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A1 We claim that the set of points with0 ≤ x ≤ 2011 and
0 ≤ y ≤ 2011 that cannot be the last point of a growing
spiral are as follows:(0, y) for 0 ≤ y ≤ 2011; (x, 0)
and(x, 1) for 1 ≤ x ≤ 2011; (x, 2) for 2 ≤ x ≤ 2011;
and (x, 3) for 3 ≤ x ≤ 2011. This gives a total of
2012+ 2011+ 2011+2010+2009 = 10053 excluded
points.

The complement of this set is the set of(x, y) with 0 <
x < y, along with(x, y) with x ≥ y ≥ 4. Clearly
the former set is achievable asP2 in a growing spiral,
while a point(x, y) in the latter set isP6 in a growing
spiral with successive lengths1, 2, 3, x+ 1, x+ 2, and
x+ y − 1.

We now need to rule out the other cases. Writex1 <
y1 < x2 < y2 < . . . for the lengths of the line
segments in the spiral in order, so thatP1 = (x1, 0),
P2 = (x1, y1), P3 = (x1 − x2, y1), and so forth.
Any point beyondP0 has x-coordinate of the form
x1−x2+· · ·+(−1)n−1xn for n ≥ 1; if n is odd, we can
write this asx1+(−x2+x3)+· · ·+(−xn−1+xn) > 0,
while if n is even, we can write this as(x1 − x2) +
· · ·+ (xn−1 − xn) < 0. Thus no point beyondP0 can
havex-coordinate0, and we have ruled out(0, y) for
0 ≤ y ≤ 2011.

Next we claim that any point beyondP3 must have
y-coordinate either negative or≥ 4. Indeed, each
such point hasy-coordinate of the formy1 − y2 +
· · · + (−1)n−1yn for n ≥ 2, which we can write as
(y1 − y2) + · · · + (yn−1 − yn) < 0 if n is even, and
y1 + (−y2 + y3) + · · ·+ (−yn−1 + yn) ≥ y1 + 2 ≥ 4
if n ≥ 3 is odd. Thus to rule out the rest of the forbid-
den points, it suffices to check that they cannot beP2

or P3 for any growing spiral. But none of them can be
P3 = (x1−x2, y1) sincex1−x2 < 0, and none of them
can beP2 = (x1, y1) since they all havey-coordinate
at most equal to theirx-coordinate.

A2 Form ≥ 1, write

Sm =
3

2

(

1− b1 · · · bm
(b1 + 2) · · · (bm + 2)

)

.

ThenS1 = 1 = 1/a1 and a quick calculation yields

Sm − Sm−1 =
b1 · · · bm−1

(b2 + 2) · · · (bm + 2)
=

1

a1 · · · am

for m ≥ 2, sinceaj = (bj + 2)/bj−1 for j ≥ 2. It
follows thatSm =

∑m
n=1 1/(a1 · · · an).

Now if (bj) is bounded above byB, then bj
bj+2 ≤ B

B+2

for all j, and so3/2 > Sm ≥ 3/2(1− ( B
B+2 )

m). Since

B
B+2 < 1, it follows that the sequence(Sm) converges
to S = 3/2.

A3 We claim that(c, L) = (−1, 2/π) works. Writef(r) =
∫ π/2

0 xr sinx dx. Then

f(r) <

∫ π/2

0

xr dx =
(π/2)r+1

r + 1

while sincesinx ≥ 2x/π for x ≤ π/2,

f(r) >

∫ π/2

0

2xr+1

π
dx =

(π/2)r+1

r + 2
.

It follows that

lim
r→∞

r

(

2

π

)r+1

f(r) = 1,

whence

lim
r→∞

f(r)

f(r + 1)
= lim

r→∞

r(2/π)r+1f(r)

(r + 1)(2/π)r+2f(r + 1)
·2(r + 1)

πr
=

2

π
.

Now by integration by parts, we have

∫ π/2

0

xr cosx dx =
1

r + 1

∫ π/2

0

xr+1 sinx dx =
f(r + 1)

r + 1
.

Thus settingc = −1 in the given limit yields

lim
r→∞

(r + 1)f(r)

rf(r + 1)
=

2

π
,

as desired.

A4 The answer isn odd. LetI denote then × n identity
matrix, and letA denote then× n matrix all of whose
entries are1. If n is odd, then the matrixA− I satisfies
the conditions of the problem: the dot product of any
row with itself isn− 1, and the dot product of any two
distinct rows isn− 2.

Conversely, supposen is even, and suppose that the ma-
trix M satisfied the conditions of the problem. Consider
all matrices and vectors mod2. Since the dot product
of a row with itself is equal mod2 to the sum of the en-
tries of the row, we haveMv = 0 wherev is the vector
(1, 1, . . . , 1), and soM is singular. On the other hand,
MMT = A − I; since(A − I)2 = A2 − 2A + I =
(n−2)A+I = I, we have(detM)2 = det(A−I) = 1
anddetM = 1, contradicting the fact thatM is singu-
lar.
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A5 (by Abhinav Kumar) DefineG : R → R by G(x) =
∫ x

0
g(t) dt. By assumption,G is a strictly increasing,

thrice continuously differentiable function. It is also
bounded: forx > 1, we have

0 < G(x) −G(1) =

∫ x

1

g(t) dt ≤
∫ x

1

dt/t2 = 1,

and similarly, forx < −1, we have0 > G(x) −
G(−1) ≥ −1. It follows that the image ofG is some
open interval(A,B) and thatG−1 : (A,B) → R is
also thrice continuously differentiable.

Define H : (A,B) × (A,B) → R by H(x, y) =
F (G−1(x), G−1(y)); it is twice continuously differen-
tiable sinceF andG−1 are. By our assumptions about
F ,

∂H

∂x
+

∂H

∂y
=

∂F

∂x
(G−1(x), G−1(y)) · 1

g(G−1(x))

+
∂F

∂y
(G−1(x), G−1(y)) · 1

g(G−1(y))

= 0.

ThereforeH is constant along any line parallel to the
vector (1, 1), or equivalently,H(x, y) depends only
on x − y. We may thus writeH(x, y) = h(x − y)
for some functionh on (−(B − A), B − A), and
we then haveF (x, y) = h(G(x) − G(y)). Since
F (u, u) = 0, we haveh(0) = 0. Also, h is twice
continuously differentiable (since it can be written as
h(x) = H(x, 0)), so |h′| is bounded on the closed in-
terval[−(B −A)/2, (B −A)/2], say byM .

Givenx1, . . . , xn+1 ∈ R for somen ≥ 2, the numbers
G(x1), . . . , G(xn+1) all belong to(A,B), so we can
choose indicesi andj so that|G(xi)−G(xj)| ≤ (B−
A)/n ≤ (B −A)/2. By the mean value theorem,

|F (xi, xj)| = |h(G(xi)−G(xj))| ≤ M
B −A

n
,

so the claim holds withC = M(B −A).

A6 Choose some orderingh1, . . . , hn of the elements ofG
with h1 = e. Define ann × n matrix M by settting
Mij = 1/k if hj = hig for someg ∈ {g1, . . . , gk}
andMij = 0 otherwise. Letv denote the column vec-
tor (1, 0, . . . , 0). The probability that the product ofm
random elements of{g1, . . . , gk} equalshi can then be
interpreted as thei-th component of the vectorMmv.

Let Ĝ denote the dual group ofG, i.e., the group of
complex-valued characters ofG. Let ê ∈ Ĝ denote
the trivial character. For eachχ ∈ Ĝ, the vector
vχ = (χ(hi))

n
i=1 is an eigenvector ofM with eigen-

valueλχ = (χ(g1) + · · ·+ χ(gk))/k. In particular,vê
is the all-ones vector andλê = 1. Put

b = max{|λχ| : χ ∈ Ĝ− {ê}};

we show thatb ∈ (0, 1) as follows. First supposeb = 0;
then

1 =
∑

χ∈Ĝ

λχ =
1

k

k
∑

i=1

∑

χ∈Ĝ

χ(gi) =
n

k

because
∑

χ∈(̂G)
χ(gi) equalsn for i = 1 and0 oth-

erwise. However, this contradicts the hypothesis that
{g1, . . . , gk} is not all ofG. Henceb > 0. Next sup-
poseb = 1, and chooseχ ∈ Ĝ − {ê} with |λχ| = 1.
Since each ofχ(g1), . . . , χ(gk) is a complex number
of norm 1, the triangle inequality forces them all to be
equal. Sinceχ(g1) = χ(e) = 1, χ must map each of
g1, . . . , gk to 1, but this is impossible becauseχ is a
nontrivial character andg1, . . . , gk form a set of gener-
ators ofG. This contradiction yieldsb < 1.

Sincev = 1
n

∑

χ∈Ĝ vχ andMvχ = λχvχ, we have

Mmv − 1

n
vê =

1

n

∑

χ∈Ĝ−{ê}

λm
χ vχ.

Since the vectorsvχ are pairwise orthogonal, the limit
we are interested in can be written as

lim
m→∞

1

b2m
(Mmv − 1

n
vê) · (Mmv − 1

n
vê).

and then rewritten as

lim
m→∞

1

b2m

∑

χ∈Ĝ−{ê}

|λχ|2m = #{χ ∈ Ĝ : |λχ| = b}.

By construction, this last quantity is nonzero and finite.

Remark. It is easy to see that the result fails if we do
not assumeg1 = e: takeG = Z/2Z, n = 1, andg1 =
1.

Remark. Harm Derksen points out that a similar ar-
gument applies even ifG is not assumed to be abelian,
provided that the operatorg1 + · · · + gk in the group
algebraZ[G] is normal, i.e., it commutes with the op-
eratorg−1

1 + · · · + g−1
k . This includes the cases where

the set{g1, . . . , gk} is closed under taking inverses and
where it is a union of conjugacy classes (which in turn
includes the case ofG abelian).

Remark. The matrixM used above has nonnegative
entries with row sums equal to 1 (i.e., it corresponds to
a Markov chain), and there exists a positive integerm
such thatMm has positive entries. For any such matrix,
the Perron-Frobenius theorem implies that the sequence
of vectorsMmv converges to a limitw, and there exists
b ∈ [0, 1) such that

lim sup
m→∞

1

b2m

n
∑

i=1

((Mmv − w)i)
2

is nonzero and finite. (The intended interpretation in
caseb = 0 is thatMmv = w for all largem.) However,
the limit need not exist in general.
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B1 Since the rational numbers are dense in the reals, we
can find positive integersa, b such that

3ǫ

hk
<

b

a
<

4ǫ

hk
.

By multiplyinga andb by a suitably large positive inte-
ger, we can also ensure that3a2 > b. We then have

ǫ

hk
<

b

3a
<

b√
a2 + b+ a

=
√

a2 + b− a

and

√

a2 + b− a =
b√

a2 + b+ a
≤ b

2a
< 2

ǫ

hk
.

We may then takem = k2(a2 + b), n = h2a2.

B2 Only the primes 2 and 5 appear seven or more times.
The fact that these primes appear is demonstrated by
the examples

(2, 5, 2), (2, 5, 3), (2, 7, 5), (2, 11, 5)

and their reversals.

It remains to show that if eitherℓ = 3 or ℓ is a prime
greater than 5, thenℓ occurs at most six times as an
element of a triple inS. Note that(p, q, r) ∈ S if and
only if q2 − 4pr = a2 for some integera; in particular,
since4pr ≥ 16, this forcesq ≥ 5. In particular,q
is odd, as then isa, and soq2 ≡ a2 ≡ 1 (mod 8);
consequently, one ofp, r must equal 2. Ifr = 2, then
8p = q2 − a2 = (q + a)(q − a); since both factors are
of the same sign and their sum is the positive number
q, both factors are positive. Since they are also both
even, we haveq + a ∈ {2, 4, 2p, 4p} and soq ∈ {2p+
1, p+2}. Similarly, if p = 2, thenq ∈ {2r+1, r+2}.
Consequently,ℓ occurs at most twice as many times as
there are prime numbers in the list

2ℓ+ 1, ℓ+ 2,
ℓ− 1

2
, ℓ− 2.

For ℓ = 3,ℓ − 2 = 1 is not prime. Forℓ ≥ 7, the
numbersℓ− 2, ℓ, ℓ+2 cannot all be prime, since one of
them is always a nontrivial multiple of 3.

Remark. The above argument shows that the cases
listed for 5 are the only ones that can occur. By con-
trast, there are infinitely many cases where 2 occurs if
either the twin prime conjecture holds or there are in-
finitely many Sophie Germain primes (both of which
are expected to be true).

B3 Yes, it follows thatf is differentiable.

First solution. Note first that in some neighborhood
of 0, f/g and g are both continuous, as then is their
productf . If f(0) 6= 0, then in some possibly smaller
neighborhood of0, f is either always positive or always
negative. We can thus chooseǫ ∈ {±1} so thatǫf is the

composition of the differentiable function(fg) · (f/g)
with the square root function. By the chain rule,f is
differentiable at0.

If f(0) = 0, then(f/g)(0) = 0, so we have

(f/g)′(0) = lim
x→0

f(x)

xg(x)
.

Sinceg is continuous at 0, we may multiply limits to
deduce thatlimx→0 f(x)/x exists.

Second solution. Choose a neighborhoodN of 0
on which g(x) 6= 0. Define the following functions
on N \ {0}: h1(x) = f(x)g(x)−f(0)g(0)

x ; h2(x) =
f(x)g(0)−f(0)g(x)

xg(0)g(x) ; h3(x) = g(0)g(x); h4(x) =
1

g(x)+g(0) . Then by assumption,h1, h2, h3, h4 all have
limits asx → 0. On the other hand,

f(x) − f(0)

x
= (h1(x) + h2(x)h3(x))h4(x),

and it follows thatlimx→0
f(x)−f(0)

x exists, as desired.

B4 Number the games1, . . . , 2011, and letA = (ajk) be
the 2011 × 2011 matrix whosejk entry is1 if player
k wins gamej andi =

√
−1 if playerk loses gamej.

Thenahjajk is 1 if playersh andk tie in gamej; i if
playerh wins and playerk loses in gamej; and−i if h

loses andk wins. It follows thatT + iW = A
T
A.

Now the determinant ofA is unchanged if we subtract
the first row ofA from each of the other rows, pro-
ducing a matrix whose rows, besides the first one, are
(1 − i) times a row of integers. Thus we can write
detA = (1− i)2010(a+ bi) for some integersa, b. But

thendet(T + iW ) = det(A
T
A) = 22010(a2 + b2) is a

nonnegative integer multiple of22010, as desired.

B5 Define the function

f(y) =

∫ ∞

−∞

dx

(1 + x2)(1 + (x+ y)2)
.

For y ≥ 0, in the range−1 ≤ x ≤ 0, we have(1 +
x2)(1 + (x + y)2) ≤ (1 + 1)(1 + (1 + y)2) = 2y2 +
4y+4 ≤ 2y2+4+2(y2+1) ≤ 6+6y2. We thus have
the lower bound

f(y) ≥ 1

6(1 + y2)
;

the same bound is valid fory ≤ 0 becausef(y) =
f(−y).

The original hypothesis can be written as

n
∑

i,j=1

f(ai − aj) ≤ An

and thus implies that

n
∑

i,j=1

1

1 + (ai − aj)2
≤ 6An.
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By the Cauchy-Schwarz inequality, this implies

n
∑

i,j=1

(1 + (ai − aj)
2) ≥ Bn3

for B = 1/(6A).

Remark. One can also compute explicitly (using par-
tial fractions, Fourier transforms, or contour integra-
tion) thatf(y) = 2π

4+y2 .

Remark. Praveen Venkataramana points out that the
lower bound can be improved toBn4 as follows. For
eachz ∈ Z, putQz,n = {i ∈ {1, . . . , n} : ai ∈ [z, z +
1)} andqz,n = #Qz,n. Then

∑

z qz,n = n and

6An ≥
n
∑

i,j=1

1

1 + (ai − aj)2
≥

∑

z∈Z

1

2
q2z,n.

If exactlyk of theqz,n are nonzero, then
∑

z∈Z
q2z,n ≥

n2/k by Jensen’s inequality (or various other methods),
so we must havek ≥ n/(6A). Then

n
∑

i,j=1

(1 + (ai − aj)
2) ≥ n2 +

k
∑

i,j=1

max{0, (|i− j| − 1)2}

≥ n2 +
k4

6
− 2k3

3
+

5k2

6
− k

3
.

This is bounded below byBn4 for someB > 0.

In the opposite direction, one can weaken the initial up-
per bound toAn4/3 and still derive a lower bound of
Bn3. The argument is similar.

B6 In order to interpret the problem statement, one must
choose a convention for the value of00; we will take it
to equal 1. (If one takes00 to be 0, then the problem
fails for p = 3.)

First solution. By Wilson’s theorem,k!(p− 1− k)! ≡
(−1)k(p− 1)! ≡ (−1)k+1 (mod p), so

p−1
∑

k=0

k!xk ≡
p−1
∑

k=0

(−x)k

k!
(mod p).

It is thus equivalent to show that the polynomial

g(x) =

p−1
∑

k=0

xk

k!

overFp has at most(p− 1)/2 zeroes inFp. To see this,
write

h(x) = xp − x+ g(x)

and note that by Wilson’s theorem again,

h′(x) = 1 +

p−1
∑

k=1

xk−1

(k − 1)!
= xp−1 − 1 + g(x).

If z ∈ Fp is such thatg(z) = 0, thenz 6= 0 because
g(0) = 1. Therefore,zp−1 = 1, soh(z) = h′(z) = 0
and soz is at least a double root ofh. Sinceh is a

polynomial of degreep, there can be at most(p− 1)/2
zeroes ofg in Fp, as desired.

Second solution. (By Noam Elkies) Define the polyno-
mial f overFp by

f(x) =

p−1
∑

k=0

k!xk.

Put t = (p − 1)/2; the problem statement is thatf
has at mostt roots modulop. Suppose the contrary;
sincef(0) = 1, this means thatf(x) is nonzero for at
mostt − 1 values ofx ∈ F

∗
p. Denote these values by

x1, . . . , xm, where by assumptionm < t, and define
the polynomialQ overFp by

Q(x) =

m
∏

k=1

(x− xm) =

t−1
∑

k=0

Qkx
k.

Then we can write

f(x) =
P (x)

Q(x)
(1− xp−1)

whereP (x) is some polynomial of degree at mostm.
This means that the power series expansions off(x)
andP (x)/Q(x) coincide moduloxp−1, so the coeffi-
cients ofxt, . . . , x2t−1 in f(x)Q(x) vanish. In other
words, the product of the square matrix

A = ((i + j + 1)!)t−1
i,j=0

with the nonzero column vector(Qt−1, . . . , Q0) is zero.
However, by the following lemma,det(A) is nonzero
modulop, a contradiction.

Lemma 1. For any nonnegative integer m and any integer n,

det((i + j + n)!)mi,j=0 =

m
∏

k=0

k!(k + n)!.

Proof. Define the (m + 1) × (m + 1) matrix Am,n by
(Am,n)i,j =

(

i+j+n
i

)

; the desired result is then that
det(Am,n) = 1. Note that

(Am,n−1)ij =

{

(Am,n)ij i = 0

(Am,n)ij − (Am,n)(i−1)j i > 0;

that is,Am,n−1 can be obtained fromAm,n by elementary
row operations. Therefore,det(Am,n) = det(Am,n−1), so
det(Am,n) depends only onm. The claim now follows by
observing thatA0,0 is the1 × 1 matrix with entry 1 and that

Am,−1 has the block representation

(

1 ∗
0 Am−1,0

)

.

Remark. Elkies has given a more detailed
discussion of the origins of this solution in
the theory of orthogonal polynomials; see
http://mathoverflow.net/questions/82648.


