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Al Let f : R? — R be a function such thaf(z,y) +
f(y,z) + f(z,x) = 0 for all real numbers:, y, andz.
Prove that there exists a functign R — R such that
flz,y) = g(x) — g(y) for all real numbers: andy.

A2 Alan and Barbara play a game in which they take turns
filling entries of an initially empty2008 x 2008 array.
Alan plays first. At each turn, a player chooses a real

number and places it in a vacant entry. The game ends

when all the entries are filled. Alan wins if the determi-
nant of the resulting matrix is nonzero; Barbara wins if
it is zero. Which player has a winning strategy?

A3 Start with a finite sequence, as, . . ., a,, of positive
integers. If possible, choose two indicgs< k such
thata; does not dividez;,, and replace:; anday, by
ged(aj, ax) andlem(a;, ar ), respectively. Prove that if

(The elements ofs in the sequence are not required to
be distinct. Asubsequence of a sequence is obtained
by selecting some of the terms, not necessarily consec-
utive, without reordering them; for example 4,2 is a
subsequence @f 4, 6,4, 2, but2,2, 4 is not.)

B1 What is the maximum number of rational points that can
lie on a circle inR? whose center is not a rational point?
(A rational point is a point both of whose coordinates
are rational numbers.)

B2 LetFy(z) = Inz. Forn > 0andz > 0, let F, 1 (x) =
Jy Fu(t)dt. Evaluate

!
lim LFn(l)

n—oo Inn

this process is repeated, it must eventually stop and the B3 Whatis the largest possible radius of a circle contained

final sequence does not depend on the choices made.

(Note: gcd means greatest common divisor and lcm
means least common multiple.)

A4 Definef : R — R by

J(@) = {xf(lnx)

Does)> " | 7y converge?

A5 Let n > 3 be an integer. Letf(z) and g(z) be
polynomials with real coefficients such that the points
(F(1),9(1)), ((2),9(2), ., (f(n), g(n)) in R? are
the vertices of a regulat-gon in counterclockwise or-
der. Prove that at least one ffz) andg(x) has degree
greater than or equal to — 1.

ifz<e
if z > e.

A6 Prove that there exists a constant 0 such that in ev-
ery nontrivial finite group’ there exists a sequence of
length at most:In |G| with the property that each el-
ement of G equals the product of some subsequence.

in a 4-dimensional hypercube of side length 1?

B4 Let p be a prime number. Leth(z) be a

polynomial with integer coefficients such that
h(0),h(1),...,h(p*> — 1) are distinct modulop?.
Show that h(0),h(1),...,h(p> — 1) are distinct
modulop3.

B5 Find all continuously differentiable functiorfs: R —
R such that for every rational nhumber the number
f(q) is rational and has the same denominatorzas
(The denominator of a rational numbegis the unique
positive integeb such thaly = a/b for some integet
with ged(a,b) = 1.) (Note: gcd means greatest com-
mon divisor.)

B6 Letn andk be positive integers. Say that a permutation

oof {1,2,...,n}is k-limited if |o(¢) — ¢| < k for all
i. Prove that the number df-limited permutations of
{1,2,...,n} is odd if and only ifn = 0 or 1 (mod
2k + 1).
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The functiong(z) = f(x,0) works. Substituting
(z,y,2) = (0,0,0) into the given functional equation
yields f(0,0) = 0, whence substitutindz, y,z) =
(x,0,0) yields f(x,0) + f(0,2) = 0. Finally, substi-
tuting (z,y, z) = (x,y,0) yields f (z,y) = — f(y,0) —
f(0,2) = g(x) — g(y).

Remark: A similar argument shows that the possible
functionsg are precisely those of the forif(x,0) + ¢
for somec.

Barbara wins using one of the following strategies.

First solution: Pair each entry of the first row with the
entry directly below it in the second row. If Alan ever
writes a number in one of the first two rows, Barbara
writes the same number in the other entry in the pair. If
Alan writes a number anywhere other than the first two
rows, Barbara does likewise. At the end, the resulting
matrix will have two identical rows, so its determinant
will be zero.

Second solution: (by Manjul Bhargava) Whenever
Alan writes a numbez in an entry in some row, Bar-
bara writes—z in some other entry in the same row. At
the end, the resulting matrix will have all rows summing
to zero, so it cannot have full rank.

We first prove that the process stops. Note first that
the product:; - - - a,, remains constant, becausg:;, =
ged(aj, ax) lem(aj, ax). Moreover, the last number in

the sequence can never decrease, because it is always

replaced by its least common multiple with another
number. Since it is bounded above (by the product of
all of the numbers), the last number must eventually
reach its maximum value, after which it remains con-
stant throughout. After this happens, the next-to-last
number will never decrease, so it eventually becomes
constant, and so on. After finitely many steps, all of the
numbers will achieve their final values, so no more steps
will be possible. This only happens whendividesay,

for all pairsj < k.

We next check that there is only one possible final
sequence. Fop a prime andm a nonnegative in-
teger, we claim that the number of integers in the
list divisible by p™ never changes. To see this, sup-
pose we replace;, a;, by ged(a;, ar),lem(aj, ax). If
neither ofa;, aj, is divisible by p™, then neither of
ged(ay, ag),lem(aj, ax) is either. If exactly one;, ax,

is divisible byp™, thenlem(a;, ax) is divisible by p™
butged(a;, ar) is not.

ged(aj, ax),lem(a;, ar) are as well.

If we started out with exactly. numbers not divisible
by p™, then in the final sequence4, . .., a!,, the num-

s Y

bersaj, ,,...,a;, are divisible byp™ while the num-
bersdl,...,a) are not. Repeating this argument for
each pairp, m) such thap™ divides the initial product
ai,...,a,, We can determine the exact prime factoriza-
tion of each ofa},...,al,. This proves that the final
sequence is unique.

Remark: (by David Savitt and Noam Elkies) Here are
two other ways to prove the termination. One is to ob-
serve thaﬂj a? is strictly increasing at each step, and
bounded above byu; - - - a,,)™. The other is to notice
that a; is nonincreasing but always positive, so even-
tually becomes constant; then is nonincreasing but
always positive, and so on.

Reinterpretation: For eachp, consider the sequence
consisting of the exponents pfin the prime factoriza-
tions ofaq, ..., a,. At each step, we pick two positions
1 andj such that the exponents of some primare in
the wrong order at positionsand;. We then sort these
two position into the correct order for every primei-
multaneously.

It is clear that this can only terminate with all se-
guences being sorted into the correct order. We must
still check that the process terminates; however, since
all but finitely many of the exponent sequences consist
of all zeroes, and each step makes a nontrivial switch
in at least one of the other exponent sequences, it is
enough to check the case of a single exponent sequence.
This can be done as in the first solution.

Remark: Abhinav Kumar suggests the following proof
that the process always terminates in at n{gststeps.
(This is a variant of the worst-case analysis of itiod-
ble sortalgorithm.)

Consider the number of paifs, /) with 1 < k <1 <n
such that;, does not dividey; (call thesebad pair9. At
each step, we find one bad pé&irj) and eliminate it,
and we do not touch any pairs that do not involve either
iorj. If i <k < j, then neither of the pair§, k)
and(k, j) can become bad, becauseis replaced by a
divisor of itself, whilea; is replaced by a multiple of
itself. If & < ¢, then(k, ) can only become a bad pair

if a; divideda; but nota;, in which case(k, j) stops
being bad. Similarly, ift > j, then(i, k) and(j, k)
either stay the same or switch status. Hence the number
of bad pairs goes down by at least 1 each time; since it
is at most(}) to begin with, this is an upper bound for
the number of steps.

Remark: This problem is closely related to the classi-
fication theorem for finite abelian groups. Namely, if
ai,...,a, andal,...,a, are the sequences obtained



at two different steps in the process, then the abelian
groupsZ/a1Zx - - -xZ/apnZ andZ/a\Zx - - - x 7/ a!, Z

are isomorphic. The final sequence gives a canonical
presentation of this group; the terms of this sequence
are called theelementary divisor®r invariant factors

of the group.

Remark: (by Tom Belulovich) Alattice is a partially
ordered sef. in which for any twozx,y € L, thereis a
unique minimal elementwith z > x andz > y, called
thejoin and denoted: A y, and there is a unique max-
imal element: with z < z andz < y, called themeet
and denoted V y. In terms of a latticd., one can pose
the following generalization of the given problem. Start
with a1,...,a, € L. If i < jbuta; £ a;, itis per-
mitted to replace;, a; by a; V a;, a; A aj, respectively.
The same argument as above shows that this always ter-
minates in at most};) steps. The question is, under
what conditions on the latticé is the final sequence
uniquely determined by the initial sequence?

It turns out that this holds if and only if is distributive
i.e., foranyz,y,z € L,

e A(yVz)=(xAy)V(xAz).

(This is equivalent to the same axiom with the oper-
ations interchanged.) For example,ifis a Boolean
algebra i.e., the set of subsets of a given seunder
inclusion, them is union,V is intersection, and the dis-
tributive law holds. Conversely, any finite distributive
lattice is contained in a Boolean algebra by a theorem
of Birkhoff. The correspondence takes eacl L to

the setofy € L such that: > y andy cannot be written

as a join of two elements df \ {y}. (See for instance
Birkhoff, Lattice TheoryAmer. Math. Soc., 1967.)

On one hand, ifL is distributive, it can be shown that
thej-th term of the final sequence is equal to the meet of
a;, \---Aa;; overall sequences< iy < --- <i; < n.

For instance, this can be checked by forming the small-
est subset’ of L containingas, . .., a, and closed un-
der meet and join, then embeddiig into a Boolean
algebra using Birkhoff's theorem, then checking the
claim for all Boolean algebras. It can also be checked
directly (as suggested by Nghi Nguyen) by showing that
forj =1,...,n,the meetof all joins of-element sub-
sets ofay, .. ., a, IS invariant at each step.

On the other hand, a lattice fails to be distributive if
and only if it contains five elements b, ¢, 0, 1 such that
either the only relations among them are implied by

1>a,b,c>0

(this lattice is sometimes called tltkamond, or the
only relations among them are implied by
1>a>b>0, 1>c¢>0

(this lattice is sometimes called tipentagon. (For a
proof, see the Birkhoff reference given above.) For each

of these examples, the initial sequence, ¢ fails to
determine the final sequence; for the diamond, we can
end up witho, x, 1 for any ofx = a, b, ¢, whereas for the
pentagon we can end up withx, 1 for any ofx = a, b.

Consequently, the final sequence is determined by the
initial sequence if and only iL. is distributive.

A4 The sum diverges. From the definitiofiix) = = on

[1,e],zlnz on(e,e], zlnzInlnz on (e, e], and so
forth. It follows that on[1, c0), f is positive, continu-
ous, and increasing. Thys -, ﬁ if it converges,
is bounded below by, -4 it suffices to prove that
the integral diverges.
Write In'z = Inz andln*z = In(In"~'z) for
k > 2; similarly write exp' z = e® andexpfz =
e f we wiite y = Infx, thenaz =
exp” y anddz = (exp® y)(exp*~"y) - (exp' y)dy =
z(ln'z) - (In*~' 2)dy. Now on [exp*~1 1, expF 1],
we havef(z) = z(In' z)--- (In*~' 2), and thus sub-
stitutingy = In*  yields

expk 1 d 1
/ L :/ dy = 1.
expk—11 (.13) 0

o) expk 1 dx .
= ZkZI fexpk*1 1 TZ:.) di-

1

oo dx
It follows that 'fl HO)
verges, as desired.

A5 Form the polynomiaP(z) = f(z) + ig(z) with com-

plex coefficients. It suffices to prove th&thas degree
at leastn — 1, as then one of, g must have degree at
leastn — 1.

By replacingP(z) with aP(z) + b for suitablea, b €
C, we can force the regulat-gon to have vertices
Cny G2, ..., for ¢, = exp(2mi/n). It thus suffices to
check that there cannot exist a polynomi¥lz) of de-
gree at most —2 such thatP(i) = ¢! fori =1,...,n.

We will prove more generally that for any complex
numbert ¢ {0,1}, and any integem > 1, any poly-
nomial Q(z) for whichQ(i) = t* fori = 1,...,m has
degree at least: — 1. There are several ways to do this.
First solution: If Q(z) has degred and leading coef-
ficientc, thenR(z) = Q(z + 1) — tQ(z) has degred
and leading coefficientl — t)c. However, by hypoth-
esis,R(z) has the distinct roots, 2,...,m — 1, so we
must havel > m — 1.

Second solution: We proceed by induction om. For
the base case: = 1, we haveQ(1) = t! # 0, soQ
must be nonzero, and so its degree is at |18askiven
the assertion fom — 1, if Q(i) = t* fori = 1,...,m,
then the polynomiak(z) = (t—1)"1(Q(z+1)-Q(2))
has degree one less than thathfand satisfie(i) =
tifori = 1,...,m — 1. SinceR must have degree at
leastm — 2 by the induction hypothesig) must have
degree at leash — 1.

Third solution: We use the method dinite differ-
encegas in the second solution) but without induction.



the fraction of elements af not generated by) by a
quantity no greater than

Namely, the(m — 1)-st finite difference ofP evaluated
at 1 equals

1—(2m —m?/n)/n = s%

We start out withk = 0 ands = 1 — 1/n; afterk steps,

mz%l(—l)j (m N 1)Q(m — ) =t(1 =)™ £0,

= J

geG

which is impossible it has degree less tham — 1.

Remark: One can also establish the claim by comput-
ing a Vandermonde-type determinant, or by using the
Lagrange interpolation formula to compute the leading
coefficient ofQ).

A6 For notational convenience, we will interpret the prob-

lem as allowing the empty subsequence, whose product
is the identity element of the group. To solve the prob-
lem in the interpretation where the empty subsequence
is not allowed, simply append the identity element to
the sequence given by one of the following solutions.

First solution: Putn = |G|. We will say that a se-
guenceS producesan elemeny € G if g occurs as the
product of some subsequence%flLet H be the set of
elements produced by the sequelsce

Start withS equal to the empty sequence. If at any point
the setd —'H = {hihy : hy', hy € H} fails to be all

of G, extendS by appending an elemeptof G' not

in H~'H. ThenHg N H must be empty, otherwise
there would be an equation of the formg = hs with
hi,hy € G, or g = hi'hy, a contradiction. Thus we
can extends by one element and double the sizefbf

After £ < log,n steps, we must obtain a sequence
S =ai,...,a; forwhichH 'H = G. Then the se-
quences; ', ...,a; ", a1,. .., a; produces all ofs and
has length at mog2/1n 2) Inn.

Second solution:

Putm = |H|. We will show that we can append one
elementy to S so that the resulting sequencefof- 1
elements will produce at leadtn — m?/n elements of
G. To see this, we compute

> HUHg| = (|H|+|Hg|—|Hn Hgl)
geG

:2mn—Z|HﬂHg|
geG

=2mn — |{(g,h) €G*:hc HN Hg}|
:2mn—Z|{gEG:heHg}|

heH
=2mn — Z |H~'h|
heH
= 2mn — m?.

By the pigeonhole principle, we hayH U H g| > 2m—
m? /n for some choice of, as claimed.

In other words, by extending the sequence by one el-
ement, we can replace the ratio= 1 — m/n (i.e.,

B1 There are at most two such points.

we haves < (1 — 1/n)2k. Itis enough to prove that for
somec > 0, we can always find an integér< clnn

such that
< 1 ) 2k 1
1-=] <=,
n n

as then we have — m < 1 and hencdd = G.
To obtain this last inequality, put

k= |2logyn] < (2/In2)Inn,

so that2k+t! > n2. From the facts thadihn < In2 +
(n—2)/2 < n/2andln(l — 1/n) < —1/n for all
n > 2, we have

1 n? n
k _ — _—— = — — —
2%1n <1 n) < o 5 < —lInn,

yielding the desired inequality.

Remark: An alternate approach in the second solution
is to distinguish betwen the casesifsmall (i.e.,m <
n'/2, in which casen can be replaced by a value no
less tharem — 1) and H large. This strategy is used in
a number of recent results of Bourgain, Tao, Helfgott,
and others osmall doublingor small tripling of subsets

of finite groups.

In the second solution, if we avoid the rather weak in-
equalityln n < n/2, we instead get sequences of length
logy(nlnn) = logy(n) + logy(Inn). This is close to
optimal: one cannot use fewer th&sg, n terms be-
cause the number of subsequences must be atileast

For example,
the points(0,0) and (1,0) lie on a circle with center
(1/2,z) for any real numbetr, not necessarily rational.

On the other hand, supposB = (a,0),Q =
(¢,d),R = (e, f) are three rational points that lie on
a circle. The midpointM of the sidePQ is ((a +
¢)/2,(b+d)/2), which is again rational. Moreover, the
slope of the linePQ is (d—b)/(¢—a), so the slope of the
line throughM perpendicular t@’Q is (a —¢)/(b—d),
which is rational or infinite.

Similarly, if NV is the midpoint of R, thenN is a ratio-
nal point and the line through perpendicular ta) R
has rational slope. The center of the circle lies on both
of these lines, so its coordinatgs i) satisfy two linear
equations with rational coefficients, sdy) + Bh = C
andDg + Eh = F. Moreover, these equations have a
unique solution. That solution must then be

g=(CE — BD)/(AE — BD)
h = (AF — BC)/(AE — BD)



B2 We claim thatt), (z) =

(by elementary algebra, or Cramer’s rule), so the center
of the circle is rational. This proves the desired result.

Remark: The above solution is deliberately more ver-
bose than is really necessary. A shorter way to say this
is that any two distinct rational points determineaa
tional line (a line of the formax + by 4+ ¢ = 0 with

a, b, c rational), while any two nonparallel rational lines
intersect at a rational point. A similar statement holds
with the rational numbers replaced by any field.

Remark: A more explicit argument is to show that
the equation of the circle through the rational points

(x1,91), (x2,Y2), (z3,y3) IS

wi4yr ooy 1
x5+ ys xo Y2 1
a3 +ys w3 ys 1
?+y? x oy 1

0 = det

which has the formu(z? + y?) +dx + ey + f =
0 for a,d, e, f rational. The center of this circle is
(—d/(2a),—e/(2a)), which is again a rational point.

(lnz — a,)z™/n!, wherea,, =
>r_, 1/k. Indeed, temporarily writ&?,, (z) = (Inz —
an)z™/n! for x > 0 andn > 1; thenlim,_.o G,,(z) =
0andG! (z) = (Inz — a, + 1/n)2"1/(n — 1)! =
G,—1(x), and the claim follows by the Fundamental
Theorem of Calculus and induction en

Given the claim, we havé), ( ) = —a,/n! and so we
need to evaluate lim,, ., ;== . But since the function
1/x is strictly decreasing for posmve,Zk:2 1/k =
a, — 1 is bounded below byf,' dz/z = Inn —
In2 and above by/,"dz/z = Inn. It follows that
lim,, .o ;7% = 1, and the desired limit is-1.

B3 The largest possible radiusY;?. It will be convenient

to solve the problem for a hypercube of side length 2
instead, in which case we are trying to show that the
largest radius is/2.

Choose coordinates so that the interior of the hypercube
isthe set/ = [—1,1]*inR*. LetC be a circle centered

at the pointP. ThenC is contained both ind and

its reflection acros#; these intersect in a rectangular
paralellepiped each of whose pairs of opposite faces are
at most 2 unit apart. Consequently, if we translatso

that its center moves to the poifit= (0,0, 0,0) at the
center ofH, then it remains entirely insid&.

This means that the answer we seek equals the largest
possible radius of a circlé’ contained inH and cen-
tered atO. Let vy = (v11,...,v14) @nd vy =
(va21,...,v24) be two points onC' lying on radii per-
pendicular to each other. Then the points of the circle
can be expressed agcos + vo sinf for 0 < 6 < 2.
ThenC lies in H if and only if for eachi, we have

|v1; cos @ + vg;sinf| < 1 (0 <6 <2m).

In geometric terms, the vectdw;,vo;) in R? has
dot product at most 1 with every unit vector. Since
this holds for the unit vector in the same direction as
(v14, v2i), We must have
w402 <1 (i=1,...,4).
Conversely, if this holds, then the Cauchy-Schwarz in-
equality and the above analysis imply tidaties in H.

If r is the radius of”, then

4 4
2 _ 2 2
2rc = E vy; + E Va;
i=1 i=1
4
_ 2 2
= E (v1; +v3;)
i—1

<4,

sor < /2. Since this is achieved by the circle through
(1,1,0,0) and(0,0, 1, 1), it is the desired maximum.

Remark: One may similarly ask for the radius of the
largestk-dimensional ball inside an-dimensional unit
hypercube; the given problem is the casek) =
(4,2). Daniel Kane gives the following argument to
show that the maximum radius in this case%iﬁ
(Thanks for Noam Elkies for passing this along.)

We again scale up by a factor of 2, so that we are trying
to show that the maximum radiusof a k-dimensional
ball contained in the hyperculje1, 1]™ is \/_ Again,
there is no loss of generality in centerlng the ball at the
origin. LetT : R* — R” be a similitude carrying the
unit ball to this embedded-ball. Then there exists a
vectory; € R¥ such thatfoey, . . ., e, the standard ba-
sis ofR™, z-v; = T'(z)-¢; forallz € R¥. The condition

of the problem is equivalent to requirig| < 1 for all

1, while the radiug: of the embedded ball is determined
by the fact that for all: € R¥,

7"2(;L'-;L')=Tx

n
= E X - V;.
i=1

Let M be the matrix with columnsgy,...,vg; then
MMT = r21,, for I thek x k identity matrix. We
then have

kr? = Trace(r?Iy) = Trace(MMT)

= Trace(MTM) = Z |vg |*

<n

— )

yielding the upper bound < /.

To show that this bound is optimal, it is enough to show
that one can find an orthogonal projection®if onto

R* so that the projections of the all have the same
norm (one can then rescale to get the desired configura-
tion of vy,...,v,). We construct such a configuration



by a “smoothing” argument. Startw with any projec-
tion. Letws,...,w, be the projections ofy, ..., e,.

If the desired condition is not achieved, we can choose
1, j such that

1
il < = (Jon* + -+ fon ) < %,

By precomposing with a suitable rotation that fixgs
for h # 4,7, we can vary|w;|, |w;| without varying
|w;|> + |w;|? or |wy| for h # i, j. We can thus choose
such a rotation to force one ¢#;|?, |w;|? to become
equal tol(jwy |2 + -+ + |w,|?). Repeating at most
n — 1 times gives the desired configuration.

B4 We use the identity given by Taylor’s theorem:

ha+y)= D, ——v"

=0

In this expression, ¥ (z)/i! is a polynomial inz with
integer coefficients, so its value at an integeis an
integer.

Forxz =0,...,p— 1, we deduce that

h(z 4+ p) = h(z) + ph’(z) (mod p?).

(This can also be deduced more directly using the bino-
mial theorem.) Since we assumé(lz) andh(z + p)

are distinct modulg?, we conclude that/(z) # 0
(mod p). Sincel’ is a polynomial with integer coeffi-
cients, we havé)'(z) = h/(z + mp) (mod p) for any
integerm, and soh/(x) # 0 (mod p) for all integers

x.

Now forz = 0, ...
write

,p>—landy =0,...,p— 1, we

h(z +yp?) = h(z) + p*yh/(z) (mod p?).
Thush(x), h(z + p?),..., h(xz + (p — 1)p?) run over
all of the residue classes moduj® congruent to
h(x) modulo p?. Since theh(z) themselves cover
all the residue classes modujg, this proves that
h(0),..., h(p* — 1) are distinct modulg?.

Remark: More generally, the same proof shows that
for any integergl, e > 1, h permutes the residue classes
modulop® if and only if it permutes the residue classes
modulop®. The argument used in the proof is related
to a general result in number theory knownHensel’'s
lemma

B5 The functionsf(x) = z+nandf(z) = —z+n forany

integern clearly satisfy the condition of the problem;
we claim that these are the only possilfle

Letg = a/b be any rational number witged(a, b) = 1
andb > 0. Forn any positive integer, we have

is an integer by the property gf Sincef is differen-
tiable ata/b, the left hand side has a limit. It follows
that for sufficiently large:, both sides must be equal to
some integer = f/($): f(“H) = f(%) + 5. Now

c cannot be0, since otherwisef () = f(£) for
sufficiently largen has denominatob rather tharn.
Similarly, || cannot be greater than otherwise if we
taken = k|c| for k a sufficiently large positive integer,
thenf(%) + ;% has denominatdsk, contradicting the
fact thatf (%) has denominatabn. It follows that
c=f'(3)=*£1.

Thus the derivative of at any rational number ig1.
Sincef is continuously differentiable, we conclude that
f'(x) = 1forall realz or f'(x) = —1 for all real z.
Since f(0) must be an integer (a rational number with
denominatotl), f(z) = « + nor f(z) = —z + n for
some integer..

Remark: After showing thatf’(q) is an integer for
eachg, one can instead argue thft is a continuous
function from the rationals to the integers, so must be
constant. One can then wriféz) = axz + b and check
thatb € Z by evaluation att = 0, and thats = +1 by
evaluation atr = 1/a.

In all solutions, let}, ;, be the number of-limited per-
mutations of{1,...,n}.

First solution: (by Jacob Tsimerman) Note that any
permutation isk-limited if and only if its inverse isk-
limited. Consequently, the number &flimited per-
mutations of{1,...,n} is the same as the number of
k-limited involutions (permutations equal to their in-
verses) of1,...,n}.

We use the following fact several times: the number
of involutions of {1,...,n} is odd if n = 0,1 and
even otherwise. This follows from the fact that non-
involutions come in pairs, so the number of involu-
tions has the same parity as the number of permutations,
namelyn!.

Forn < k 4+ 1, all involutions arek-limited. By the
previous paragraplt;), ; is odd forn = 0,1 and even
forn=2,...,k+1.

Forn > k + 1, group thek-limited involutions into
classes based on their actionslor- 2,...,n. Note
that for C' a class andr € C, the set of elements of
A = {1,...,k + 1} which map intoA undero de-
pends only orC, not ono. Call this setS(C'); then the
size ofC' is exactly the number of involutions &f(C').
ConsequentlyC| is even unles$(C) has at most one
element. However, the element 1 cannot map ow of
because we are looking atlimited involutions. Hence
if S(C) has one element and € C, we must have
o(1) = 1. Sinceo is k-limited ando (2) cannot belong
to A, we must haver(2) = k + 2. By induction, for
i=3,...,k+ 1, we musthave (i) = k + i.

If n < 2k + 1, this shows that no clags of odd cardi-
nality can exist, sd", , must be even. I, > 2k + 1,



the classes of odd cardinality are in bijection with
limited involutions of{2k + 2,...,n}, sOF,  has the
same parity ag’,_o2;—1,5. By induction onn, we de-
duce the desired result.

Second solution: (by Yufei Zhao) LetM,, ;, be then x
n matrix with

1 Ji—jl <k
(M, )i {0 otherwise.
Write det(M,, ;) as the sum over permutationsof
{1, Cee n} of (Mn,kt)la(l) s (Mmk)ng(n) times the
signature ofs. Theno contributes£1 to det(M, 1)
if o is k-limited and 0 otherwise. We conclude that

det(MnJc) = Fn,k (mOd 2)

For the rest of the solution, we interprkf, ;. as a ma-
trix over the field of two elements. We compute its de-
terminant using linear algebra modulo 2.

We first show that fon > 2k + 1,

For =Fy_op—1x (mod 2),

provided that we interprdf, , = 1. We do this by com-
puting det(M,, ) using row and column operations.
We will verbally describe these operations for general
k, while illustrating with the examplgé = 3.

To begin with,M,, , has the following form.

000

VIR EEEVIR SSRGS GG

SO OO = ===
S OO~ —~ FH P
DO R =R
D= == = ==
N e
N == == O
N = === O

*

In this presentation, the fir&% + 1 rows and columns
are shown explicitly; the remaining rows and columns
are shown in a compressed format. The syniboi-
dicates that the unseen entries are all zeroes, while the
symbol? indicates that they are not. The symbaih

the lower right corner represents the matfix_o;—1 .

We will preserve the unseen structure of the matrix by
only adding the firs& + 1 rows or columns to any of
the others.

We first add row 1 to each of rovs. .., kK + 1.

B SRR SRR

SO = =2 O O O =
[ = = =0 O O
NP = R R = RO
e e N L = R )
N N o = R e R e)

SO O O O O O
2O O R O O O

We next add column 1 to each of colunihs. . &k + 1.

e i e B e B e B a)
N Y eSS

O O O o o o+
=0 O = O O O O
SO = = O O OO
N e e )

N e =)
N = === O

0 0

Fori = 2,foreachofj =i+ 1,...,2k + 1 for which
the (4, k + i)-entry is nonzero, add rowto row ;.

*

VARV IR IR ST G RS

=0 O = O O O O
SO = = 00 o O
S| = =R O OO
Sl o o o o+~ Oo
N = == OO
N = === OO

SO O O O O O =

Repeat the previous step foe 3,...,k+ 1 in succes-
sion.

100000 0|0

00001000

00000100

000000 1|0

0111000(7?

00110007

00010007

0000000«
Repeat the two previous steps with the roles of the rows
and columns reversed. Thatis, foe 2, ...,k + 1, for

eachofj =i+ 1,...,2k + 1 for which the(j, k + 7)-
entry is nonzero, add rowto row ;.

O O O O = O O
=20 O O = O O O

2O O R O O O O
SO = O O O o O
=S|—= O O O O o O

=20 O O O O = O
LRSS SSER SRR SRR SRR SR S

SO O O O O O =

0

We now have a block diagonal matrix in which the top
left block is a(2k + 1) x (2k + 1) matrix with nonzero
determinant (it results from reordering the rows of the
identity matrix), the bottom right block i84,,_2x—1 .
and the other two blocks are zero. We conclude that

det(Mmk) = det(Mn_Qk_Lk) (mod 2),



proving the desired congruence.

To prove the desired result, we must now check that
Fo i, F1, are odd andFy i, . . ., Fay, i, are even. For
n=0,...,k+ 1, the matrix), _; consists of all ones,
so its determinantis 1 it = 0, 1 and O otherwise. (Al-
ternatively, we have, , = n! forn =0,...,k + 1,
since every permutation §fl, ..., n} is k-limited.) For

n =k+2,...,2k, observe that rows andk + 1 of
M, ;. both consist of all ones, séet(M,, ;) = 0 as
desired.

Third solution: (by Tom Belulovich) Definel/, ;. as
in the second solution. We prodet (M, ;) is odd for
n=0,1 (mod 2k+ 1) and even otherwise, by directly
determining whether or nat/,, ;. is invertible as a ma-
trix over the field of two elements.

Letr; denote rowi of M, . We first check that ify =
2,...,2k (mod 2k + 1), thenM,, , is not invertible.
In this case, we can find integdis< a < b < k such
thatn +a+ b =0 (mod 2k + 1). Putj = (n +a +
b)/(2k + 1). We can then write the all-ones vector both
as

Jj—1

E Tk+1—a+(2k+1)i
i=0

and as

j—1
Z Th+1—b+(2k+1)i-
=0

Hencel,, ; is not invertible.

We next check that i = 0,1 (mod 2k + 1), then
M, i is invertible. Suppose that, ..., a, are scalars

such thati;ry + - - - + a, 7y, is the zero vector. The-
th coordinate of this vector equals,_, + - - - + Gm+k,
where we regard; as zero ifi ¢ {1,...,n}. By com-
paring consecutive coordinates, we obtain

Qm—k = Gmtk+1 (I <m<n).

In particular, thez; repeat with perio@k + 1. Taking
m = 1,..., k further yields that

Oky2 =+ = G241 =0

while takingm =n — k,...,n — 1 yields
Gp—2k =" = ap-1—k = 0.
Forn =0 (mod 2k + 1), the latter can be rewritten as
ap=---=a,=0
whereas for =1 (mod 2k + 1), it can be rewritten as
ag =+ =ap+1 =0.

In either case, since we also have

ap+--+ag+1 =0
fromthe(k + 1)-st coordinate, we deduce that all of the
a; must be zero, and s/, ,, must be invertible.

Remark: The matrices\M,,, ;, are examples obanded
matrices which occur frequently in numerical appli-
cations of linear algebra. They are also examples of
Toeplitz matrices
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