Solutions to the 68th William Lowell Putnam Mathematical Competition Saturday, December 1, 2007

Manjul Bhargava, Kiran Kedlaya, and Lenny Ng

A1 The only such α are $2 / 3,3 / 2,(13 \pm \sqrt{601}) / 12$.
First solution: Let C_{1} and C_{2} be the curves $y=\alpha x^{2}+$ $\alpha x+\frac{1}{24}$ and $x=\alpha y^{2}+\alpha y+\frac{1}{24}$, respectively, and let L be the line $y=x$. We consider three cases.
If C_{1} is tangent to L, then the point of tangency (x, x) satisfies

$$
2 \alpha x+\alpha=1, \quad x=\alpha x^{2}+\alpha x+\frac{1}{24}
$$

by symmetry, C_{2} is tangent to L there, so C_{1} and C_{2} are tangent. Writing $\alpha=1 /(2 x+1)$ in the first equation and substituting into the second, we must have

$$
x=\frac{x^{2}+x}{2 x+1}+\frac{1}{24}
$$

which simplifies to $0=24 x^{2}-2 x-1=(6 x+1)(4 x-$ 1), or $x \in\{1 / 4,-1 / 6\}$. This yields $\alpha=1 /(2 x+1) \in$ $\{2 / 3,3 / 2\}$.
If C_{1} does not intersect L, then C_{1} and C_{2} are separated by L and so cannot be tangent.
If C_{1} intersects L in two distinct points P_{1}, P_{2}, then it is not tangent to L at either point. Suppose at one of these points, say P_{1}, the tangent to C_{1} is perpendicular to L; then by symmetry, the same will be true of C_{2}, so C_{1} and C_{2} will be tangent at P_{1}. In this case, the point $P_{1}=(x, x)$ satisfies

$$
2 \alpha x+\alpha=-1, \quad x=\alpha x^{2}+\alpha x+\frac{1}{24}
$$

writing $\alpha=-1 /(2 x+1)$ in the first equation and substituting into the second, we have

$$
x=-\frac{x^{2}+x}{2 x+1}+\frac{1}{24},
$$

or $x=(-23 \pm \sqrt{601}) / 72$. This yields $\alpha=-1 /(2 x+$ $1)=(13 \pm \sqrt{601}) / 12$.
If instead the tangents to C_{1} at P_{1}, P_{2} are not perpendicular to L, then we claim there cannot be any point where C_{1} and C_{2} are tangent. Indeed, if we count intersections of C_{1} and C_{2} (by using C_{1} to substitute for y in C_{2}, then solving for y), we get at most four solutions counting multiplicity. Two of these are P_{1} and P_{2}, and any point of tangency counts for two more. However, off of L, any point of tangency would have a mirror image which is also a point of tangency, and there cannot be six solutions. Hence we have now found all possible α.

Second solution: For any nonzero value of α, the two conics will intersect in four points in the complex projective plane $\mathbb{P}^{2}(\mathbb{C})$. To determine the y-coordinates of these intersection points, subtract the two equations to obtain

$$
(y-x)=\alpha(x-y)(x+y)+\alpha(x-y)
$$

Therefore, at a point of intersection we have either $x=y$, or $x=-1 / \alpha-(y+1)$. Substituting these two possible linear conditions into the second equation shows that the y-coordinate of a point of intersection is a root of either $Q_{1}(y)=\alpha y^{2}+(\alpha-1) y+1 / 24$ or $Q_{2}(y)=\alpha y^{2}+(\alpha+1) y+25 / 24+1 / \alpha$.
If two curves are tangent, then the y-coordinates of at least two of the intersection points will coincide; the converse is also true because one of the curves is the graph of a function in x. The coincidence occurs precisely when either the discriminant of at least one of Q_{1} or Q_{2} is zero, or there is a common root of Q_{1} and Q_{2}. Computing the discriminants of Q_{1} and Q_{2} yields (up to constant factors) $f_{1}(\alpha)=6 \alpha^{2}-13 \alpha+6$ and $f_{2}(\alpha)=6 \alpha^{2}-13 \alpha-18$, respectively. If on the other hand Q_{1} and Q_{2} have a common root, it must be also a root of $Q_{2}(y)-Q_{1}(y)=2 y+1+1 / \alpha$, yielding $y=-(1+\alpha) /(2 \alpha)$ and $0=Q_{1}(y)=-f_{2}(\alpha) /(24 \alpha)$.
Thus the values of α for which the two curves are tangent must be contained in the set of zeros of f_{1} and f_{2}, namely $2 / 3,3 / 2$, and $(13 \pm \sqrt{601}) / 12$.
Remark: The fact that the two conics in $\mathbb{P}^{2}(\mathbb{C})$ meet in four points, counted with multiplicities, is a special case of Bézout's theorem: two curves in $\mathbb{P}^{2}(\mathbb{C})$ of degrees m, n and not sharing any common component meet in exactly $m n$ points when counted with multiplicity.
Many solvers were surprised that the proposers chose the parameter $1 / 24$ to give two rational roots and two nonrational roots. In fact, they had no choice in the matter: attempting to make all four roots rational by replacing $1 / 24$ by β amounts to asking for $\beta^{2}+\beta$ and $\beta^{2}+\beta+1$ to be perfect squares. This cannot happen outside of trivial cases $(\beta=0,-1)$ ultimately because the elliptic curve 24A1 (in Cremona's notation) over \mathbb{Q} has rank 0. (Thanks to Noam Elkies for providing this computation.)
However, there are choices that make the radical milder, e.g., $\beta=1 / 3$ gives $\beta^{2}+\beta=4 / 9$ and $\beta^{2}+\beta+1=$ $13 / 9$, while $\beta=3 / 5$ gives $\beta^{2}+\beta=24 / 25$ and $\beta^{2}+$ $\beta+1=49 / 25$.

A2 The minimum is 4, achieved by the square with vertices $(\pm 1, \pm 1)$.

First solution: To prove that 4 is a lower bound, let S be a convex set of the desired form. Choose $A, B, C, D \in S$ lying on the branches of the two hyperbolas, with A in the upper right quadrant, B in the upper left, C in the lower left, D in the lower right. Then the area of the quadrilateral $A B C D$ is a lower bound for the area of S.
Write $A=(a, 1 / a), B=(b,-1 / b), C=(-c,-1 / c)$, $D=(-d, 1 / d)$ with $a, b, c, d>0$. Then the area of the quadrilateral $A B C D$ is
$\frac{1}{2}(a / b+b / c+c / d+d / a+b / a+c / b+d / c+a / d)$,
which by the arithmetic-geometric mean inequality is at least 4.
Second solution: Choose A, B, C, D as in the first solution. Note that both the hyperbolas and the area of the convex hull of $A B C D$ are invariant under the transformation $(x, y) \mapsto(x m, y / m)$ for any $m>0$. For m small, the counterclockwise angle from the line $A C$ to the line $B D$ approaches 0 ; for m large, this angle approaches π. By continuity, for some m this angle becomes $\pi / 2$, that is, $A C$ and $B D$ become perpendicular. The area of $A B C D$ is then $A C \cdot B D$.
It thus suffices to note that $A C \geq 2 \sqrt{2}$ (and similarly for $B D$). This holds because if we draw the tangent lines to the hyperbola $x y=1$ at the points $(1,1)$ and $(-1,-1)$, then A and C lie outside the region between these lines. If we project the segment $A C$ orthogonally onto the line $x=y=1$, the resulting projection has length at least $2 \sqrt{2}$, so $A C$ must as well.
Third solution: (by Richard Stanley) Choose A, B, C, D as in the first solution. Now fixing A and C, move B and D to the points at which the tangents to the curve are parallel to the line $A C$. This does not increase the area of the quadrilateral $A B C D$ (even if this quadrilateral is not convex).
Note that B and D are now diametrically opposite; write $B=(-x, 1 / x)$ and $D=(x,-1 / x)$. If we thus repeat the procedure, fixing B and D and moving A and C to the points where the tangents are parallel to $B D$, then A and C must move to $(x, 1 / x)$ and $(-x,-1 / x)$, respectively, forming a rectangle of area 4.
Remark: Many geometric solutions are possible. An example suggested by David Savitt (due to Chris Brewer): note that $A D$ and $B C$ cross the positive and negative x-axes, respectively, so the convex hull of $A B C D$ contains O. Then check that the area of triangle $O A B$ is at least 1 , et cetera.

A3 Assume that we have an ordering of $1,2, \ldots, 3 k+$ 1 such that no initial subsequence sums to $0 \bmod$ 3. If we omit the multiples of 3 from this ordering, then the remaining sequence mod 3 must look like $1,1,-1,1,-1, \ldots$ or $-1,-1,1,-1,1, \ldots$. Since there is one more integer in the ordering congruent to 1
$\bmod 3$ than to -1 , the sequence $\bmod 3$ must look like $1,1,-1,1,-1, \ldots$.
It follows that the ordering satisfies the given condition if and only if the following two conditions hold: the first element in the ordering is not divisible by 3 , and the sequence mod 3 (ignoring zeroes) is of the form $1,1,-1,1,-1, \ldots$. The two conditions are independent, and the probability of the first is $(2 k+1) /(3 k+1)$ while the probability of the second is $1 /\binom{2 k+1}{k}$, since there are $\binom{2 k+1}{k}$ ways to order $(k+1) 1$'s and $k-1$'s. Hence the desired probability is the product of these two, or $\frac{k!(k+1)!}{(3 k+1)(2 k)!}$.

A4 Note that n is a repunit if and only if $9 n+1=10^{m}$ for some power of 10 greater than 1 . Consequently, if we put

$$
g(n)=9 f\left(\frac{n-1}{9}\right)+1,
$$

then f takes repunits to repunits if and only if g takes powers of 10 greater than 1 to powers of 10 greater than 1. We will show that the only such functions g are those of the form $g(n)=10^{c} n^{d}$ for $d \geq 0, c \geq 1-d$ (all of which clearly work), which will mean that the desired polynomials f are those of the form

$$
f(n)=\frac{1}{9}\left(10^{c}(9 n+1)^{d}-1\right)
$$

for the same c, d.
It is convenient to allow "powers of 10 " to be of the form 10^{k} for any integer k. With this convention, it suffices to check that the polynomials g taking powers of 10 greater than 1 to powers of 10 are of the form $10^{c} n^{d}$ for any integers c, d with $d \geq 0$.
First solution: Suppose that the leading term of $g(x)$ is $a x^{d}$, and note that $a>0$. As $x \rightarrow \infty$, we have $g(x) / x^{d} \rightarrow a$; however, for x a power of 10 greater than $1, g(x) / x^{d}$ is a power of 10 . The set of powers of 10 has no positive limit point, so $g(x) / x^{d}$ must be equal to a for $x=10^{k}$ with k sufficiently large, and we must have $a=10^{c}$ for some c. The polynomial $g(x)-10^{c} x^{d}$ has infinitely many roots, so must be identically zero.
Second solution: We proceed by induction on $d=$ $\operatorname{deg}(g)$. If $d=0$, we have $g(n)=10^{c}$ for some c. Otherwise, g has rational coefficients by Lagrange's interpolation formula (this applies to any polynomial of degree d taking at least $d+1$ different rational numbers to rational numbers), so $g(0)=t$ is rational. Moreover, g takes each value only finitely many times, so the sequence $g\left(10^{0}\right), g\left(10^{1}\right), \ldots$ includes arbitrarily large powers of 10 . Suppose that $t \neq 0$; then we can choose a positive integer h such that the numerator of t is not divisible by 10^{h}. But for c large enough, $g\left(10^{c}\right)-t$ has numerator divisible by 10^{b} for some $b>h$, contradiction.

Consequently, $t=0$, and we may apply the induction hypothesis to $g(n) / n$ to deduce the claim.
Remark: The second solution amounts to the fact that g, being a polynomial with rational coefficients, is continuous for the 2 -adic and 5 -adic topologies on \mathbb{Q}. By contrast, the first solution uses the " ∞-adic" topology, i.e., the usual real topology.

A5 In all solutions, let G be a finite group of order m.
First solution: By Lagrange's theorem, if m is not divisible by p, then $n=0$. Otherwise, let S be the set of p-tuples $\left(a_{0}, \ldots, a_{p-1}\right) \in G^{p}$ such that $a_{0} \cdots a_{p-1}=e$; then S has cardinality m^{p-1}, which is divisible by p. Note that this set is invariant under cyclic permutation, that is, if $\left(a_{0}, \ldots, a_{p-1}\right) \in S$, then $\left(a_{1}, \ldots, a_{p-1}, a_{0}\right) \in S$ also. The fixed points under this operation are the tuples (a, \ldots, a) with $a^{p}=e$; all other tuples can be grouped into orbits under cyclic permutation, each of which has size p. Consequently, the number of $a \in G$ with $a^{p}=e$ is divisible by p; since that number is $n+1$ (only e has order 1), this proves the claim.

Second solution: (by Anand Deopurkar) Assume that $n>0$, and let H be any subgroup of G of order p. Let S be the set of all elements of $G \backslash H$ of order dividing p, and let H act on G by conjugation. Each orbit has size p except for those which consist of individual elements g which commute with H. For each such g, g and H generate an elementary abelian subgroup of G of order p^{2}. However, we can group these g into sets of size $p^{2}-p$ based on which subgroup they generate together with H. Hence the cardinality of S is divisible by p; adding the $p-1$ nontrivial elements of H gives $n \equiv-1$ $(\bmod p)$ as desired.
Third solution: Let S be the set of elements in G having order dividing p, and let H be an elementary abelian p-group of maximal order in G. If $|H|=1$, then we are done. So assume $|H|=p^{k}$ for some $k \geq 1$, and let H act on S by conjugation. Let $T \subset S$ denote the set of fixed points of this action. Then the size of every H-orbit on S divides p^{k}, and so $|S| \equiv|T|$ $(\bmod p)$. On the other hand, $H \subset T$, and if T contained an element not in H, then that would contradict the maximality of H. It follows that $H=T$, and so $|S| \equiv|T|=|H|=p^{k} \equiv 0(\bmod p)$, i.e., $|S|=n+1$ is a multiple of p.
Remark: This result is a theorem of Cauchy; the first solution above is due to McKay. A more general (and more difficult) result was proved by Frobenius: for any positive integer m, if G is a finite group of order divisible by m, then the number of elements of G of order dividing m is a multiple of m.

A6 For an admissible triangulation \mathcal{T}, number the vertices of P consecutively v_{1}, \ldots, v_{n}, and let a_{i} be the number of edges in \mathcal{T} emanating from v_{i}; note that $a_{i} \geq 2$ for all i.

We first claim that $a_{1}+\cdots+a_{n} \leq 4 n-6$. Let V, E, F denote the number of vertices, edges, and faces in \mathcal{T}. By Euler's Formula, $(F+1)-E+V=2$ (one must add 1 to the face count for the region exterior to P). Each face has three edges, and each edge but the n outside edges belongs to two faces; hence $F=2 E-n$. On the other hand, each edge has two endpoints, and each of the $V-n$ internal vertices is an endpoint of at least 6 edges; hence $a_{1}+\cdots+a_{n}+6(V-n) \leq 2 E$. Combining this inequality with the previous two equations gives

$$
\begin{aligned}
a_{1}+\cdots+a_{n} & \leq 2 E+6 n-6(1-F+E) \\
& =4 n-6
\end{aligned}
$$

as claimed.
Now set $A_{3}=1$ and $A_{n}=A_{n-1}+2 n-3$ for $n \geq 4$; we will prove by induction on n that \mathcal{T} has at most A_{n} triangles. For $n=3$, since $a_{1}+a_{2}+a_{3}=6, a_{1}=$ $a_{2}=a_{3}=2$ and hence \mathcal{T} consists of just one triangle.

Next assume that an admissible triangulation of an $(n-1)$-gon has at most A_{n-1} triangles, and let \mathcal{T} be an admissible triangulation of an n-gon. If any $a_{i}=2$, then we can remove the triangle of \mathcal{T} containing vertex v_{i} to obtain an admissible triangulation of an ($n-1$)-gon; then the number of triangles in \mathcal{T} is at most $A_{n-1}+1<A_{n}$ by induction. Otherwise, all $a_{i} \geq 3$. Now the average of a_{1}, \ldots, a_{n} is less than 4 , and thus there are more $a_{i}=3$ than $a_{i} \geq 5$. It follows that there is a sequence of k consecutive vertices in P whose degrees are $3,4,4, \ldots, 4,3$ in order, for some k with $2 \leq k \leq n-1$ (possibly $k=2$, in which case there are no degree 4 vertices separating the degree 3 vertices). If we remove from \mathcal{T} the $2 k-1$ triangles which contain at least one of these vertices, then we are left with an admissible triangulation of an $(n-1)$-gon. It follows that there are at most $A_{n-1}+2 k-1 \leq A_{n-1}+2 n-3=A_{n}$ triangles in \mathcal{T}. This completes the induction step and the proof.

Remark: We can refine the bound A_{n} somewhat. Supposing that $a_{i} \geq 3$ for all i, the fact that $a_{1}+\cdots+a_{n} \leq$ $4 n-6$ implies that there are at least six more indices i with $a_{i}=3$ than with $a_{i} \geq 5$. Thus there exist six sequences with degrees $3,4, \ldots, 4,3$, of total length at most $n+6$. We may thus choose a sequence of length $k \leq\left\lfloor\frac{n}{6}\right\rfloor+1$, so we may improve the upper bound to $A_{n}=A_{n-1}+2\left\lfloor\frac{n}{6}\right\rfloor+1$, or asymptotically $\frac{1}{6} n^{2}$.

However (as noted by Noam Elkies), a hexagonal swatch of a triangular lattice, with the boundary as close to regular as possible, achieves asymptotically $\frac{1}{6} n^{2}$ triangles.

B1 The problem fails if f is allowed to be constant, e.g., take $f(n)=1$. We thus assume that f is nonconstant.

Write $f(n)=\sum_{i=0}^{d} a_{i} n^{i}$ with $a_{i}>0$. Then

$$
\begin{aligned}
f(f(n)+1) & =\sum_{i=0}^{d} a_{i}(f(n)+1)^{i} \\
& \equiv f(1) \quad(\bmod f(n))
\end{aligned}
$$

If $n=1$, then this implies that $f(f(n)+1)$ is divisible by $f(n)$. Otherwise, $0<f(1)<f(n)$ since f is nonconstant and has positive coefficients, so $f(f(n)+1)$ cannot be divisible by $f(n)$.
B2 Put $B=\max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right|$ and $g(x)=\int_{0}^{x} f(y) d y$. Since $g(0)=g(1)=0$, the maximum value of $|g(x)|$ must occur at a critical point $y \in(0,1)$ satisfying $g^{\prime}(y)=f(y)=0$. We may thus take $\alpha=y$ hereafter.
Since $\int_{0}^{\alpha} f(x) d x=-\int_{0}^{1-\alpha} f(1-x) d x$, we may assume that $\alpha \leq 1 / 2$. By then substituting $-f(x)$ for $f(x)$ if needed, we may assume that $\int_{0}^{\alpha} f(x) d x \geq 0$. From the inequality $f^{\prime}(x) \geq-B$, we deduce $f(x) \leq$ $B(\alpha-x)$ for $0 \leq x \leq \alpha$, so

$$
\begin{aligned}
\int_{0}^{\alpha} f(x) d x \leq & \int_{0}^{\alpha} B(\alpha-x) d x \\
& =-\left.\frac{1}{2} B(\alpha-x)^{2}\right|_{0} ^{\alpha} \\
& =\frac{\alpha^{2}}{2} B \leq \frac{1}{8} B
\end{aligned}
$$

as desired.
B3 First solution: Observing that $x_{2} / 2=13, x_{3} / 4=34$, $x_{4} / 8=89$, we guess that $x_{n}=2^{n-1} F_{2 n+3}$, where F_{k} is the k-th Fibonacci number. Thus we claim that $x_{n}=\frac{2^{n-1}}{\sqrt{5}}\left(\alpha^{2 n+3}-\alpha^{-(2 n+3)}\right)$, where $\alpha=\frac{1+\sqrt{5}}{2}$, to make the answer $x_{2007}=\frac{2^{2006}}{\sqrt{5}}\left(\alpha^{3997}-\alpha^{-3997}\right)$.
We prove the claim by induction; the base case $x_{0}=$ 1 is true, and so it suffices to show that the recursion $x_{n+1}=3 x_{n}+\left\lfloor x_{n} \sqrt{5}\right\rfloor$ is satisfied for our formula for x_{n}. Indeed, since $\alpha^{2}=\frac{3+\sqrt{5}}{2}$, we have

$$
\begin{aligned}
x_{n+1}-(3+\sqrt{5}) x_{n}= & \frac{2^{n-1}}{\sqrt{5}}\left(2\left(\alpha^{2 n+5}-\alpha^{-(2 n+5)}\right)\right. \\
& \left.-(3+\sqrt{5})\left(\alpha^{2 n+3}-\alpha^{-(2 n+3)}\right)\right) \\
= & 2^{n} \alpha^{-(2 n+3)}
\end{aligned}
$$

Now $2^{n} \alpha^{-(2 n+3)}=\left(\frac{1-\sqrt{5}}{2}\right)^{3}(3-\sqrt{5})^{n}$ is between -1 and 0 ; the recursion follows since x_{n}, x_{n+1} are integers.
Second solution: (by Catalin Zara) Since x_{n} is rational, we have $0<x_{n} \sqrt{5}-\left\lfloor x_{n} \sqrt{5}\right\rfloor<1$. We now have the inequalities

$$
\begin{gathered}
x_{n+1}-3 x_{n}<x_{n} \sqrt{5}<x_{n+1}-3 x_{n}+1 \\
(3+\sqrt{5}) x_{n}-1<x_{n+1}<(3+\sqrt{5}) x_{n} \\
4 x_{n}-(3-\sqrt{5})<(3-\sqrt{5}) x_{n+1}<4 x_{n} \\
3 x_{n+1}-4 x_{n}<x_{n+1} \sqrt{5}<3 x_{n+1}-4 x_{n}+(3-\sqrt{5}) .
\end{gathered}
$$

Since $0<3-\sqrt{5}<1$, this yields $\left\lfloor x_{n+1} \sqrt{5}\right\rfloor=$ $3 x_{n+1}-4 x_{n}$, so we can rewrite the recursion as $x_{n+1}=$ $6 x_{n}-4 x_{n-1}$ for $n \geq 2$. It is routine to solve this recursion to obtain the same solution as above.
Remark: With an initial 1 prepended, this becomes sequence A018903 in Sloane's OnLine Encyclopedia of Integer Sequences: (http://www.research.att.com/~njas/
sequences/). Therein, the sequence is described as the case $S(1,5)$ of the sequence $S\left(a_{0}, a_{1}\right)$ in which a_{n+2} is the least integer for which $a_{n+2} / a_{n+1}>a_{n+1} / a_{n}$. Sloane cites D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory (Kingston, ON, 1991), Oxford Univ. Press, New York, 1993, p. 333-340.

B4 The number of pairs is 2^{n+1}. The degree condition forces P to have degree n and leading coefficient ± 1; we may count pairs in which P has leading coefficient 1 as long as we multiply by 2 afterward.
Factor both sides:

$$
\begin{aligned}
& (P(X)+Q(X) i)(P(X)-Q(X) i) \\
& =\prod_{j=0}^{n-1}(X-\exp (2 \pi i(2 j+1) /(4 n))) \\
& \quad \cdot \prod_{j=0}^{n-1}(X+\exp (2 \pi i(2 j+1) /(4 n))) .
\end{aligned}
$$

Then each choice of P, Q corresponds to equating $P(X)+Q(X) i$ with the product of some n factors on the right, in which we choose exactly of the two factors for each $j=0, \ldots, n-1$. (We must take exactly n factors because as a polynomial in X with complex coefficients, $P(X)+Q(X) i$ has degree exactly n. We must choose one for each j to ensure that $P(X)+Q(X) i$ and $P(X)-Q(X) i$ are complex conjugates, so that P, Q have real coefficients.) Thus there are 2^{n} such pairs; multiplying by 2 to allow P to have leading coefficient -1 yields the desired result.

Remark: If we allow P and Q to have complex coefficients but still require $\operatorname{deg}(P)>\operatorname{deg}(Q)$, then the number of pairs increases to $2\binom{2 n}{n}$, as we may choose any n of the $2 n$ factors of $X^{2 n}+1$ to use to form $P(X)+Q(X) i$.

B5 For n an integer, we have $\left\lfloor\frac{n}{k}\right\rfloor=\frac{n-j}{k}$ for j the unique integer in $\{0, \ldots, k-1\}$ congruent to n modulo k; hence

$$
\prod_{j=0}^{k-1}\left(\left\lfloor\frac{n}{k}\right\rfloor-\frac{n-j}{k}\right)=0
$$

By expanding this out, we obtain the desired polynomials $P_{0}(n), \ldots, P_{k-1}(n)$.

Remark: Variants of this solution are possible that construct the P_{i} less explicitly, using Lagrange interpolation or Vandermonde determinants.

B6 (Suggested by Oleg Golberg) Assume $n \geq 2$, or else the problem is trivially false. Throughout this proof, any C_{i} will be a positive constant whose exact value is immaterial. As in the proof of Stirling's approximation, we estimate for any fixed $c \in \mathbb{R}$,
$\sum_{i=1}^{n}(i+c) \log i=\frac{1}{2} n^{2} \log n-\frac{1}{4} n^{2}+O(n \log n)$
by comparing the sum to an integral. This gives

$$
\begin{aligned}
n^{n^{2} / 2-C_{1} n} e^{-n^{2} / 4} & \leq 1^{1+c} 2^{2+c} \cdots n^{n+c} \\
& \leq n^{n^{2} / 2+C_{2} n} e^{-n^{2} / 4}
\end{aligned}
$$

We now interpret $f(n)$ as counting the number of n tuples $\left(a_{1}, \ldots, a_{n}\right)$ of nonnegative integers such that

$$
a_{1} 1!+\cdots+a_{n} n!=n!
$$

For an upper bound on $f(n)$, we use the inequalities $0 \leq a_{i} \leq n!/ i!$ to deduce that there are at most $n!/ i!+$ $1 \leq 2(n!/ i!)$ choices for a_{i}. Hence

$$
\begin{aligned}
f(n) & \leq 2^{n} \frac{n!}{1!} \cdots \frac{n!}{n!} \\
& =2^{n} 2^{1} 3^{2} \cdots n^{n-1} \\
& \leq n^{n^{2} / 2+C_{3} n} e^{-n^{2} / 4}
\end{aligned}
$$

For a lower bound on $f(n)$, we note that if $0 \leq a_{i}<$ $(n-1)!/ i$! for $i=2, \ldots, n-1$ and $a_{n}=0$, then $0 \leq$ $a_{2} 2!+\cdots+a_{n} n!\leq n!$, so there is a unique choice of a_{1} to complete this to a solution of $a_{1} 1!+\cdots+a_{n} n!=n!$. Hence

$$
\begin{aligned}
f(n) & \geq \frac{(n-1)!}{2!} \cdots \frac{(n-1)!}{(n-1)!} \\
& =3^{1} 4^{2} \cdots(n-1)^{n-3} \\
& \geq n^{n^{2} / 2+C_{4} n} e^{-n^{2} / 4}
\end{aligned}
$$

