1+a)/(20) and0 = Q1(y) = —f2(@)/(24v).
Thus the values o for which the two curves are tan-
gent must be contained in the set of zerogoand f5,
namely2/3, 3/2, and(13 + v/601)/12.

Remark: The fact that the two conics iP?(C) meet in
four points, counted with multiplicities, is a special case
of Bézout's theoremtwo curves inP?(C) of degrees
m,n and not sharing any common component meet in
exactlymn points when counted with multiplicity.

Many solvers were surprised that the proposers chose
the parametet /24 to give two rational roots and two
nonrational roots. In fact, they had no choice in the
matter: attempting to make all four roots rational by
replacingl /24 by 8 amounts to asking fos? + 3 and

(% + 3 + 1 to be perfect squares. This cannot happen
outside of trivial casesd = 0, —1) ultimately because
the elliptic curve 24A1 (in Cremona’s notation) ov@r

has rank). (Thanks to Noam Elkies for providing this
computation.)

However, there are choices that make the radical milder,
eg.8=1/3gives3? +3=4/9andB* + 3+ 1 =
13/9, while 3 = 3/5 gives3? + 3 = 24/25 and3? +

B4 1=49/25.

be six solutions. Hence we have now found all possible A2 The minimum is 4, achieved by the square with vertices

Q.

(£1,=£1).



First solution: To prove that 4 is a lower bound,
let S be a convex set of the desired form. Choose
A, B,C, D € Slying on the branches of the two hyper-
bolas, withA in the upper right quadran® in the upper
left, C in the lower left,D in the lower right. Then the
area of the quadrilaterad BC'D is a lower bound for
the area of5.

Write A = (a,1/a), B = (b,—1/b), C = (—¢,—1/c),
D = (—d,1/d) with a, b, ¢,d > 0. Then the area of the
quadrilateraABCD is

%(a/b +bfe+c/d+dfa+bla+e/b+dfc+a)d),

which by the arithmetic-geometric mean inequality is at
least4.

Second solution: ChooseA, B, C, D as in the first so-
lution. Note that both the hyperbolas and the area of
the convex hull ofABC D are invariant under the trans-
formation (z,y) — (xm,y/m) foranym > 0. For

m small, the counterclockwise angle from the liA€’

to the line BD approaches 0; fom large, this angle
approaches. By continuity, for somen this angle be-
comesr/2, thatis,AC and BD become perpendicular.
The area ofABCD is thenAC - BD.

It thus suffices to note thatC' > 2v/2 (and similarly
for BD). This holds because if we draw the tangent
lines to the hyperbolay = 1 at the pointg1, 1) and
(—1,-1), thenA andC lie outside the region between
these lines. If we project the segmetit’ orthogonally
onto the linex = y = 1, the resulting projection has
length at leas?v/2, so AC must as well.

Third solution: (by Richard Stanley) Choose
A, B,C, D as in the first solution. Now fixingl and
C, move B and D to the points at which the tangents
to the curve are parallel to the linéC'. This does not
increase the area of the quadrilateraBC' D (even if
this quadrilateral is not convex).

Note that B and D are now diametrically opposite;
write B = (—z,1/z) andD = (z, —1/x). If we thus
repeatthe procedure, fixing andD and moving4 and
C to the points where the tangents are paralleBtD,
then A andC must move tqz, 1/z) and(—z, —1/x),
respectively, forming a rectangle of area 4.

Remark: Many geometric solutions are possible. An
example suggested by David Savitt (due to Chris
Brewer): note thatd D and BC' cross the positive and
negative z-axes, respectively, so the convex hull of
ABCD containsO. Then check that the area of tri-
angleOAB is at least 1, et cetera.

A3 Assume that we have an ordering of2,...,3k +
1 such that no initial subsequence sumsOtanod
3. If we omit the multiples of3 from this order-
ing, then the remaining sequence mddnust look
like 1,1,—-1,1,—1,...0r—-1,-1,1,-1,1,.... Since
there is one more integer in the ordering congruerit to

mod 3 than to—1, the sequence madimust look like
1,1,—1,1,-1,....

It follows that the ordering satisfies the given condition
if and only if the following two conditions hold: the
first element in the ordering is not divisible I3y and
the sequence mod8 (ignoring zeroes) is of the form
1,1,—-1,1,—1,.... The two conditions are indepen-
dent, and the probability of the first{8k+1)/(3k+1)

while the probability of the second is/ (**), since

there are(**) ways to order(k + 1) 1's andk —1s.
Hence the desired probability is the product of these

k!(k+1)!
tWO, or m

A4 Note thatn is a repunit if and only ibn + 1 = 10™ for

some power of 10 greater than 1. Consequently, if we
put

g(n) = 9f <n;1) +1,

then f takes repunits to repunits if and onlygftakes
powers of 10 greater than 1 to powers of 10 greater than
1. We will show that the only such functiopsare those

of the formg(n) = 10°n? ford > 0, ¢ > 1 — d (all of
which clearly work), which will mean that the desired
polynomialsf are those of the form

f(n) = %(10C(9n+ 4 —1)

for the same:, d.

It is convenient to allow “powers of 10” to be of the
form 10* for any integerk. With this convention, it
suffices to check that the polynomialgaking powers
of 10 greater than 1 to powers of 10 are of the form
10°n? for any integers:, d with d > 0.

First solution: Suppose that the leading term @)

is az?, and note thatt > 0. Asx — oo, we have
g(z)/x? — a; however, forz a power of 10 greater
than 1,g(z)/z? is a power of 10. The set of powers of
10 has no positive limit point, sg(z) /=¢ must be equal
to a for = = 10 with k sufficiently large, and we must
havea = 10° for somec. The polynomial(x) —10¢x?
has infinitely many roots, so must be identically zero.

Second solution: We proceed by induction od =
deg(g). If d = 0, we haveg(n) = 10°¢ for somec.
Otherwise g has rational coefficients by Lagrange’s in-
terpolation formula (this applies to any polynomial of
degreed taking at least! + 1 different rational numbers
to rational numbers), sg(0) = t is rational. More-
over,g takes each value only finitely many times, so the
sequencey(10%), g(101), ... includes arbitrarily large
powers of 10. Suppose that~ 0; then we can choose
a positive integeh such that the numerator o¢fis not
divisible by 10”. But for ¢ large enoughg(10°¢) — t has
numerator divisible byl 0® for someb > h, contradic-
tion.



A5

A6

Consequentlyt = 0, and we may apply the induction
hypothesis t@(n)/n to deduce the claim.

Remark: The second solution amounts to the fact that
g, being a polynomial with rational coefficients, is con-
tinuous for the2-adic ands-adic topologies o). By
contrast, the first solution uses thec*adic” topology,
i.e., the usual real topology.

In all solutions, let& be a finite group of order.

First solution: By Lagrange’s theorem, ifn is not
divisible by p, thenn = 0. Otherwise, letS be
the set ofp-tuples (ag,...,ap,—1) € GP such that
ap---ap—1 = e; thenS has cardinalitym?—!, which

is divisible byp. Note that this set is invariant under
cyclic permutation, that is, ifao, . ..,ap—1) € S, then
(a1,...,ap—1,a0) € S also. The fixed points under
this operation are the tuplés, . . . , a) with a? = ¢; alll
other tuples can be grouped into orbits under cyclic per-
mutation, each of which has size Consequently, the
number ofa € G with a? = e is divisible byp; since
that number iz + 1 (only e has order 1), this proves
the claim.

Second solution: (by Anand Deopurkar) Assume that
n > 0, and letH be any subgroup of of orderp. Let

S be the set of all elements 6f\ H of order dividingp,
and letH act onG by conjugation. Each orbit has size
p except for those which consist of individual elements
g which commute withH. For each sucly, g and H
generate an elementary abelian subgrou@ af order
p2. However, we can group theseinto sets of size
p? — p based on which subgroup they generate together
with H. Hence the cardinality of' is divisible byp;
adding thep — 1 nontrivial elements off givesn = —1
(mod p) as desired.

Third solution: Let .S be the set of elements @& hav-
ing order dividingp, and letH be an elementary abelian
p-group of maximal order irG. If |H| = 1, then we
are done. So assumé| = p* for somek > 1, and
let H act onS by conjugation. Letl’ C S denote
the set of fixed points of this action. Then the size
of every H-orbit on S dividesp*, and so|S| = |T|
(mod p). On the other handi C T, and if T con-
tained an element not iff, then that would contradict
the maximality of H. It follows that H = T, and so
|S| = |T| = |H| =p* =0 (mod p),i.e,|S|=n+1

is a multiple ofp.

Remark: This result is a theorem of Cauchy; the first
solution above is due to McKay. A more general (and
more difficult) result was proved by Frobenius: for any
positive integern, if G is a finite group of order divis-
ible by m, then the number of elements 6f of order
dividing m is a multiple ofm.

For an admissible triangulatidh, number the vertices
of P consecutively, ..., v,, and leta; be the number
of edges in7 emanating fromy;; note thata; > 2 for
all 5.

3

We first claim thatu; +---+a, < 4n—6. LetV, E, F
denote the number of vertices, edges, and faces.in

By Euler's Formula(F+1)—E+V = 2 (one mustadd

1 to the face count for the region exterior &). Each

face has three edges, and each edge butthetside
edges belongs to two faces; herice= 2F — n. On the
other hand, each edge has two endpoints, and each of
theV — n internal vertices is an endpoint of at ledst
edges; hence, +- - -+a,+6(V—n) < 2E. Combining

this inequality with the previous two equations gives

a+--+a, <2E4+6n—-6(1—-F+E)
= 4n — 6,

as claimed.

Now setAs = 1andA,, = A,,_1 +2n — 3forn > 4;
we will prove by induction om that7 has at most,,
triangles. Fom = 3, sincea; + as + a3 = 6, a; =
as = ag = 2 and hencé consists of just one triangle.

Next assume that an admissible triangulation of an
(n — 1)-gon has at mos#,,_; triangles, and letl

be an admissible triangulation of amrgon. If any

a; = 2, then we can remove the triangle Bfcontain-
ing vertexv; to obtain an admissible triangulation of an
(n—1)-gon; then the number of trianglesThis at most
A,—1 +1 < A, by induction. Otherwise, alt; > 3.
Now the average od1,...,a, is less thani, and thus
there are morer; = 3 thana; > 5. It follows that
there is a sequence bftonsecutive vertices iR whose
degrees ar8,4,4,...,4,3 in order, for somek with

2 < k <n—1(possiblyk = 2, in which case there are
no degred vertices separating the degreeertices). If

we remove fron the2k — 1 triangles which contain at
least one of these vertices, then we are left with an ad-
missible triangulation of afn. — 1)-gon. It follows that
thereareatmost,,_1+2k—1< A,_1+2n—-3= A,
triangles in7. This completes the induction step and
the proof.

Remark: We can refine the bound,, somewhat. Sup-
posing that;; > 3 for all 4, the factthatiy +- - - +a,, <

4n — 6 implies that there are at least six more indices
1 with a; = 3 than witha; > 5. Thus there exist six
sequences with degredss, . . ., 4, 3, of total length at
mostn + 6. We may thus choose a sequence of length
k < |%] + 1, so we may improve the upper bound to

Ap = An_1 +2[2] + 1, or asymptoticallytn?.

However (as noted by Noam Elkies), a hexagonal
swatch of a triangular lattice, with the boundary as close
to regular as possible, achieves asymptoticé#h)? tri-
angles.

B1 The problem fails iff is allowed to be constant, e.g.,

take f(n) = 1. We thus assume thgtis nonconstant.



Write f(n) = Y% a;n’ with a; > 0. Then
d
FFm) +1) =3 ai(f () + 1)
=0

= f(1) (mod f(n)).

If n = 1, then this implies thaf (f(n) + 1) is divisible
by f(n). Otherwise0 < f(1) < f(n) sincef is non-
constant and has positive coefficients, g (n) + 1)
cannot be divisible by (n).

B2 PutB = maxo<s<1|f'(z)| andg(z) = foz fy) dy.
Sinceg(0) = g(1) = 0, the maximum value ofy(z)|
must occur at a critical poiny € (0,1) satisfying
9’ (y) = f(y) = 0. We may thus take: = y hereatfter.
Since [ f(x) do = — 01_" f(1 — x) dz, we may as-
sume thatn < 1/2. By then substituting- f(z) for
f(x) if needed, we may assume thﬁf f(z)dx > 0.
From the inequality/’(x) > —B, we deducef(z) <
Bla—2z)for0 <z < «, so

| s < [ Bta )i
=— %B(a —x)?

e

0

2
«

— B
2

ol —

as desired.

B3 First solution: Observing that:s /2 = 13, 23/4 = 34,
x4/8 = 89, we guess that,, = 2" I, 3, where
F}, is the k-th Fibonacci number. Thus we claim that

n—1
Ty = —2\/5 (@273 — o= (n43)) ‘wherea = _1+2\/5, to

2006
make the answersgg; = 2\/5 (3997 — q=3997),

We prove the claim by induction; the base cage=
1 is true, and so it suffices to show that the recursion
Tpy1 = 3z, + |2,\/5] is satisfied for our formula for

z,. Indeed, since? = # we have

2n71
Tp+1 — (3 + \/5);1;" — \/5 (2(a2n+5 _ of(2”+5))
— (3+ VB)(@? P — a= )
_ 2na7(2n+3)'

Now 2o~ (2n+3) = (1=¥5)3(3 - \/5)" is between-1
ando; the recursion follows since,,, z,,+1 are integers.
Second solution: (by Catalin Zara) Since,, is rational,
we have) < z,v/5 — |2,v5] < 1. We now have the
inequalities

Tpt1 — 3Tpn < xn\/g < Tpt1 —3xp +1

B+ VB, —1 <z < (B+VE)z,

42, — (3= V5) < (3 = VB)zpy1 < dap

3$n+1 —4x, < In+1\/g < 3$n+1 —4x, + (3 — \/g)

4

Since0 < 3 —+/5 < 1, this yields |z, 1v5]| =
3,11 —4x,, SOWe can rewrite the recursionas, ; =
6x, —4x,_1 forn > 2. Itis routine to solve this recur-
sion to obtain the same solution as above.

Remark:  With an initial 1 prepended, this
becomes sequence A018903 in Sloane’s On-
Line  Encyclopedia of Integer Sequences:
(http://vww.research.att.com/ njas/

sequences/ ). Therein, the sequence is described
as the caseS(1,5) of the sequenceS(ap,a;)

in which a,,o is the least integer for which
Gpt2/0n+1 > apy1/an. Sloane cites D. W. Boyd,
Linear recurrence relations for some generalized Pisot
sequencesAdvances in Number Theory (Kingston,
ON, 1991) Oxford Univ. Press, New York, 1993, p.
333-340.

B4 The number of pairs i€”*!. The degree condition

forces P to have degree and leading coefficient1;
we may count pairs in whicl? has leading coefficient
1 as long as we multiply by afterward.

Factor both sides:

(P(X) + Q(X))(P(X) — Q(X)i)
n—1

— TT X = exp(@ri(2j +1)/(4n))

JT (X + exp(2mi(2j + 1)/ (4n))).
j=0

Then each choice of?,Q corresponds to equating
P(X) 4+ Q(X)i with the product of some factors on
the right, in which we choose exactly of the two factors
foreachj = 0,...,n— 1. (We must take exactly fac-
tors because as a polynomialdhwith complex coeffi-
cients,P(X) + Q(X)i has degree exactly. We must
choose one for eaghto ensure thaP (X )+ Q(X): and
P(X) — Q(X)i are complex conjugates, so thatQ
have real coefficients.) Thus there &% such pairs;
multiplying by 2 to allowP to have leading coefficient
—1 yields the desired result.

Remark: If we allow P and @ to have complex co-
efficients but still requireleg(P) > deg(Q), then the

number of pairs increases ﬂf:) as we may choose
any n of the 2n factors of X?" + 1 to use to form

P(X)+ Q(X)i.

B5 Forn an integer, we havé? | = " for j the unique

3
integer in{0,...,k — 1} congruent ton modulo k;

hence
I ([i]-"5) =
o k k ’

By expanding this out, we obtain the desired polynomi-
aISPo(n), ceey Pk_l(n).




Remark: Variants of this solution are possible that con-
struct theP; less explicitly, using Lagrange interpola-
tion or Vandermonde determinants.

B6 (Suggested by Oleg Golberg) Assume> 2, or else

the problem is trivially false. Throughout this proof,
any C; will be a positive constant whose exact value is
immaterial. As in the proof of Stirling’s approximation,
we estimate for any fixed € R,

- 1 1
Z(z +c)logi = 5712 logn — an + O(nlogn)
=1
by comparing the sum to an integral. This gives
nn2/2—Clne—n2/4 S 11+c22+c . nn-l—c

< nn2/2+C2ne—n2/4

We now interpretf(n) as counting the number of-
tuples(aq, . . ., a,,) of nonnegative integers such that

all+ -+ a,n! =nl.

5

For an upper bound orfi(rn), we use the inequalities
0 < a; < n!/i! to deduce that there are at masf:! +
1 < 2(n!/i!) choices for,;. Hence

n! n!

fln) <2"37-
— 2712132 - n’n*l

< nn2/2+C3nefn2/4

For a lower bound orf(n), we note that if0 < a; <
(n—1)!/ilfori =2,...,n—1anda, = 0, then0 <
a2+ -+a,n! < nl, sothereis aunique choice @f
to complete this to a solution af 1!+ - - - +a,n! = nl.
Hence

=10  (n—=1)!
f) 2 ==

— 3142' . (n_ 1)77.73
> nn2/2+C4n67n2/4.




