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Al The largest sucl is |2 | = [2
value is achieved by the partition

For n even, this

{1,n},{2,n—1},..;

for n odd, it is achieved by the partition

{n},{1,n—1},{2,n—2},....

One way to see that this is optimal is to note that the

common sum can never be less thansincen itself
belongs to one of the boxes. This implies that (1 +

-+ +mn)/n = (n+ 1)/2. Another argument is that if
k > (n+ 1)/2, then there would have to be two boxes

Write n = 2"k with m a nonnegative integer arida

positive odd integer. For any nonnegative integer
102" = (=1)  (mod 10*" +1).

Sincel0™ > n > 2™ > m + 1, 10™ is divisible by2"

and hence bg™*!, and similarly10*" is divisible by

210" and hence bg™*!. It follows that

N=1+1+(-1)+(-1)=0 (mod 10*" +1).

SinceN > 101" > 10" +1 > 10%" + 1, it follows
that NV is composite.

with one number each (by the pigeonhole principle), but A5 We start with three lemmas.

such boxes could not have the same sum.

Remark. A much subtler question would be to find
the smallest: (as a function of) for which no such
arrangement exists.

A2 The only such functions are those of the fofifx) =
cz + d for some real numbets d (for which the prop-
erty is obviously satisfied). To see this, suppose fhat
has the desired property. Then for ang R,

2f'(z) = f(z+2) - f(a
=(f@+2) = flz+1) + (f(@+1) - f(z))
=[x+ 1)+ f(2)

Consequentlyf’(z + 1) = f'(x).

Define the functiory : R — Rbyg(z) = f(z+ 1) —
f(z), and putc = ¢(0), d = f(0). Forallz € R,
g (z) = f'(x+1)— f'(z) = 0, sog(xz) = cidentically,
andf'(z) = f(a +1) - f(2) = g(x) = ¢, 50 () =

cz + d identically as desired.

—~

A3 If a = b = 0, then the desired result holds trivially,
so we assume that at least onezob is nonzero. Pick
any point(ag,by) € R?, and letL be the line given
by the parametric equatioh(t) = (ag,bo) + (a,b)t
for t € R. By the chain rule and the given equation, we
havel (hoL) = hoL. Ifwewrite f = hoL : R — R,
thenf/(t) = f(¢t) for all ¢. It follows that f(t) = Ce!
for some constant’. Since|f(t)] < M for all ¢, we
must haveC' = 0. It follows thath(ag, by) = 0; since
(ao, bo) was an arbitrary pointh is identically0 over
all of R2.

A4 Put

N =10 4+ 1010" 4107 — 1.

Lemmal. If x,y € G are nonzero orthogonal vectors, then
x xx isparallel toy.

Proof. Putz = x x y # 0, so thatx,y, andz = x x y are
nonzero and mutually orthogonal. Then= x x z # 0, SO
w = x * z IS honzero and orthogonal toandz. However, if
(xxx)xy # 0, thenw = xx(xxy) = (x*X)*y = (X*X) Xy
is also orthogonal tg, a contradiction. O

Lemma 2. If x € G is nhonzero, and there existsy € G
nonzero and orthogonal to x, then x x x = 0.

Proof. Lemma 1 implies thak x x is parallel to bothy and
X X y, SO it must be zero. O

Lemma 3. If x,y € G commute, thenx x y = 0.

Proof. If x xy # 0,thenxxy =x Xy = —y XX = —y %X,
SOX xy £ Y * X. O

We proceed now to the proof. Assume by way of con-
tradiction that there exist, b € G with a x b # 0. Put
c =ax b =axb, sothata, b, c are nonzero and lin-
early independent. Let be the identity element df.
Sincee commutes witha, b, ¢, by Lemma 3 we have
exa=-exb=exc=0. Sincea, b, c spanR?,
e x x = 0 forall x € R?, soe = 0.

Sinceb, ¢, andb x ¢ = b x ¢ are nonzero and mutually
orthogonal, Lemma 2 implies

bxb=cxc=(bxc)*x(bxc)=0=e.

Henceb x ¢ = ¢ x b, contradicting Lemma 3 because
b x ¢ # 0. The desired result follows.



A6 First solution. Note that the hypotheses ghimply
that f(x) > 0 for all = € [0, +0c0), so the integrand is a

continuous function of and the integral makes sense.

Rewrite the integral as

[0t

and suppose by way of contradiction that it converges

to a finite limit L. Forn > 0, define the Lebesgue
measurable set

fle+n+1)
f(z+n)

— u(I,)), so the latter sum con-

Lh={zef0,1]:1— <1/2}.

ThenL > > (1

verges. In particular, there exists a nonnegative integer

N forwhich>~>° (1 — pu(I,)) < 1; the intersection

I=|J L=1001- () (0.1]-1I)
n=N n=N

then has positive Lebesgue measure.
By Taylor's theorem with remainder, fore [0, 1/2],

1
—log(1—t) <t+1t*> sup {7}
tefo,1/2) L (1 —1)2
—t+éﬁ<§t
3 737

For each nonnegative integer> N, we then have
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-3 [t N,
For eachr € I, log f(x + N)/f(x + n) is a strictly
increasing unbounded function af By the mono-

tone convergence theorem, the integf;\log flz +
N)/f(z + n)) dx grows without bound as — +oo,

converges absolutely. The additional measure-theoretic
argument at the beginning is needed because one cannot
bound—log(1 — ¢) by a fixed multiple oft uniformly
forallt € [0,1).

Second solution. (Communicated by Paul Allen.) Let
b > a be nonnegative integers. Then

b flz) — a:—i—l flx+k)—flz+k+1)
o Z/ etk
/1b1f:z:+k) flatk+l)
0 flz+k)
/1b1f:z:+k) flatk+1)
(e f(x+a)
fta) - ftb)

f(z+a)

Now sincef(xz) — 0, givena, we can choose an in-
tegeri(a) > a for which f(I(a)) < f(a + 1)/2; then
W >1- Jf((l(ﬂ) > 1/2forallz € [0, 1].
Thus if we define a sequence of integefsby ag = 0,
ant+1 = l(ay), then

/O"Of()f(fx—i-ld _Z/“"“f :v—i—l)dx

>§J/0 (1/2)dx

and the final sum clearly diverges.

Third solution. (By Joshua Rosenberg, communicated
by Catalin Zara.) If the original integral converges, then
on one hand the integrarid (z) — f(z + 1))/ f(z) =
1—f(x+1)/f(z) cannottend to 1 ag — oco. On the
other hand, for any > 0,

flat1)
f(a)
a+1
< ﬁ/ flz)dz

1 o0
- / (f(2) - flz + 1)) da

/ f(z x+1)dw,

and the last expression tends to Quas» oco. Hence by
the squeeze theorerfiia + 1)/ f(a) — 0 asa — oo, a
contradiction.

0<

a contradiction. Thus the original integral diverges, as B1 First solution. No such sequence exists. If it did, then

desired.

Remark. This solution is motivated by the commonly-
used fact that an infinite produ€t + x1)(1 + z2) - -
converges absolutely if and only if the sum+ 25+ - -

the Cauchy-Schwartz inequality would imply

8=(af+a3+--)(al+a3+---)
> (af +ay+-)* =9,



contradiction.

Second solution. (Communicated by Catalin Zara.)
Suppose that such a sequence existg; IE [0, 1] for
all k, thena} < o for all k, and so

4=at+as+---<al+di+ =2,

contradiction. There thus exists a positive intekéor
which aﬁ > 1. However, in this case, fom large,
ai™ > 2m and soai™ + a3™ + - - - # 2m.

Third solution. We generalize the second solution to
show that for any positive integét it is impossible for

a sequences,as, ... of complex numbers to satisfy
the given conditions in case the sefiéis-ak +- - - con-
verges absolutely. This includes the original problem by
takingk = 2, in which case the serieg + a3 + - --
consists of nonnegative real numbers and so converges
absolutely if it converges at all.

Since the sun}_;, |a;|* converges by hypothesis, we
can find a positive integer such thay > | [a;|* <
1. For each positive integel; we then have

kd—zn:afd < i lag| " < 1.
i=1

1=n+1
We thus cannot havé |, ..., la,| < 1, or else the
sum Y a*¥ would be bounded in absolute value
by n independently ofd. But if we putr =
max{|ai|,...,|an|} > 1, we obtain another contradic-
tion because for any > 0,

lim sup(r — €)~*4

d—o0

For instance, this follows from applying the root test to
the rational function

n 1 oo n
Zl—akz:Z afd Zd’
i=1 i d=0 \i=1

which has a pole within the circlg:| < r~'/*. (An
elementary proof is also possible.)

Fourth solution. (Communicated by Noam Elkies.)
Since)", ai = 2, for each positive integéet we have
a? < 2 and soa} < 2ai, with equality only for
a; € {0,2}. Thus to have}", aj = 4, there must
be a single indeX for whicha? = 2, and the otheuy,
must all equal 0. But thely_, a;™ = 2™ 2 2m for
any positive integem > 2.

Remark. Manjul Bhargava points out it is easy to con-
struct sequences of complex numbers with the desired
property if we drop the condition of absolute conver-
gence. Here is an inductive construction (of which sev-
eral variants are possible). Fer=1,2,... andz € C,
define the finite sequence

1 .
Sp,z = (—62””/" :j:O,...,n—l).
z

3

This sequence has the property that for any positive in-
tegery, the sum of thg-th powers of the terms of,, .
equalsl /27 if j is divisible byn and 0 otherwise. More-
over, any partial sum of-th powers is bounded in ab-
solute value by, /|z|7.

The desired sequence will be constructed as follows.
Suppose that we have a finite sequence which has the
correct sum ofj-th powers forj = 1,...,m. (For
instance, form = 1, we may start with the single-
ton sequence 1.) We may then extend it to a new se-
guence which has the correct sum joth powers for
j=1,...,m+1, by appending copies ofs,,; . for
suitable choices of a positive integerand a complex
numberz with |z| < m~2. This last restriction ensures
that the resulting infinite sequeneg, as, ... is such
that for each positive integer, the series!"+ay’+- - -

is convergent (though not absolutely convergent). Its
partial sums include a subsequence equal to the con-
stant valuen, so the sum of the series must equaas
desired.

B2 The smallest distance is 3, achieveddy- (0,0), B =

(3,0), C = (0,4). To check this, it suffices to check
that AB cannot equal 1 or 2. (It cannot equal 0 because
if two of the points were to coincide, the three points
would be collinear.)

The triangle inequality implies thatdC' — BC| < AB,

with equality if and only if A, B, C are collinear. If
AB = 1, we may assume without loss of generality
thatA = (0,0), B = (1,0). To avoid collinearity, we
must haveAC = BC, but this forces” = (1/2,y) for
somey € R, a contradiction. (One can also treat this
case by scaling by a factor of 2 to reduce to the case
AB = 2, treated in the next paragraph.)

If AB = 2, then we may assume without loss of gener-
ality thatA = (0,0), B = (2,0). The triangle inequal-
ity implies|AC — BC| € {0, 1}. Also, forC = (z,y),
AC? = 22 +y? andBC? = (2—x)%+y? have the same
parity; it follows thatAC' = BC. Hencec = (1,y) for
somey € R, soy? andy? + 1 = BC? are consecutive
perfect squares. This can only happengoe 0, but
thenA, B, C are collinear, a contradiction again.

Remark. Manjul Bhargava points out that more gener-
ally, a Heronian triangle (a triangle with integer sides
and rational area) cannot have a side of length 1 or 2
(and again it is enough to treat the case of length 2).
The original problem follows from this because a tri-
angle whose vertices have integer coordinates has area
equal to half an integer (by Pick’s formula or the ex-
plicit formula for the area as a determinant).

B3 Itis possible if and only if. > 1005. Since

2009 x 2010

1+4+---+2009 = = 2010 x 1004.5,

for n < 1004, we can start with an initial distribution
in which each boxB; starts with at most — 1 balls (so



in particularB; is empty). From such a distribution, no
moves are possible, so we cannot reach the desired final
distribution.

Suppose now that > 1005. By the pigeonhole prin-
ciple, at any time, there exists at least one indéar
which the boxB; contains at leastballs. We will de-
scribe any such index as beietygible. The following
sequence of operations then has the desired effect.

(a) Find the largest eligible indexIf i = 1, proceed
to (b). Otherwise, move balls from B; to By,
then repeat (a).

(b) At this point, only the index = 1 can be eligi-
ble (so it must be). Find the largest indgxor
which B; is nonempty. Ifj = 1, proceed to (c).
Otherwise, move 1 ball fronB; to B;; in case
this makeg eligible, movej balls fromB; to B, .
Then repeat (b).

(c) At this point, all of the balls are ii3,. Fori =
2,...,2010, move one ball fronB; to B; n times.

After these operations, we have the desired distribution.

B4 First solution. The pairs(p, ¢) satisfying the given

equation are those of the forpiz) = axz + b, ¢(z) =
cx+dfora,b, c,d € R suchthabc— ad = 1. We will
see later that these indeed give solutions.

Supposep and g satisfy the given equation; note that
neitherp nor ¢ can be identically zero. By subtracting
the equations

p(x)g(z +1) — p(z + 1)g(z) =1

p(z — 1)g(z) — p(z)g(z — 1) =1,

we obtain the equation

p(@)(g(z +1) + q(z — 1)) = q(z)(p(x + 1) + p(z — 1)).

The original equation implies thatx) andg(x) have
no common nonconstant factor, gor) dividesp(x +
1)+ p(z — 1). Since each of(z + 1) andp(z — 1) has
the same degree and leading coefficienpage must
have

p(z+1) +p(x — 1) = 2p(z).

If we define the polynomialg(z) = p(z + 1) — p(z),
s(z) = q(x+1) — q(z), we haver(z + 1) = r(x), and
similarly s(z + 1) = s(x). Put

Thenr(x) = a,s(x) = cforall x € Z, and hence
identically; consequently(z) = ax+b,¢(x) = cx+d
for all z € Z, and hence identically. Fgrandq of this
form,

p(z)q(z +1) — p(z + 1)g(v) = bc — ad,

B5 First solution.
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so we get a solution if and only ic — ad = 1, as
claimed.

Second solution. (Communicated by Catalin Zara.)
Again, note thap andq must be nonzero. Write

p(z) =po+prz+ -+ ppa™
q(x) =qo+ gz + -+ gna”

with p,, ¢ # 0, so thatm = deg(p),n = deg(q).

It is enough to derive a contradiction assuming that
max{m,n} > 1, the remaining cases being treated as
in the first solution.

PutR(z) = p(z)q(z+1)—p(z+1)q(z). Sincem+n >

2 by assumption, the coefficient af"*"~! in R(x)
must vanish. By easy algebra, this coefficient equals
(m — n)pmqn, SO We must haver =n > 1.

Fork =1,...,2m — 2, the coefficient of* in R(x) is

= ()0 )b

i+j>k,j>i

and must vanish. Fdr = 2m — 2, the only summand
is for (i,7) = (m — 1,m), SOPm—1¢m = PmGm-1-
Suppose now thak > 1 and thatp;qg; = p;g; is
known to vanish whenever > i > h. (By the pre-
vious paragraph, we initially have this far=m — 1.)
Takek = m + h — 2 and note that the conditions
i+j > h,j < mforcei > h—1. Using the hypothesis,
we see that the only possible nonzero contribution to the
coefficient ofz* in R(z) is from (i,5) = (h — 1,m).
Hencepn—1¢m = pmqn—1; SINCEPp, gm # 0, this im-
pliespr—1q; = pjqn—1 Wheneverj > h — 1.

By descending induction, we deduce thai; = p;g;
wheneverj > ¢ > 0. Consequentlyp(z) andg(z)
are scalar multiples of each other, forciRgz) = 0, a
contradiction.

Third solution. (Communicated by David Feldman.)
As in the second solution, we note that there are no so-
lutions wherem = deg(p),n = deg(q) are distinct
andm +n > 2. Supposep,q form a solution with

m = n > 2. The desired identity asserts that the matrix

(i 1)

has determinant 1. This condition is preserved by re-
placingg(z) with ¢(x) —tp(x) for any real numbet. In
particular, we can chooseso thatdeg(q(z) —tp(z)) <

m; we then obtain a contradiction.

The answer is no. Suppose other-
wise. For the condition to make sensg,must be
differentiable. Sincef is strictly increasing, we must
have f’(x) > 0 for all z. Also, the functionf’(x) is
strictly increasing: ify > z thenf'(y) = f(f(y)) >

f(f(x)) = f'(x). In particular, f'(y) > 0 for all
y €R.



For anyzy, if f(xo) = band f'(zg) = a > 0, then
f'(x) > aforz > z¢ and thusf(z) > a(x — xo) + b
for x > xo. Then eitherh < zg ora = f'(xg) =
f(f(zo)) = f(b) = a(b— xp) + b. In the latter case,
b<a(xo+1)/(a+1) < zo+ 1. We conclude in either
case thaif (z¢) < z¢ + 1 forall g > —1.

It must then be the case thatf(x)) = f'(z) < 1 for
all z, since otherwisg (x) > « + 1 for largexz. Now
by the above reasoning, ff(0) = b, and f'(0) = ag >
0, then f(z) > apx + by for z > 0. Thus forz >
max{0, —bo/ao}, we havef(z) > 0 and f(f(z)) >
apz + by. Butthenf(f(z)) > 1 for sufficiently large
x, a contradiction.

Second solution. (Communicated by Catalin Zara.)
Suppose such a function exists. Singes strictly
increasing and differentiable, so jso f = f’. In
particular, f is twice differentiable; alsof”(x) =
f'(f(z))f'(x) is the product of two strictly increasing
nonnegative functions, so it is also strictly increasing
and nonnegative. In particular, we can choase- 0
andM € R such thatf”(z) > 4aforallz > M. Then
forallz > M,

fl@) > f(M)+ f/(M)(xz — M) + 20(x — M)
In particular, for somé\l’ > M, we havef (z) > az?

forall x > M'.

Pick T > 0 so thataT? > M’. Then forz > T,
f(z) > M’"and sof’(z) = f(f(x)) > af(z)?. Now

R B 2T fl(t) 2Ta '
@ e e 0 ‘“Z/T i

however, asI’ — oo, the left side of this inequality
tends to 0 while the right side tends texo, a contra-
diction.

1 1

Third solution. (Communicated by Noam Elkies.)
Sincef is strictly increasing, for somg,, we can de-
fine the inverse functiog(y) of f for y > yo. Then
z = g(f(z)), and we may differentiate to find that
1= g(f@)f'(x) = ¢'(f(@)[(f()). It follows
thatg'(y) = 1/f(y) for y > yo; sinceg takes arbi-
trarily large values, the integr@ﬂ;oO dy/ f (y) must di-

B6
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verge. One then gets a contradiction from any reason-
able lower bound orf (y) for y large, e.g., the bound
f(x) > ax? from the second solution. (One can also
start with a linear lower boungl(x) > Sz, then use the
integral expression fay to deduce thag(z) < ~logz,
which in turn forcesf (z) to grow exponentially.)

For any polynomiab(x), let [p(x)] A denote ther x n
matrix obtained by replacing each entdy; of A by
p(A;j); thus AlFl = [2F]A. Let P(z) = 2" +
an_12" 1 4+ --- + ao denote the characteristic poly-
nomial of A. By the Cayley-Hamilton theorem,

0=A-P(A)
= A" 4, A" 4+ apA
= A g, Al gy Al
= [zp(x)]A.

Thus each entry ofl is a root of the polynomiakp(z).

Now supposen > n + 1. Then

0= [2"""p(z)]A
= Almt 4 g, A 4 goAlm T

since each entry afl is a root ofz™+1="p(z). On the
other hand,

0 =A™= p(A)
=A™ L, AT £ g AT

Therefore if A¥ = AF form+1—-n < k < m,

then Am+1 = Alm+1 The desired result follows by
induction onm.

Remark. David Feldman points out that the result is
best possible in the following sense: there exist exam-
ples of n x n matricesA for which A¥ = Al¥ for
k=1,...,nbutAmtl £ Alr+1,



