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A1 The largest suchk is ⌊n+1
2 ⌋ = ⌈n

2 ⌉. Forn even, this
value is achieved by the partition

{1, n}, {2, n− 1}, . . . ;

for n odd, it is achieved by the partition

{n}, {1, n− 1}, {2, n− 2}, . . . .

One way to see that this is optimal is to note that the
common sum can never be less thann, sincen itself
belongs to one of the boxes. This implies thatk ≤ (1+
· · · + n)/n = (n + 1)/2. Another argument is that if
k > (n + 1)/2, then there would have to be two boxes
with one number each (by the pigeonhole principle), but
such boxes could not have the same sum.

Remark. A much subtler question would be to find
the smallestk (as a function ofn) for which no such
arrangement exists.

A2 The only such functions are those of the formf(x) =
cx+ d for some real numbersc, d (for which the prop-
erty is obviously satisfied). To see this, suppose thatf
has the desired property. Then for anyx ∈ R,

2f ′(x) = f(x+ 2)− f(x)

= (f(x+ 2)− f(x+ 1)) + (f(x+ 1)− f(x))

= f ′(x+ 1) + f ′(x).

Consequently,f ′(x+ 1) = f ′(x).

Define the functiong : R → R by g(x) = f(x + 1) −
f(x), and putc = g(0), d = f(0). For all x ∈ R,
g′(x) = f ′(x+1)−f ′(x) = 0, sog(x) = c identically,
andf ′(x) = f(x + 1) − f(x) = g(x) = c, sof(x) =
cx+ d identically as desired.

A3 If a = b = 0, then the desired result holds trivially,
so we assume that at least one ofa, b is nonzero. Pick
any point(a0, b0) ∈ R

2, and letL be the line given
by the parametric equationL(t) = (a0, b0) + (a, b)t
for t ∈ R. By the chain rule and the given equation, we
have d

dt (h◦L) = h◦L. If we writef = h◦L : R → R,
thenf ′(t) = f(t) for all t. It follows thatf(t) = Cet

for some constantC. Since|f(t)| ≤ M for all t, we
must haveC = 0. It follows thath(a0, b0) = 0; since
(a0, b0) was an arbitrary point,h is identically0 over
all of R2.

A4 Put

N = 1010
10n

+ 1010
n

+ 10n − 1.

Write n = 2mk with m a nonnegative integer andk a
positive odd integer. For any nonnegative integerj,

102
mj ≡ (−1)j (mod 102

m

+ 1).

Since10n ≥ n ≥ 2m ≥ m + 1, 10n is divisible by2n

and hence by2m+1, and similarly1010
n

is divisible by
210

n

and hence by2m+1. It follows that

N ≡ 1 + 1 + (−1) + (−1) ≡ 0 (mod 102
m

+ 1).

SinceN ≥ 1010
n

> 10n + 1 ≥ 102
m

+ 1, it follows
thatN is composite.

A5 We start with three lemmas.

Lemma 1. If x,y ∈ G are nonzero orthogonal vectors, then
x ∗ x is parallel to y.

Proof. Putz = x × y 6= 0, so thatx,y, andz = x ∗ y are
nonzero and mutually orthogonal. Thenw = x × z 6= 0, so
w = x ∗ z is nonzero and orthogonal tox andz. However, if
(x∗x)×y 6= 0, thenw = x∗(x∗y) = (x∗x)∗y = (x∗x)×y

is also orthogonal toy, a contradiction.

Lemma 2. If x ∈ G is nonzero, and there exists y ∈ G
nonzero and orthogonal to x, then x ∗ x = 0.

Proof. Lemma 1 implies thatx ∗ x is parallel to bothy and
x× y, so it must be zero.

Lemma 3. If x,y ∈ G commute, then x× y = 0.

Proof. If x×y 6= 0, thenx∗y = x×y = −y×x = −y∗x,
sox ∗ y 6= y ∗ x.

We proceed now to the proof. Assume by way of con-
tradiction that there exista,b ∈ G with a×b 6= 0. Put
c = a× b = a ∗ b, so thata,b, c are nonzero and lin-
early independent. Lete be the identity element ofG.
Sincee commutes witha,b, c, by Lemma 3 we have
e × a = e × b = e × c = 0. Sincea,b, c spanR3,
e× x = 0 for all x ∈ R3, soe = 0.

Sinceb, c, andb× c = b ∗ c are nonzero and mutually
orthogonal, Lemma 2 implies

b ∗ b = c ∗ c = (b ∗ c) ∗ (b ∗ c) = 0 = e.

Henceb ∗ c = c ∗ b, contradicting Lemma 3 because
b× c 6= 0. The desired result follows.



2

A6 First solution. Note that the hypotheses onf imply
thatf(x) > 0 for all x ∈ [0,+∞), so the integrand is a
continuous function off and the integral makes sense.
Rewrite the integral as

∫

∞

0

(

1−
f(x+ 1)

f(x)

)

dx,

and suppose by way of contradiction that it converges
to a finite limit L. For n ≥ 0, define the Lebesgue
measurable set

In = {x ∈ [0, 1] : 1−
f(x+ n+ 1)

f(x+ n)
≤ 1/2}.

ThenL ≥
∑

∞

n=0
1
2 (1 − µ(In)), so the latter sum con-

verges. In particular, there exists a nonnegative integer
N for which

∑

∞

n=N (1− µ(In)) < 1; the intersection

I =

∞
⋃

n=N

In = [0, 1]−

∞
⋂

n=N

([0, 1]− In)

then has positive Lebesgue measure.

By Taylor’s theorem with remainder, fort ∈ [0, 1/2],

− log(1− t) ≤ t+ t2 sup
t∈[0,1/2]

{

1

(1− t)2

}

= t+
4

3
t2 ≤

5

3
t.

For each nonnegative integern ≥ N , we then have

L ≥

∫ n

N

(

1−
f(x+ 1)

f(x)

)

dx

=

n−1
∑

i=N

∫ 1

0

(

1−
f(x+ i+ 1)

f(x+ i)

)

dx

≥

n−1
∑

i=N

∫

I

(

1−
f(x+ i+ 1)

f(x+ i)

)

dx

≥
3

5

n−1
∑

i=N

∫

I

log
f(x+ i)

f(x+ i+ 1)
dx

=
3

5

∫

I

(

n−1
∑

i=N

log
f(x+ i)

f(x+ i+ 1)

)

dx

=
3

5

∫

I

log
f(x+N)

f(x+ n)
dx.

For eachx ∈ I, log f(x + N)/f(x + n) is a strictly
increasing unbounded function ofn. By the mono-
tone convergence theorem, the integral

∫

I log(f(x +
N)/f(x + n)) dx grows without bound asn → +∞,
a contradiction. Thus the original integral diverges, as
desired.

Remark. This solution is motivated by the commonly-
used fact that an infinite product(1 + x1)(1 + x2) · · ·
converges absolutely if and only if the sumx1+x2+· · ·

converges absolutely. The additional measure-theoretic
argument at the beginning is needed because one cannot
bound− log(1 − t) by a fixed multiple oft uniformly
for all t ∈ [0, 1).

Second solution. (Communicated by Paul Allen.) Let
b > a be nonnegative integers. Then

∫ b

a

f(x)− f(x+ 1)

f(x)
dx =

b−1
∑

k=a

∫ 1

0

f(x+ k)− f(x+ k + 1)

f(x+ k)
dx

=

∫ 1

0

b−1
∑

k=a

f(x+ k)− f(x+ k + 1)

f(x+ k)
dx

≥

∫ 1

0

b−1
∑

k=a

f(x+ k)− f(x+ k + 1)

f(x+ a)
dx

=

∫ 1

0

f(x+ a)− f(x+ b)

f(x+ a)
dx.

Now sincef(x) → 0, givena, we can choose an in-
tegerl(a) > a for which f(l(a)) < f(a + 1)/2; then
f(x+a)−f(x+l(a))

f(x+a) ≥ 1− f(l(a))
f(a+1) > 1/2 for all x ∈ [0, 1].

Thus if we define a sequence of integersan by a0 = 0,
an+1 = l(an), then

∫

∞

0

f(x)− f(x+ 1)

f(x)
dx =

∞
∑

n=0

∫ an+1

an

f(x)− f(x+ 1)

f(x)
dx

>

∞
∑

n=0

∫ 1

0

(1/2)dx,

and the final sum clearly diverges.

Third solution. (By Joshua Rosenberg, communicated
by Catalin Zara.) If the original integral converges, then
on one hand the integrand(f(x) − f(x + 1))/f(x) =
1− f(x+ 1)/f(x) cannot tend to 1 asx → ∞. On the
other hand, for anya ≥ 0,

0 <
f(a+ 1)

f(a)

<
1

f(a)

∫ a+1

a

f(x) dx

=
1

f(a)

∫

∞

a

(f(x) − f(x+ 1)) dx

≤

∫

∞

a

f(x)− f(x+ 1)

f(x)
dx,

and the last expression tends to 0 asa → ∞. Hence by
the squeeze theorem,f(a+ 1)/f(a) → 0 asa → ∞, a
contradiction.

B1 First solution. No such sequence exists. If it did, then
the Cauchy-Schwartz inequality would imply

8 = (a21 + a22 + · · · )(a41 + a42 + · · · )

≥ (a31 + a32 + · · · )2 = 9,
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contradiction.

Second solution. (Communicated by Catalin Zara.)
Suppose that such a sequence exists. Ifa2k ∈ [0, 1] for
all k, thena4k ≤ a2k for all k, and so

4 = a41 + a42 + · · · ≤ a21 + a22 + · · · = 2,

contradiction. There thus exists a positive integerk for
which a2k ≥ 1. However, in this case, form large,
a2mk > 2m and soa2m1 + a2m2 + · · · 6= 2m.

Third solution. We generalize the second solution to
show that for any positive integerk, it is impossible for
a sequencea1, a2, . . . of complex numbers to satisfy
the given conditions in case the seriesak1+ak2+· · · con-
verges absolutely. This includes the original problem by
takingk = 2, in which case the seriesa21 + a22 + · · ·
consists of nonnegative real numbers and so converges
absolutely if it converges at all.

Since the sum
∑

∞

i=1 |ai|
k converges by hypothesis, we

can find a positive integern such that
∑

∞

i=n+1 |ai|
k <

1. For each positive integerd, we then have
∣

∣

∣

∣

∣

kd−

n
∑

i=1

akdi

∣

∣

∣

∣

∣

≤

∞
∑

i=n+1

|ai|
kd < 1.

We thus cannot have|a1|, . . . , |an| ≤ 1, or else the
sum

∑n
i=1 a

kd
i would be bounded in absolute value

by n independently ofd. But if we put r =
max{|a1|, . . . , |an|} > 1, we obtain another contradic-
tion because for anyǫ > 0,

lim sup
d→∞

(r − ǫ)−kd

∣

∣

∣

∣

∣

n
∑

i=1

akdi

∣

∣

∣

∣

∣

> 0.

For instance, this follows from applying the root test to
the rational function

n
∑

i=1

1

1− aki z
=

∞
∑

d=0

(

n
∑

i=1

akdi

)

zd,

which has a pole within the circle|z| ≤ r−1/k. (An
elementary proof is also possible.)

Fourth solution. (Communicated by Noam Elkies.)
Since

∑

k a
2
k = 2, for each positive integerk we have

a2k ≤ 2 and soa4k ≤ 2a2k, with equality only for
a2k ∈ {0, 2}. Thus to have

∑

k a
4
k = 4, there must

be a single indexk for whicha2k = 2, and the otherak
must all equal 0. But then

∑

k a
2m
k = 2m 6= 2m for

any positive integerm > 2.

Remark. Manjul Bhargava points out it is easy to con-
struct sequences of complex numbers with the desired
property if we drop the condition of absolute conver-
gence. Here is an inductive construction (of which sev-
eral variants are possible). Forn = 1, 2, . . . andz ∈ C,
define the finite sequence

sn,z =

(

1

z
e2πij/n : j = 0, . . . , n− 1

)

.

This sequence has the property that for any positive in-
tegerj, the sum of thej-th powers of the terms ofsn,z
equals1/zj if j is divisible byn and 0 otherwise. More-
over, any partial sum ofj-th powers is bounded in ab-
solute value byn/|z|j.

The desired sequence will be constructed as follows.
Suppose that we have a finite sequence which has the
correct sum ofj-th powers forj = 1, . . . ,m. (For
instance, form = 1, we may start with the single-
ton sequence 1.) We may then extend it to a new se-
quence which has the correct sum ofj-th powers for
j = 1, . . . ,m+1, by appendingk copies ofsm+1,z for
suitable choices of a positive integerk and a complex
numberz with |z| < m−2. This last restriction ensures
that the resulting infinite sequencea1, a2, . . . is such
that for each positive integerm, the seriesam1 +am2 +· · ·
is convergent (though not absolutely convergent). Its
partial sums include a subsequence equal to the con-
stant valuem, so the sum of the series must equalm as
desired.

B2 The smallest distance is 3, achieved byA = (0, 0),B =
(3, 0), C = (0, 4). To check this, it suffices to check
thatAB cannot equal 1 or 2. (It cannot equal 0 because
if two of the points were to coincide, the three points
would be collinear.)

The triangle inequality implies that|AC−BC| ≤ AB,
with equality if and only ifA,B,C are collinear. If
AB = 1, we may assume without loss of generality
thatA = (0, 0), B = (1, 0). To avoid collinearity, we
must haveAC = BC, but this forcesC = (1/2, y) for
somey ∈ R, a contradiction. (One can also treat this
case by scaling by a factor of 2 to reduce to the case
AB = 2, treated in the next paragraph.)

If AB = 2, then we may assume without loss of gener-
ality thatA = (0, 0), B = (2, 0). The triangle inequal-
ity implies |AC −BC| ∈ {0, 1}. Also, forC = (x, y),
AC2 = x2+y2 andBC2 = (2−x)2+y2 have the same
parity; it follows thatAC = BC. Hencec = (1, y) for
somey ∈ R, soy2 andy2 + 1 = BC2 are consecutive
perfect squares. This can only happen fory = 0, but
thenA,B,C are collinear, a contradiction again.

Remark. Manjul Bhargava points out that more gener-
ally, a Heronian triangle (a triangle with integer sides
and rational area) cannot have a side of length 1 or 2
(and again it is enough to treat the case of length 2).
The original problem follows from this because a tri-
angle whose vertices have integer coordinates has area
equal to half an integer (by Pick’s formula or the ex-
plicit formula for the area as a determinant).

B3 It is possible if and only ifn ≥ 1005. Since

1 + · · ·+ 2009 =
2009× 2010

2
= 2010× 1004.5,

for n ≤ 1004, we can start with an initial distribution
in which each boxBi starts with at mosti− 1 balls (so
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in particularB1 is empty). From such a distribution, no
moves are possible, so we cannot reach the desired final
distribution.

Suppose now thatn ≥ 1005. By the pigeonhole prin-
ciple, at any time, there exists at least one indexi for
which the boxBi contains at leasti balls. We will de-
scribe any such index as beingeligible. The following
sequence of operations then has the desired effect.

(a) Find the largest eligible indexi. If i = 1, proceed
to (b). Otherwise, movei balls fromBi to B1,
then repeat (a).

(b) At this point, only the indexi = 1 can be eligi-
ble (so it must be). Find the largest indexj for
whichBj is nonempty. Ifj = 1, proceed to (c).
Otherwise, move 1 ball fromB1 to Bj; in case
this makesj eligible, movej balls fromBj toB1.
Then repeat (b).

(c) At this point, all of the balls are inB1. For i =
2, . . . , 2010, move one ball fromB1 toBi n times.

After these operations, we have the desired distribution.

B4 First solution. The pairs(p, q) satisfying the given
equation are those of the formp(x) = ax + b, q(x) =
cx+ d for a, b, c, d ∈ R such thatbc− ad = 1. We will
see later that these indeed give solutions.

Supposep andq satisfy the given equation; note that
neitherp nor q can be identically zero. By subtracting
the equations

p(x)q(x + 1)− p(x+ 1)q(x) = 1

p(x− 1)q(x)− p(x)q(x − 1) = 1,

we obtain the equation

p(x)(q(x + 1) + q(x− 1)) = q(x)(p(x + 1) + p(x− 1)).

The original equation implies thatp(x) andq(x) have
no common nonconstant factor, sop(x) dividesp(x +
1)+ p(x− 1). Since each ofp(x+1) andp(x− 1) has
the same degree and leading coefficient asp, we must
have

p(x+ 1) + p(x− 1) = 2p(x).

If we define the polynomialsr(x) = p(x + 1) − p(x),
s(x) = q(x+1)− q(x), we haver(x+1) = r(x), and
similarly s(x+ 1) = s(x). Put

a = r(0), b = p(0), c = s(0), d = q(0).

Thenr(x) = a, s(x) = c for all x ∈ Z, and hence
identically; consequently,p(x) = ax+b, q(x) = cx+d
for all x ∈ Z, and hence identically. Forp andq of this
form,

p(x)q(x + 1)− p(x+ 1)q(x) = bc− ad,

so we get a solution if and only ifbc − ad = 1, as
claimed.

Second solution. (Communicated by Catalin Zara.)
Again, note thatp andq must be nonzero. Write

p(x) = p0 + p1x+ · · ·+ pmxm

q(x) = q0 + q1x+ · · ·+ qnx
n

with pm, qn 6= 0, so thatm = deg(p), n = deg(q).
It is enough to derive a contradiction assuming that
max{m,n} > 1, the remaining cases being treated as
in the first solution.

PutR(x) = p(x)q(x+1)−p(x+1)q(x). Sincem+n ≥
2 by assumption, the coefficient ofxm+n−1 in R(x)
must vanish. By easy algebra, this coefficient equals
(m− n)pmqn, so we must havem = n > 1.

Fork = 1, . . . , 2m− 2, the coefficient ofxk in R(x) is

∑

i+j>k,j>i

((

j

k − i

)

−

(

i

k − j

))

(piqj − pjqi)

and must vanish. Fork = 2m − 2, the only summand
is for (i, j) = (m− 1,m), sopm−1qm = pmqm−1.

Suppose now thath ≥ 1 and thatpiqj = pjqi is
known to vanish wheneverj > i ≥ h. (By the pre-
vious paragraph, we initially have this forh = m− 1.)
Take k = m + h − 2 and note that the conditions
i+j > h, j ≤ m forcei ≥ h−1. Using the hypothesis,
we see that the only possible nonzero contribution to the
coefficient ofxk in R(x) is from (i, j) = (h − 1,m).
Henceph−1qm = pmqh−1; sincepm, qm 6= 0, this im-
pliesph−1qj = pjqh−1 wheneverj > h− 1.

By descending induction, we deduce thatpiqj = pjqi
wheneverj > i ≥ 0. Consequently,p(x) and q(x)
are scalar multiples of each other, forcingR(x) = 0, a
contradiction.

Third solution. (Communicated by David Feldman.)
As in the second solution, we note that there are no so-
lutions wherem = deg(p), n = deg(q) are distinct
andm + n ≥ 2. Supposep, q form a solution with
m = n ≥ 2. The desired identity asserts that the matrix

(

p(x) p(x+ 1)
q(x) q(x+ 1)

)

has determinant 1. This condition is preserved by re-
placingq(x) with q(x)−tp(x) for any real numbert. In
particular, we can chooset so thatdeg(q(x)− tp(x)) <
m; we then obtain a contradiction.

B5 First solution. The answer is no. Suppose other-
wise. For the condition to make sense,f must be
differentiable. Sincef is strictly increasing, we must
havef ′(x) ≥ 0 for all x. Also, the functionf ′(x) is
strictly increasing: ify > x thenf ′(y) = f(f(y)) >
f(f(x)) = f ′(x). In particular,f ′(y) > 0 for all
y ∈ R.
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For anyx0, if f(x0) = b andf ′(x0) = a > 0, then
f ′(x) > a for x > x0 and thusf(x) ≥ a(x − x0) + b
for x ≥ x0. Then eitherb < x0 or a = f ′(x0) =
f(f(x0)) = f(b) ≥ a(b − x0) + b. In the latter case,
b ≤ a(x0+1)/(a+1) ≤ x0+1. We conclude in either
case thatf(x0) ≤ x0 + 1 for all x0 ≥ −1.

It must then be the case thatf(f(x)) = f ′(x) ≤ 1 for
all x, since otherwisef(x) > x + 1 for largex. Now
by the above reasoning, iff(0) = b0 andf ′(0) = a0 >
0, thenf(x) > a0x + b0 for x > 0. Thus forx >
max{0,−b0/a0}, we havef(x) > 0 andf(f(x)) >
a0x + b0. But thenf(f(x)) > 1 for sufficiently large
x, a contradiction.

Second solution. (Communicated by Catalin Zara.)
Suppose such a function exists. Sincef is strictly
increasing and differentiable, so isf ◦ f = f ′. In
particular, f is twice differentiable; also,f ′′(x) =
f ′(f(x))f ′(x) is the product of two strictly increasing
nonnegative functions, so it is also strictly increasing
and nonnegative. In particular, we can chooseα > 0
andM ∈ R such thatf ′′(x) > 4α for all x ≥ M . Then
for all x ≥ M ,

f(x) ≥ f(M) + f ′(M)(x−M) + 2α(x−M)2.

In particular, for someM ′ > M , we havef(x) ≥ αx2

for all x ≥ M ′.

Pick T > 0 so thatαT 2 > M ′. Then forx ≥ T ,
f(x) > M ′ and sof ′(x) = f(f(x)) ≥ αf(x)2. Now

1

f(T )
−

1

f(2T )
=

∫ 2T

T

f ′(t)

f(t)2
dt ≥

∫ 2T

T

αdt;

however, asT → ∞, the left side of this inequality
tends to 0 while the right side tends to+∞, a contra-
diction.

Third solution. (Communicated by Noam Elkies.)
Sincef is strictly increasing, for somey0, we can de-
fine the inverse functiong(y) of f for y ≥ y0. Then
x = g(f(x)), and we may differentiate to find that
1 = g′(f(x))f ′(x) = g′(f(x))f(f(x)). It follows
that g′(y) = 1/f(y) for y ≥ y0; sinceg takes arbi-
trarily large values, the integral

∫

∞

y0
dy/f(y) must di-

verge. One then gets a contradiction from any reason-
able lower bound onf(y) for y large, e.g., the bound
f(x) ≥ αx2 from the second solution. (One can also
start with a linear lower boundf(x) ≥ βx, then use the
integral expression forg to deduce thatg(x) ≤ γ log x,
which in turn forcesf(x) to grow exponentially.)

B6 For any polynomialp(x), let [p(x)]A denote then× n
matrix obtained by replacing each entryAij of A by
p(Aij); thus A[k] = [xk]A. Let P (x) = xn +
an−1x

n−1 + · · · + a0 denote the characteristic poly-
nomial ofA. By the Cayley-Hamilton theorem,

0 = A · P (A)

= An+1 + an−1A
n + · · ·+ a0A

= A[n+1] + an−1A
[n] + · · ·+ a0A

[1]

= [xp(x)]A.

Thus each entry ofA is a root of the polynomialxp(x).

Now supposem ≥ n+ 1. Then

0 = [xm+1−np(x)]A

= A[m+1] + an−1A
[m] + · · ·+ a0A

[m+1−n]

since each entry ofA is a root ofxm+1−np(x). On the
other hand,

0 = Am+1−n · P (A)

= Am+1 + an−1A
m + · · ·+ a0A

m+1−n.

Therefore ifAk = A[k] for m + 1 − n ≤ k ≤ m,
thenAm+1 = A[m+1]. The desired result follows by
induction onm.

Remark. David Feldman points out that the result is
best possible in the following sense: there exist exam-
ples ofn × n matricesA for which Ak = A[k] for
k = 1, . . . , n butAn+1 6= A[n+1].


