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Al We claim that the set of points with< z < 2011 and
0 < y < 2011 that cannot be the last point of a growing
spiral are as follows(0,y) for 0 < y < 2011; (z,0)
and(z,1) for 1 <z < 2011; (z,2) for2 < z < 2011;
and(z,3) for 3 < z < 2011. This gives a total of
2012 42011 + 2011 + 2010 + 2009 = 10053 excluded
points.

The complement of this set is the set(ofy) with 0 <

x < y, along with (x,y) with > y > 4. Clearly
the former set is achievable @& in a growing spiral,
while a point(z, y) in the latter set ig% in a growing
spiral with successive lengtis2, 3, z + 1, z + 2, and
r+y— 1.

We now need to rule out the other cases. Wiite<

y1 < xo < yo < ... for the lengths of the line
segments in the spiral in order, so tHat = (z4,0), <2>r+1
— f(T) = 17

55 < 1, it follows that the sequendes,,,) converges
to S =3/2.

A3 We claimthat(c, L) = (—1,2/7) works. Writef(r) =
foﬂ/Q x" sinx dz. Then

/2
f(r) </0 " dr =

while sincesinx > 2z /7 for z < 7/2,

/2 9yt (m/2)7+!
do = :
Jr)> /0 m o r+2

(n/2)"+
T

It follows that

PQ = (Il,yl), P3 = (561 — IQ,yl), and so forth. lim r

Any point beyondP, has z-coordinate of the form el AT

x1—29+- - -+ (—=1)""ta, forn > 1;if nis odd, we can whence

write this asey + (—xo+23)+- - -+ (—zp—1+x5,) > 0,

while if n is even, we can write this ag1 — x2) + . f(r) . r(2/m) T (r) 2(r+1) 2
-+ + (xp—1 — zn) < 0. Thus no point beyond, can TILH(}O m - TILH(}O (r+ 1)(2/m) 2 f(r + 1)' ar on

havez-coordinate0, and we have ruled oub, y) for
0 <y <2011.

Next we claim that any point beyonf; must have
y-coordinate either negative o¢ 4. Indeed, each
such point hagy-coordinate of the formy; — y» +

-+ (=1)""ty, for n > 2, which we can write as
(y1 —y2) + -+ + (Yn—1 — yn) < 0if n is even, and
i+ (=y2+y3) o (Yno1+yn) >y +2>4
if n > 3is odd. Thus to rule out the rest of the forbid- lim
den points, it suffices to check that they cannotfhe r—oo rf(r+1)
or P; for any growing spiral. But none of them can be
P5 = (z1—x2,y1) Sincex; —xz3 < 0, and none of them
can beP, = (x1,y1) since they all have-coordinate
at most equal to theit-coordinate.

Now by integration by parts, we have

w/2 1 /2 1
/ z" cosxdr = / 2t lsinzdr = M
0 'f'+1 0 T+1

Thus setting: = —1 in the given limit yields

(r+1)f(r) 2

)

as desired.

A4 The answer is: odd. Let/ denote ther x n identity
matrix, and let4 denote the: x n matrix all of whose
entries ard. If n is odd, then the matrixd — I satisfies
the conditions of the problem: the dot product of any
row with itself isn — 1, and the dot product of any two
distinct rows isn — 2.

A2 Form > 1, write

503 (- e

ThenS; = 1 = 1/ay and a quick calculation yields

Conversely, supposeis even, and suppose that the ma-
trix M satisfied the conditions of the problem. Consider
all matrices and vectors mad Since the dot product
of a row with itself is equal mod to the sum of the en-
tries of the row, we hav@/v = 0 wherev is the vector
(1,1,...,1), and soM is singular. On the other hand,

by by 1
S, = 1 1 _

S 012 (o 1 2)

ai - Qm

form > 2, sincea; = (b; +2)/bj—q forj > 2. It

follows thatS,, = >, 1/(a1 - - an).

Now if (b;) is bounded above b, then s < 72

forall j, and sa3/2 > S,, > 3/2(1 - (525)™). Since

MMT = A—1;since(A—1)2 = A2 -2A+1 =
(n—2)A+1I = I, we havg(det M)? = det(A—1) =1

anddet M = 1, contradicting the fact that/ is singu-

lar.



A6 Choose some orderirng, . .

A5 (by Abhinav Kumar) Defings : R — R by G(z) =

foz g(t) dt. By assumption(7 is a strictly increasing,
thrice continuously differentiable function. It is also
bounded: forr > 1, we have

0<G(z)—G(1) = /Ig(t)dt < /Idt/tQ =1,

and similarly, forz < —1, we have0 > G(z) —
G(—1) > —1. It follows that the image o7 is some
open interval(4, B) and thatG~! : (A,B) — R is
also thrice continuously differentiable.

Define H : (A,B) x (A,B) — R by H(z,y) =
F(G7Y(z),G71(y)); it is twice continuously differen-
tiable sincel’ andG~! are. By our assumptions about
Fa
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Gt 5y~ G @67 0) s
B_F L -1 !
—+ ay (G ( ),G (y)) g(G—l(y))
= 0.

ThereforeH is constant along any line parallel to the
vector (1,1), or equivalently, H (z,y) depends only
onz — y. We may thus writeH (z,y) = h(z — y)

for some functionh on (—(B — A),B — A), and
we then haveF'(z,y) = h(G(z) — G(y)). Since
F(u,u) = 0, we haveh(0) = 0. Also, h is twice
continuously differentiable (since it can be written as
h(z) = H(z,0)), so|h/| is bounded on the closed in-
terval[—(B — A)/2,(B — A)/2], say byM.

Givenzy, ..., .41 € R for somen > 2, the numbers
G(z1),...,G(rn+1) all belong to(A, B), so we can
choose indicesandyj so that|G(z;) — G(z;)| < (B —
A)/n < (B — A)/2. By the mean value theorem,

B-A
n

|F (i, )| = [h(G(xi) — Gx5))| < M

so the claim holds witl' = M (B — A).

., h,, of the elements of7
with h; = e. Define ann x n matrix M by settting
M;; = 1/kif h; = h;g for someg € {g1,...,9x}
andM;; = 0 otherwise. Lety denote the column vec-
tor (1,0,...,0). The probability that the product of
random elements dfgs, . . ., gx } equalsh; can then be
interpreted as theth component of the vectde/ " v.

Let (@ denote the dual group af, i.e., the group of
complex-valued characters 6f. Leté € G denote
the trivial character. For each € G, the vector
vy = (x(hi))’, is an eigenvector of/ with eigen-
valueX, = (x(g1) + -+ + x(gx))/k. In particular,v,
is the all-ones vector ankk = 1. Put

b=max{|\|: x € G —{e}};

we show thab € (0, 1) as follows. First suppode= 0;
then

k
N STL SR

x€G =l yed&

becausezxezc) x(gi) equalsn for i = 1 and0 oth-
erwise. However, this contradicts the hypothesis that
{g91,-..,9r} is notall ofG. Henceb > 0. Next sup-
poseb = 1, and choosg € G — {é} with |\, | = 1.
Since each of(¢g1), ..., x(gx) is a complex number
of norm 1, the triangle inequality forces them all to be
equal. Sincex(g1) = x(e) = 1, x must map each of
g1, ---, gk t0 1, but this is impossible becauseis a
nontrivial character angy, . . ., g form a set of gener-
ators ofG. This contradiction yields < 1.

i _ 1 N —
Sincev = = " & vy andMo, = A\ vy, we have

M™y — Evé = - Z /\X Uy
xX€G—{é}

Since the vectors, are pairwise orthogonal, the limit
we are interested in can be written as

I 1
mgnoo bH2m

1 1
M™y — Zvg) - (M™v — —vg).
(M™v = ~ve) - (M™v — ~ve)
and then rewritten as

1 m A
lim —— > AP =#{x e G|\ ] =0}

m—oo h2Mm

xeG—{é}
By construction, this last quantity is nonzero and finite.

Remark. It is easy to see that the result fails if we do
not assume, = e: takeG = Z/2Z,n = 1, andg; =
1.

Remark. Harm Derksen points out that a similar ar-
gument applies even & is not assumed to be abelian,
provided that the operatgn + - - - + g in the group
algebraZ[G] is normal, i.e., it commutes with the op-
eratorg; * +--- + g, '. This includes the cases where
the set{¢1, ..., gx} is closed under taking inverses and
where it is a union of conjugacy classes (which in turn
includes the case @f abelian).

Remark. The matrix M used above has nonnegative
entries with row sums equal to 1 (i.e., it corresponds to
a Markov chain), and there exists a positive integer
such that\/™ has positive entries. For any such matrix,
the Perron-Frobenius theorem implies that the sequence
of vectorsM ™ v converges to a limitv, and there exists

b € [0,1) such that

n

1
lim sup b Z((va —w);)?

m— oo :
=1

is nonzero and finite. (The intended interpretation in
caseb = 0 is thatM ™ v = w for all largem.) However,
the limit need not exist in general.



B1 Since the rational numbers are dense in the reals, we

can find positive integers, b such that

By multiplying a andb by a suitably large positive inte-
ger, we can also ensure tigat® > b. We then have

€ b b
_<_<7:\/a2+b—a
hk 3a a2+b+a

and
P b—a— b b €

Y 2 9C
vaz+b+a 2CL< hk

We may then taken = k%(a? + b),n = h%a?.

B2 Only the primes 2 and 5 appear seven or more times.

The fact that these primes appear is demonstrated by
the examples

(2,5,2),(2,5,3),(2,7,5),(2,11,5)

and their reversals.

It remains to show that if eithet = 3 or ¢ is a prime
greater than 5, thed occurs at most six times as an
element of a triple inS. Note that(p,¢,r) € S if and
only if ¢ — 4pr = a? for some integew; in particular,
sincedpr > 16, this forcesq > 5. In particular,q

is odd, as then i, and sog®> = a? = 1 (mod 8);
consequently, one af, » must equal 2. If- = 2, then

8p = ¢*> — a? = (¢ + a)(q — a); since both factors are
of the same sign and their sum is the positive number
q, both factors are positive. Since they are also both
even, we have + a € {2,4,2p,4p} and sog € {2p +
1,p+ 2}. Similarly, if p = 2, theng € {2r + 1,r + 2}.
Consequently occurs at most twice as many times as
there are prime numbers in the list

2@+1,£+2,“Tl,z—2.

For¢ = 3, — 2 = 1 is not prime. Fort > 7, the
numbery — 2, ¢, ¢ + 2 cannot all be prime, since one of
them is always a nontrivial multiple of 3.

Remark. The above argument shows that the cases
listed for 5 are the only ones that can occur. By con-
trast, there are infinitely many cases where 2 occurs if
either the twin prime conjecture holds or there are in-
finitely many Sophie Germain primes (both of which
are expected to be true).

B3 Yes, it follows thatf is differentiable.

First solution. Note first that in some neighborhood
of 0, f/g andg are both continuous, as then is their
productf. If f(0) # 0, then in some possibly smaller
neighborhood of, f is either always positive or always
negative. We can thus choose {£1} sothatf is the

3

composition of the differentiable functiqifg) - (f/g)
with the square root function. By the chain rulgjs
differentiable a0.

If £(0) =0, then(f/g)(0) =0, sowe have

(f/9)(0) = lim L2

220 2g(z)’

Sinceg is continuous at 0, we may multiply limits to
deduce thalim, o f(z)/x exists.

Second solution. Choose a neighborhood of 0
on whichg(xz) # 0. Define the following functions
on N\ {0} h(z) = J‘(I)g(z);f(o)g(o); ho(z) =
H2)glB) T (Dalr) <I>gg%;;(<§;9<z>; hs(z) = g(0)g(x); ha(z) =
JGTTg)- Then by assumptiorhy, hz, hs, hy all have
limits asz — 0. On the other hand,

f(z) - f(0)

X

= (h1() + ha(x)hs(x))ha(z),

and it follows thatlim,,_,q w exists, as desired.

B4 Number the games, . .., 2011, and letA = (a,;) be

the 2011 x 2011 matrix whosejk entry is1 if player
k wins gamej andi = /—1 if player k loses gamg.
Thenag;a,i is 1 if playersh andk tie in gamey; 4 if
playerh wins and playek loses in gamg; and—i if h
loses and: wins. It follows that? + iW = A" A.

Now the determinant ofl is unchanged if we subtract
the first row of A from each of the other rows, pro-
ducing a matrix whose rows, besides the first one, are
(1 — ) times a row of integers. Thus we can write
det A = (1 —1)2°1%(a + bi) for some integers, b. But
thendet(T + W) = det(A' A) = 221°(a? + b?) is a
nonnegative integer multiple @f°1°, as desired.

B5 Define the function

e dx
o) = /,oo T+ )1+ @9

Fory > 0, in the range-1 < z < 0, we have(l +
1+ (z+y)?) <1+ D1+ (1+19y)?) =242+
4y +4 <2y +4+2(y>+1) < 6+ 6y%. We thus have
the lower bound

1
fly) > m;

the same bound is valid fay < 0 becausef(y) =
f(=y).

The original hypothesis can be written as

z”: flai —a;) < An

i,j=1

and thus implies that



By the Cauchy-Schwarz inequality, this implies

n

Z (1+ (a; — aj)?) > Bn?
i,j=1
for B=1/(64).
Remark. One can also compute explicitly (using par-

tial fractions, Fourier transforms, or contour integra-

tion) thatf (y) = %.

Remark. Praveen Venkataramana points out that the
lower bound can be improved tBn* as follows. For
eachz € Z, putQ, , = {i € {1,...,n} :a; € [z,2 +

1)} andg. ., = #Q. . Then) q¢., =nand

6A7’L > Z 1 + Z qz ,m*
i,j=1 ZGZ
If exactly k of theq.,, are nonzero, thely ., ¢7,, >

n?/k by Jensen’s inequality (or various other methods),
so we must havé > n/(6A). Then

k
> (4 (ai—ay)®) =0+ > max{0, (i — j| — 1)*}
= i,j=1
> n kY 2k3 n 52k
n?4+ = - = .
6 3 6 3

This is bounded below b§n* for someB > 0.

In the opposite direction, one can weaken the initial up-
per bound toAn*/3 and still derive a lower bound of
Bn?. The argument is similar.

B6 In order to interpret the problem statement, one must

choose a convention for the value@f we will take it

4

polynomial of degree, there can be at mogp — 1)/2
zeroes ofy in F,,, as desired.

Second solution. (By Noam Elkies) Define the polyno-
mial f overF, by

p—1
= g klzh.
k=0

Putt = (p — 1)/2; the problem statement is thgt
has at most roots modulop. Suppose the contrary;
since f(0) = 1, this means thaf(x) is nonzero for at
mostt — 1 values ofz € F,. Denote these values by
x1,...,Tm, Where by assumptiom < t, and define
the polynomiak) overF, by

Q(‘T):H .T—(Em

k=1

Z Qra”.

Then we can write

(1- x”_l)

where P(z) is some polynomial of degree at most
This means that the power series expansiong (af
and P(z)/Q(z) coincide modular?~1, so the coeffi-
cients ofzt,... 2%~ 1 in f(x)Q(x) vanish. In other
words, the product of the square matrix

A= ((i+7+1)Ni5L

with the nonzero column vecto®;_1, ..., Qo) is zero.
However, by the following lemmajet(A) is nonzero
modulop, a contradiction.

to equal 1. (If one take8’ to be 0, then the problem | emma 1. For any nonnegativeinteger m and any integer n,

fails forp = 3.)

First solution. By Wilson’s theoremk!(p — 1 — k)! =
(=D*p—1)!'= (-=1)*" (mod p), so

1 k
Zk'x Z k') (mod p).
k=0

Proof. Define the (m + 1) x

det((i+j+n))i—o = ﬁ El(k 4+ n)l.
k=0

(m 4+ 1) matrix A, , by

(Amn)i; = (77); the desired result is then that
. . det(A,,,») = 1. Note that
Itis thus equivalent to show that the polynomial
p=1 (Amn)lg 1=0
x Am n—1)ij = i .
g(x) = ﬁ ( ’ 1) ! {(Am,n)ij - (Am,n)(ifl)j 1> 0;
k=0

overFF, has at mosfp — 1)/2 zeroes irfF,,. To see this,
write

hiz) =aP —x + g(x)

that is, A,, ,—1 can be obtained frorma,, ,, by elementary
row operations. Thereforelet(
det(A,,.,) depends only omn. The claim now follows by
observing thatdy o is thel x 1 matrix with entry 1 and that

Amn) = det(Am.n-1), SO

and note that by Wilson’s theorem again, m,—1 hasthebIockrepresentatn{rb A 10) O
Remark. Elkies has given a more detailed

1—|—Z =27t — 14 g(x).
discussion of the origins of this solution in
If z € Fpis SUCh tha’rg( ) = 0, thenz # 0 because the theory of orthogonal polynomials; see
g(0) = 1. Thereforez?~! = 1, soh(z) = h/(z) = 0 htt p:// mat hover f | ow. net/ quest i ons/ 82648.
and soz is at least a double root df. Sinceh is a



