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A1 The only suchα are2/3, 3/2, (13±
√

601)/12.

First solution: Let C1 andC2 be the curvesy = αx2 +
αx + 1

24 andx = αy2 + αy + 1
24 , respectively, and let

L be the liney = x. We consider three cases.

If C1 is tangent toL, then the point of tangency(x, x)
satisfies

2αx + α = 1, x = αx2 + αx +
1

24
;

by symmetry,C2 is tangent toL there, soC1 andC2 are
tangent. Writingα = 1/(2x + 1) in the first equation
and substituting into the second, we must have

x =
x2 + x

2x + 1
+

1

24
,

which simplifies to0 = 24x2−2x−1 = (6x+1)(4x−
1), orx ∈ {1/4,−1/6}. This yieldsα = 1/(2x + 1) ∈
{2/3, 3/2}.

If C1 does not intersectL, thenC1 andC2 are separated
by L and so cannot be tangent.

If C1 intersectsL in two distinct pointsP1, P2, then it
is not tangent toL at either point. Suppose at one of
these points, sayP1, the tangent toC1 is perpendicular
to L; then by symmetry, the same will be true ofC2, so
C1 andC2 will be tangent atP1. In this case, the point
P1 = (x, x) satisfies

2αx + α = −1, x = αx2 + αx +
1

24
;

writing α = −1/(2x + 1) in the first equation and sub-
stituting into the second, we have

x = −x2 + x

2x + 1
+

1

24
,

or x = (−23 ±
√

601)/72. This yieldsα = −1/(2x +

1) = (13 ±
√

601)/12.

If instead the tangents toC1 at P1, P2 are not perpen-
dicular toL, then we claim there cannot be any point
whereC1 andC2 are tangent. Indeed, if we count inter-
sections ofC1 andC2 (by usingC1 to substitute fory
in C2, then solving fory), we get at most four solutions
counting multiplicity. Two of these areP1 andP2, and
any point of tangency counts for two more. However,
off of L, any point of tangency would have a mirror im-
age which is also a point of tangency, and there cannot
be six solutions. Hence we have now found all possible
α.

Second solution: For any nonzero value ofα, the two
conics will intersect in four points in the complex pro-
jective planeP2(C). To determine they-coordinates of
these intersection points, subtract the two equations to
obtain

(y − x) = α(x − y)(x + y) + α(x − y).

Therefore, at a point of intersection we have either
x = y, or x = −1/α − (y + 1). Substituting these
two possible linear conditions into the second equation
shows that they-coordinate of a point of intersection is
a root of eitherQ1(y) = αy2 + (α − 1)y + 1/24 or
Q2(y) = αy2 + (α + 1)y + 25/24 + 1/α.

If two curves are tangent, then they-coordinates of at
least two of the intersection points will coincide; the
converse is also true because one of the curves is the
graph of a function inx. The coincidence occurs pre-
cisely when either the discriminant of at least one of
Q1 or Q2 is zero, or there is a common root ofQ1 and
Q2. Computing the discriminants ofQ1 andQ2 yields
(up to constant factors)f1(α) = 6α2 − 13α + 6 and
f2(α) = 6α2 − 13α − 18, respectively. If on the other
handQ1 andQ2 have a common root, it must be also
a root ofQ2(y) − Q1(y) = 2y + 1 + 1/α, yielding
y = −(1 + α)/(2α) and0 = Q1(y) = −f2(α)/(24α).

Thus the values ofα for which the two curves are tan-
gent must be contained in the set of zeros off1 andf2,
namely2/3, 3/2, and(13 ±

√
601)/12.

Remark: The fact that the two conics inP2(C) meet in
four points, counted with multiplicities, is a special case
of Bézout’s theorem: two curves inP2(C) of degrees
m, n and not sharing any common component meet in
exactlymn points when counted with multiplicity.

Many solvers were surprised that the proposers chose
the parameter1/24 to give two rational roots and two
nonrational roots. In fact, they had no choice in the
matter: attempting to make all four roots rational by
replacing1/24 by β amounts to asking forβ2 + β and
β2 + β + 1 to be perfect squares. This cannot happen
outside of trivial cases (β = 0,−1) ultimately because
the elliptic curve 24A1 (in Cremona’s notation) overQ

has rank0. (Thanks to Noam Elkies for providing this
computation.)

However, there are choices that make the radical milder,
e.g.,β = 1/3 givesβ2 + β = 4/9 andβ2 + β + 1 =
13/9, while β = 3/5 givesβ2 + β = 24/25 andβ2 +
β + 1 = 49/25.

A2 The minimum is 4, achieved by the square with vertices
(±1,±1).
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First solution: To prove that 4 is a lower bound,
let S be a convex set of the desired form. Choose
A, B, C, D ∈ S lying on the branches of the two hyper-
bolas, withA in the upper right quadrant,B in the upper
left, C in the lower left,D in the lower right. Then the
area of the quadrilateralABCD is a lower bound for
the area ofS.

Write A = (a, 1/a), B = (b,−1/b), C = (−c,−1/c),
D = (−d, 1/d) with a, b, c, d > 0. Then the area of the
quadrilateralABCD is

1

2
(a/b + b/c + c/d + d/a + b/a + c/b + d/c + a/d),

which by the arithmetic-geometric mean inequality is at
least4.

Second solution: ChooseA, B, C, D as in the first so-
lution. Note that both the hyperbolas and the area of
the convex hull ofABCD are invariant under the trans-
formation(x, y) 7→ (xm, y/m) for any m > 0. For
m small, the counterclockwise angle from the lineAC
to the lineBD approaches 0; form large, this angle
approachesπ. By continuity, for somem this angle be-
comesπ/2, that is,AC andBD become perpendicular.
The area ofABCD is thenAC · BD.

It thus suffices to note thatAC ≥ 2
√

2 (and similarly
for BD). This holds because if we draw the tangent
lines to the hyperbolaxy = 1 at the points(1, 1) and
(−1,−1), thenA andC lie outside the region between
these lines. If we project the segmentAC orthogonally
onto the linex = y = 1, the resulting projection has
length at least2

√
2, soAC must as well.

Third solution: (by Richard Stanley) Choose
A, B, C, D as in the first solution. Now fixingA and
C, moveB andD to the points at which the tangents
to the curve are parallel to the lineAC. This does not
increase the area of the quadrilateralABCD (even if
this quadrilateral is not convex).

Note thatB and D are now diametrically opposite;
write B = (−x, 1/x) andD = (x,−1/x). If we thus
repeat the procedure, fixingB andD and movingA and
C to the points where the tangents are parallel toBD,
thenA andC must move to(x, 1/x) and(−x,−1/x),
respectively, forming a rectangle of area 4.

Remark: Many geometric solutions are possible. An
example suggested by David Savitt (due to Chris
Brewer): note thatAD andBC cross the positive and
negativex-axes, respectively, so the convex hull of
ABCD containsO. Then check that the area of tri-
angleOAB is at least 1, et cetera.

A3 Assume that we have an ordering of1, 2, . . . , 3k +
1 such that no initial subsequence sums to0 mod
3. If we omit the multiples of3 from this order-
ing, then the remaining sequence mod3 must look
like 1, 1,−1, 1,−1, . . . or −1,−1, 1,−1, 1, . . .. Since
there is one more integer in the ordering congruent to1

mod3 than to−1, the sequence mod3 must look like
1, 1,−1, 1,−1, . . ..

It follows that the ordering satisfies the given condition
if and only if the following two conditions hold: the
first element in the ordering is not divisible by3, and
the sequence mod3 (ignoring zeroes) is of the form
1, 1,−1, 1,−1, . . .. The two conditions are indepen-
dent, and the probability of the first is(2k+1)/(3k+1)

while the probability of the second is1/
(

2k+1
k

)

, since
there are

(

2k+1
k

)

ways to order(k + 1) 1’s andk −1’s.
Hence the desired probability is the product of these
two, or k!(k+1)!

(3k+1)(2k)! .

A4 Note thatn is a repunit if and only if9n + 1 = 10m for
some power of 10 greater than 1. Consequently, if we
put

g(n) = 9f

(

n − 1

9

)

+ 1,

thenf takes repunits to repunits if and only ifg takes
powers of 10 greater than 1 to powers of 10 greater than
1. We will show that the only such functionsg are those
of the formg(n) = 10cnd for d ≥ 0, c ≥ 1 − d (all of
which clearly work), which will mean that the desired
polynomialsf are those of the form

f(n) =
1

9
(10c(9n + 1)d − 1)

for the samec, d.

It is convenient to allow “powers of 10” to be of the
form 10k for any integerk. With this convention, it
suffices to check that the polynomialsg taking powers
of 10 greater than 1 to powers of 10 are of the form
10cnd for any integersc, d with d ≥ 0.

First solution: Suppose that the leading term ofg(x)
is axd, and note thata > 0. As x → ∞, we have
g(x)/xd → a; however, forx a power of 10 greater
than 1,g(x)/xd is a power of 10. The set of powers of
10 has no positive limit point, sog(x)/xd must be equal
to a for x = 10k with k sufficiently large, and we must
havea = 10c for somec. The polynomialg(x)−10cxd

has infinitely many roots, so must be identically zero.

Second solution: We proceed by induction ond =
deg(g). If d = 0, we haveg(n) = 10c for somec.
Otherwise,g has rational coefficients by Lagrange’s in-
terpolation formula (this applies to any polynomial of
degreed taking at leastd+1 different rational numbers
to rational numbers), sog(0) = t is rational. More-
over,g takes each value only finitely many times, so the
sequenceg(100), g(101), . . . includes arbitrarily large
powers of 10. Suppose thatt 6= 0; then we can choose
a positive integerh such that the numerator oft is not
divisible by10h. But for c large enough,g(10c)− t has
numerator divisible by10b for someb > h, contradic-
tion.
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Consequently,t = 0, and we may apply the induction
hypothesis tog(n)/n to deduce the claim.

Remark: The second solution amounts to the fact that
g, being a polynomial with rational coefficients, is con-
tinuous for the2-adic and5-adic topologies onQ. By
contrast, the first solution uses the “∞-adic” topology,
i.e., the usual real topology.

A5 In all solutions, letG be a finite group of orderm.

First solution: By Lagrange’s theorem, ifm is not
divisible by p, then n = 0. Otherwise, letS be
the set ofp-tuples (a0, . . . , ap−1) ∈ Gp such that
a0 · · ·ap−1 = e; thenS has cardinalitymp−1, which
is divisible byp. Note that this set is invariant under
cyclic permutation, that is, if(a0, . . . , ap−1) ∈ S, then
(a1, . . . , ap−1, a0) ∈ S also. The fixed points under
this operation are the tuples(a, . . . , a) with ap = e; all
other tuples can be grouped into orbits under cyclic per-
mutation, each of which has sizep. Consequently, the
number ofa ∈ G with ap = e is divisible byp; since
that number isn + 1 (only e has order 1), this proves
the claim.

Second solution: (by Anand Deopurkar) Assume that
n > 0, and letH be any subgroup ofG of orderp. Let
S be the set of all elements ofG\H of order dividingp,
and letH act onG by conjugation. Each orbit has size
p except for those which consist of individual elements
g which commute withH . For each suchg, g andH
generate an elementary abelian subgroup ofG of order
p2. However, we can group theseg into sets of size
p2 − p based on which subgroup they generate together
with H . Hence the cardinality ofS is divisible byp;
adding thep−1 nontrivial elements ofH givesn ≡ −1
(mod p) as desired.

Third solution: Let S be the set of elements inG hav-
ing order dividingp, and letH be an elementary abelian
p-group of maximal order inG. If |H | = 1, then we
are done. So assume|H | = pk for somek ≥ 1, and
let H act onS by conjugation. LetT ⊂ S denote
the set of fixed points of this action. Then the size
of every H-orbit on S dividespk, and so|S| ≡ |T |
(mod p). On the other hand,H ⊂ T , and if T con-
tained an element not inH , then that would contradict
the maximality ofH . It follows thatH = T , and so
|S| ≡ |T | = |H | = pk ≡ 0 (mod p), i.e., |S| = n + 1
is a multiple ofp.

Remark: This result is a theorem of Cauchy; the first
solution above is due to McKay. A more general (and
more difficult) result was proved by Frobenius: for any
positive integerm, if G is a finite group of order divis-
ible by m, then the number of elements ofG of order
dividing m is a multiple ofm.

A6 For an admissible triangulationT , number the vertices
of P consecutivelyv1, . . . , vn, and letai be the number
of edges inT emanating fromvi; note thatai ≥ 2 for
all i.

We first claim thata1 + · · ·+an ≤ 4n−6. LetV, E, F
denote the number of vertices, edges, and faces inT .
By Euler’s Formula,(F +1)−E+V = 2 (one must add
1 to the face count for the region exterior toP ). Each
face has three edges, and each edge but then outside
edges belongs to two faces; henceF = 2E −n. On the
other hand, each edge has two endpoints, and each of
theV − n internal vertices is an endpoint of at least6
edges; hencea1+· · ·+an+6(V −n) ≤ 2E. Combining
this inequality with the previous two equations gives

a1 + · · · + an ≤ 2E + 6n− 6(1 − F + E)

= 4n− 6,

as claimed.

Now setA3 = 1 andAn = An−1 + 2n − 3 for n ≥ 4;
we will prove by induction onn thatT has at mostAn

triangles. Forn = 3, sincea1 + a2 + a3 = 6, a1 =
a2 = a3 = 2 and henceT consists of just one triangle.

Next assume that an admissible triangulation of an
(n − 1)-gon has at mostAn−1 triangles, and letT
be an admissible triangulation of ann-gon. If any
ai = 2, then we can remove the triangle ofT contain-
ing vertexvi to obtain an admissible triangulation of an
(n−1)-gon; then the number of triangles inT is at most
An−1 + 1 < An by induction. Otherwise, allai ≥ 3.
Now the average ofa1, . . . , an is less than4, and thus
there are moreai = 3 than ai ≥ 5. It follows that
there is a sequence ofk consecutive vertices inP whose
degrees are3, 4, 4, . . . , 4, 3 in order, for somek with
2 ≤ k ≤ n− 1 (possiblyk = 2, in which case there are
no degree4 vertices separating the degree3 vertices). If
we remove fromT the2k−1 triangles which contain at
least one of these vertices, then we are left with an ad-
missible triangulation of an(n− 1)-gon. It follows that
there are at mostAn−1+2k−1 ≤ An−1+2n−3 = An

triangles inT . This completes the induction step and
the proof.

Remark: We can refine the boundAn somewhat. Sup-
posing thatai ≥ 3 for all i, the fact thata1 + · · ·+an ≤
4n − 6 implies that there are at least six more indices
i with ai = 3 than withai ≥ 5. Thus there exist six
sequences with degrees3, 4, . . . , 4, 3, of total length at
mostn + 6. We may thus choose a sequence of length
k ≤ ⌊n

6 ⌋ + 1, so we may improve the upper bound to
An = An−1 + 2⌊n

6 ⌋ + 1, or asymptotically16n2.

However (as noted by Noam Elkies), a hexagonal
swatch of a triangular lattice, with the boundary as close
to regular as possible, achieves asymptotically1

6n2 tri-
angles.

B1 The problem fails iff is allowed to be constant, e.g.,
takef(n) = 1. We thus assume thatf is nonconstant.
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Write f(n) =
∑d

i=0 ain
i with ai > 0. Then

f(f(n) + 1) =
d

∑

i=0

ai(f(n) + 1)i

≡ f(1) (mod f(n)).

If n = 1, then this implies thatf(f(n) + 1) is divisible
by f(n). Otherwise,0 < f(1) < f(n) sincef is non-
constant and has positive coefficients, sof(f(n) + 1)
cannot be divisible byf(n).

B2 PutB = max0≤x≤1 |f ′(x)| andg(x) =
∫ x

0
f(y) dy.

Sinceg(0) = g(1) = 0, the maximum value of|g(x)|
must occur at a critical pointy ∈ (0, 1) satisfying
g′(y) = f(y) = 0. We may thus takeα = y hereafter.

Since
∫ α

0
f(x) dx = −

∫ 1−α

0
f(1 − x) dx, we may as-

sume thatα ≤ 1/2. By then substituting−f(x) for
f(x) if needed, we may assume that

∫ α

0
f(x) dx ≥ 0.

From the inequalityf ′(x) ≥ −B, we deducef(x) ≤
B(α − x) for 0 ≤ x ≤ α, so

∫ α

0

f(x) dx ≤
∫ α

0

B(α − x) dx

= − 1

2
B(α − x)2

∣

∣

∣

∣

α

0

=
α2

2
B ≤ 1

8
B

as desired.

B3 First solution: Observing thatx2/2 = 13, x3/4 = 34,
x4/8 = 89, we guess thatxn = 2n−1F2n+3, where
Fk is thek-th Fibonacci number. Thus we claim that
xn = 2n−1

√
5

(α2n+3 − α−(2n+3)), whereα = 1+
√

5
2 , to

make the answerx2007 = 22006

√
5

(α3997 − α−3997).

We prove the claim by induction; the base casex0 =
1 is true, and so it suffices to show that the recursion
xn+1 = 3xn + ⌊xn

√
5⌋ is satisfied for our formula for

xn. Indeed, sinceα2 = 3+
√

5
2 , we have

xn+1 − (3 +
√

5)xn =
2n−1

√
5

(2(α2n+5 − α−(2n+5))

− (3 +
√

5)(α2n+3 − α−(2n+3)))

= 2nα−(2n+3).

Now 2nα−(2n+3) = (1−
√

5
2 )3(3−

√
5)n is between−1

and0; the recursion follows sincexn, xn+1 are integers.

Second solution: (by Catalin Zara) Sincexn is rational,
we have0 < xn

√
5 − ⌊xn

√
5⌋ < 1. We now have the

inequalities

xn+1 − 3xn < xn

√
5 < xn+1 − 3xn + 1

(3 +
√

5)xn − 1 < xn+1 < (3 +
√

5)xn

4xn − (3 −
√

5) < (3 −
√

5)xn+1 < 4xn

3xn+1 − 4xn < xn+1

√
5 < 3xn+1 − 4xn + (3 −

√
5).

Since0 < 3 −
√

5 < 1, this yields⌊xn+1

√
5⌋ =

3xn+1−4xn, so we can rewrite the recursion asxn+1 =
6xn −4xn−1 for n ≥ 2. It is routine to solve this recur-
sion to obtain the same solution as above.

Remark: With an initial 1 prepended, this
becomes sequence A018903 in Sloane’s On-
Line Encyclopedia of Integer Sequences:
(http://www.research.att.com/˜njas/
sequences/ ). Therein, the sequence is described
as the caseS(1, 5) of the sequenceS(a0, a1)
in which an+2 is the least integer for which
an+2/an+1 > an+1/an. Sloane cites D. W. Boyd,
Linear recurrence relations for some generalized Pisot
sequences,Advances in Number Theory (Kingston,
ON, 1991), Oxford Univ. Press, New York, 1993, p.
333–340.

B4 The number of pairs is2n+1. The degree condition
forcesP to have degreen and leading coefficient±1;
we may count pairs in whichP has leading coefficient
1 as long as we multiply by2 afterward.

Factor both sides:

(P (X) + Q(X)i)(P (X) − Q(X)i)

=
n−1
∏

j=0

(X − exp(2πi(2j + 1)/(4n)))

·
n−1
∏

j=0

(X + exp(2πi(2j + 1)/(4n))).

Then each choice ofP, Q corresponds to equating
P (X) + Q(X)i with the product of somen factors on
the right, in which we choose exactly of the two factors
for eachj = 0, . . . , n−1. (We must take exactlyn fac-
tors because as a polynomial inX with complex coeffi-
cients,P (X) + Q(X)i has degree exactlyn. We must
choose one for eachj to ensure thatP (X)+Q(X)i and
P (X) − Q(X)i are complex conjugates, so thatP, Q
have real coefficients.) Thus there are2n such pairs;
multiplying by 2 to allowP to have leading coefficient
−1 yields the desired result.

Remark: If we allow P andQ to have complex co-
efficients but still requiredeg(P ) > deg(Q), then the
number of pairs increases to2

(

2n
n

)

, as we may choose
any n of the 2n factors ofX2n + 1 to use to form
P (X) + Q(X)i.

B5 Forn an integer, we have
⌊

n
k

⌋

= n−j
k for j the unique

integer in {0, . . . , k − 1} congruent ton modulo k;
hence

k−1
∏

j=0

(

⌊n

k

⌋

− n − j

k

)

= 0.

By expanding this out, we obtain the desired polynomi-
alsP0(n), . . . , Pk−1(n).
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Remark: Variants of this solution are possible that con-
struct thePi less explicitly, using Lagrange interpola-
tion or Vandermonde determinants.

B6 (Suggested by Oleg Golberg) Assumen ≥ 2, or else
the problem is trivially false. Throughout this proof,
anyCi will be a positive constant whose exact value is
immaterial. As in the proof of Stirling’s approximation,
we estimate for any fixedc ∈ R,

n
∑

i=1

(i + c) log i =
1

2
n2 log n − 1

4
n2 + O(n log n)

by comparing the sum to an integral. This gives

nn2/2−C1ne−n2/4 ≤ 11+c22+c · · ·nn+c

≤ nn2/2+C2ne−n2/4.

We now interpretf(n) as counting the number ofn-
tuples(a1, . . . , an) of nonnegative integers such that

a11! + · · · + ann! = n!.

For an upper bound onf(n), we use the inequalities
0 ≤ ai ≤ n!/i! to deduce that there are at mostn!/i! +
1 ≤ 2(n!/i!) choices forai. Hence

f(n) ≤ 2n n!

1!
· · · n!

n!

= 2n2132 · · ·nn−1

≤ nn2/2+C3ne−n2/4.

For a lower bound onf(n), we note that if0 ≤ ai <
(n − 1)!/i! for i = 2, . . . , n − 1 andan = 0, then0 ≤
a22!+ · · ·+ann! ≤ n!, so there is a unique choice ofa1

to complete this to a solution ofa11!+ · · ·+ann! = n!.
Hence

f(n) ≥ (n − 1)!

2!
· · · (n − 1)!

(n − 1)!

= 3142 · · · (n − 1)n−3

≥ nn2/2+C4ne−n2/4.


