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A1 Suppose that faces of the icosahedron shown below (after flattening) are labeled in

such a way that no two faces sharing a vertex have the same label. For each integer c, there

is at least one face not labeled c; we may suppose the face indicated by ‘?’ is not labeled

‘c’. Any two of the faces designated ‘Y ’ share a common vertex, so at most one of these

five faces is labeled c. Similarly, the label c appears on at most one of the faces designated

‘B’, and at most one of the faces labeled ‘G’, and at most one of the faces labeled ‘R’. So

every label appears on at most four faces of the icosahedron.

Now the smallest possible sum of labels is achieved when there are four faces with each of

the labels 0,1,2,3,4; and so the minimum possible sum of labels on the faces is 4(0 + 1 +

2 + 3 + 4) = 40. This is contrary to the hypothesis that the labels on the faces have total

value 39.

A2 Suppose that f is not injective, so that f(n) = f(n′) = m for two integers n, n′ ∈ S

with n < n′. There exist finite sets of integers A,A′ with n ∈ A ⊆ {n, n+1, . . . ,m} and

n′ ∈ A ⊆ {n′, n′+1, . . . ,m} such that both
∏

A and
∏

A′ are perfect squares. Write

A = B ∪ ∆ and A′ = B′ ∪ ∆ where ∆ = A ∩ A′, B = A r ∆, B′ = A′
r ∆. Since

[∏
A

][∏
A′

]
=

[∏
(B ∪ B′)

][∏
∆

]2

is a perfect square,
∏

(B ∪ B′) is also a perfect square. However, B ∪ B′ has minimum

element n so f(n) ≤ max(B ∪ B′) < m, a contradiction.

A3 Suppose that the polynomial defined by f(y) = a0+a1y+a2y
2+· · ·+anyn has no root

in the open interval (0, 1). Then by the Intermediate Value Theorem, f(y) has constant

sign, either positive or negative, on (0, 1). After replacing each ai by −ai if necessary, we

may further suppose that f(y) > 0 whenever 0 < y < 1. In particular, f(xk) > 0 for every

k ≥ 1, and

f(x0) = f(1) = lim
y→1−

f(y) ≥ 0.
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However, ∑

0≤i≤n

ai

1 − xi+1
=

∑

0≤i≤n

∑

k≥0

akx(i+1)k =
∑

k≥0

xkf(xk) > 0

since the first term is nonnegative and all remaining terms are positive. This contradicts

the hypothesis.

A4 For each arc w, denote the length of w by L(w), so that L(w) = Z(w) + N(w). We

assume there are ` = z+n digits around the circle, consisting of z zeroes and n ones. Given

an arc w of length L = L(w) with 0 < L < `, denote by Riw (for i = 0, 1, 2, . . . , `−1) the

arcs of the same length as w; their positions are the ` cyclic shifts of the position of w (let’s

say in the counterclockwise direction). If w is either empty or complete, i.e. of length 0 or

` respectively, then we may take Riw = w. For every arc w, the ` cyclic shifts of w cover

each zero L(w) times, so
∑`−1

i=0 Z(Riw) = zL(w). Similarly,
∑`−1

i=0 N(Riw) = nL(w). Also

for any arc w, we have

−` <
`−1∑

i=0

(
Z(Riw) − Z(w)

)
< `

since every term in the sum lies in {−1, 0, 1}, and at least one term (for i = 0) actually

equals 0. Since
∑`−1

i=0 Z(Riw) = zL(w), we obtain

(*) −1 <
z

`
L(w) − Z(w) < 1.

The same argument applied to wj for j = 1, 2, . . . , k yields

−1 <
z

`
L(wj) − Z(wj) < 1.

Averaging over j ∈ {1, 2, . . . , k} yields

−1 <
z

k`

k∑

j=1

L(wj) − Z < 1.

Since 1
k

∑k
j=1 L(wj) = 1

k

∑k
j=1

(
Z(wj) + N(wj)

)
= Z + N , this yields

−1 <
z

`

(
Z + L

)
− Z < 1.

Henceforth, let w be any arc of length Z + N . Rewriting (*) gives

(**) −1 <
z

`

(
Z + N

)
− Z(w) < 1.

Now the open interval I =
(

z
` (Z+N)−1, z

` (Z+N)−1
)

of length 2 contains both the integers

Z(w) and Z. If there exists another arc w′ of the same length Z + N but with a different

number of zeroes, then Z(w) and Z(w′) are the only two integers in the interval I, so
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either w or w′ has exactly Z zeroes, and hence also the same number of ones, and we are

done. Otherwise all arcs of length Z + N have a constant number of zeroes. In the latter

case, Z(Riw) = z
`

(
Z + N

)
for all i and, since this is the unique integer in the interval I,

we must have Z(w) = Z.

A5 If u ∈ R
n is a random vector uniformly distributed over Sn−1 (the set of all vectors

of Euclidean norm 1), then there exists a positive constant Cn such that for every fixed

vector x ∈ R
n, the expected value of |x · u| is Cn||x||. For example for n = 2, 3 we have,

respectively,

Eu∈S1(|x · u|) =
1

2π

∫ 2π

0

||x|||cosθ| dθ = 2
π ||x||;

Eu∈S2(|x · u|) =
1

4π

∫ 2π

0

∫ π

0

||x|||cosφ| sinφ dφ dθ = 1
2 ||x||

so that C2 = 2
π and (more directly relevant for our problem) C3 = 1

2 . Now the key idea is

embodied in the following:

(*) Let αi ∈ R and xi ∈ R
n for i = 1, 2, . . . , k. If

∑k
i=1 αi|xi · u| ≥ 0 for all

u ∈ R
n, then

∑k
i=1 αi||xi|| ≥ 0.

To prove (*), assuming
∑k

i=1 αi|xi · u| ≥ 0 for every value of the random vector u ∈ Sn−1,

with the uniform distribution, taking the expected value yields Cn

∑k
i=1 αi||xi|| ≥ 0 also,

so (*) holds.

Now suppose {aijk}i,j,k is any list of area definite numbers for R
2, and let A1, A2, . . . ,

Am be points in R
3. For every triple ijk with 1 ≤ i < j < k ≤ m, let vijk ∈ R

3 be a vector

of norm Area(∆AiAjAk) with vijk normal to the plane of ∆AiAjAk; for this purpose it

suffices to take vijk = 1
2

−−−→
AiAj ×

−−−→
AiAk. For every unit vector u ∈ R

3, |vijk · u| is the area of

the projection of ∆AiAjAk into the plane u⊥; and so by hypothesis,
∑

ijk aijk |vijk ·u| ≥ 0.

By (*), it follows that
∑

ijk aijk ||vijk|| ≥ 0, so the list of numbers {aijk}ijk is area definite

for R
3.

A6 It suffices to show that A(S) ≥ 6|S| for every finite S ⊂ Z×Z. The claim holds when

S is empty, since A(S) = 0 in that case. We proceed by induction on |S|. Because w(−z) =

w(z) for all z ∈ Z×Z, we may write A(S) = 12|S| + 2
∑

s∈S fS(s) where fS : Z×Z → Z is

defined by fS(s) =
∑

s′∈S:s′ 6=s w(s−s′). Since A(S∪{s′}) = A(S)+12+2fS(s′) whenever

s′ ∈ (Z×Z) r S, it suffices to show that every nonempty finite set S ⊂ Z×Z satisfying

A(S) ≥ 6|S| contains an element s such that fS(s) ≥ −3. Suppose, on the contrary, that

some finite set S ⊂ Z×Z satisfies A(S) ≥ 6|S| and fS(s) ≤ −4 for every s ∈ S. Then
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A(S) = 12|S|+ 2
∑

s∈S

fS(s) ≤ 12|S| − 8|S| = 4|S|,

a contradiction.

B1 2013∑

n=1

c(n)c(n + 2) = c(1)c(3) +
1006∑

m=1

[
c(2m)c(2m+2) + c(2m+1)c(2m+3)

]

= 1(−1) +
1006∑

m=1

[
c(m)c(m+1) + (−1)mc(m)(−1)m+1c(m+1)

]

= −1 +

1006∑

m=1

0 = −1.

B2 For every real value of x and integer n not divisible by 3, we have

cos 2πnx + cos 2πn(x+ 1
3
) + cos 2πn(x+ 2

3
) = <

(
e2πnxi(1 + ωn + ω2n)

)
= <(0) = 0

where ω = e2πi/3. From this we obtain f(0) + f
(

1
3

)
+ f

(
2
3

)
= 3, so f(0) ≤ 3. This upper

bound is attained by the function in C2 given by

f(x) = 1 + 4
3

cos(2πx) + 2
3

cos(4πx) = 1
3

(
2 cos(2πx) − 1

)2
≥ 0.

B3 Yes, f must have the indicated form. Given i ∈
⋃

P , there is a unique minimal

member of P containing i (since if S, S ′ ∈ P both contain i, then so does S ∩ S ′ ∈ P );

and we denote this minimal member by Si ∈ P . Recall that there exists T ∈ P such that

T ⊂ Si and |T | = |Si| − 1; and by minimality of Si, we must have Si r {i} = T ∈ P . So

we may define

fi = f(Si) − f(Si r {i}).

For any i ∈ [n] with i /∈
⋃

P , the values fi may be chosen arbitrarily (for example, fi = 0).

Now for each S ∈ P , define

g(S) =
∑

i∈S

fi .

We will show that g(S) = f(S) for all S ∈ P , proceeding by induction on |S|. Note that

g(∅) = f(∅) = 0 as required. Now for any nonempty member S ∈ P , let T ∈ P such that

|T | = |S| − 1. We may assume that f(T ) = g(T ). There is a unique i ∈ [n] such that

S = {i} ∪ T . We consider two cases. If {i} ∈ P , then Si = {i} and

f(S) = f({i}) + f(T ) − f({i} ∩ T ) = F (Si) + g(T ) − f(∅) = fi + g(T ) − 0 = g(S)
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as required. Otherwise {i} /∈ P and

f(S) = f(T ∪ Si) = f(T ) + f(Si) − f(T ∩ Si) = g(T ) + f(Si) − f(Si r {i})

= g(T ) + fi = g(S).

The result g(S) = f(S) follows by induction on |S|.

B4 We will use the following double integral formulation of Var(f):

2Var(f) = 2

∫ 1

0

(
f(t) − µf

)2
dt = 2

∫ 1

0

f(t)2dt − 4µf

∫ 1

0

f(t)dt + 2µ2
f

= 2

∫ 1

0

f(t)2dt − 2µ2
f =

∫ 1

0

f(s)2ds +

∫ 1

0

f(t)2dt − 2

∫ 1

0

f(s)ds

∫ 1

0

f(t)dt

=

∫ 1

0

∫ 1

0

(
f(s) − f(t)

)2
ds dt.

Suppose first that |f(t)|, |g(t)| ≤ 1 for all t ∈ [0, 1]; we prove the required inequality first

in this special case. By Cauchy-Schwarz we have

[
f(s)g(s)−f(t)g(t)

]2
=

[
g(t)

(
f(s)−f(t)

)
+ f(s)

(
g(s)−g(t)

)]2

≤
[
g(t)2 + f(s)2

][(
f(s)−f(t)

)2
+

(
g(s)−g(t)

)2]

≤ 2
(
f(s)−f(t)

)2
+ 2

(
g(s)−g(t)

)2
.

Integrating over 0 ≤ s, t ≤ 1, our double integral formulation for variance yields

Var(fg) ≤ 2Var(f) + 2Var(g),

still just in the special case |f |, |g| ≤ 1. In the general case we have f(t) = M(f)f̃ (t),

g(t) = M(g)g̃(t) where the continuous functions f̃ , g̃ : [0, 1] → R satisfy |f̃ |, |g̃| ≤ 1; then

Var(fg) = M(fg)2 Var
(
f̃ g̃

)
≤ M(f)2M(g)2 Var

(
f̃ g̃

)

≤ 2M(f)2 Var
(
f̃
)
M(g)2 + 2M(g)2 Var

(
g̃
)
M(f)2

= 2Var(f)M(g)2 + 2Var(g)M(f)2 .

B5 Our proof uses the following encoding of permutations as strings. Let S be any

nonempty set of symbols. Every permutation σ of S may be expressed first as a product

of ` ≥ 1 disjoint cycles as

σ = (s1,1, s1,2, · · · , s1,t1)(s2,1, s2,2, · · · , s2,t2 ) · · · (s`,1, s`,2, · · · , s`,t`
)
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where si,j ∈ S and ti ≥ 1 is the length of the i-th cycle. This cycle decomposition is

unique if we require that (i) the least element of the i-th cycle is its last term si,ti
(as we

may assume, after appropriately cycling terms in the i-th cycle); and (ii) the ` cycles are

permuted in such a way that s1,t1 < s2,t2 < · · · < s`,t`
. Every such permutation σ, written

in standard form, is uniquely determined by the sequence formed by stripping away all but

the outermost parentheses:

sσ = (s1,1, s1,2, · · · , s1,t1 , s2,1, s2,2, · · · , s2,t2 , · · · , s`,1, s`,2, · · · , s`,t`
).

Our proof uses the fact that the correspondence σ ↔ sσ is bijective. The details of this

argument are omitted; but the argument is very similar to Bóna [1, Lemma 6.15], who

uses a slightly different canonical cycle form for expressing permutations.

Our main argument is a modification of Joyal’s proof of Cayley’s Theorem as found

in Bóna [1, p.219]. For 1 ≤ k ≤ n, denote by Tn,k the collection of all trees with vertex

set [n] = {1, 2, 3, . . . , n}, having one vertex in [n] marked as ‘Start’, and one vertex in [k]

marked as ‘Finish’. (The vertices marked as Start and Finish may coincide.) By Cayley’s

Theorem, the number of labeled trees with vertex set [n] is nn−2; and for each such tree

there are n choices for Start and k choices for Finish, so |Tn,k| = knn−1. We will exhibit a

one-to-one correspondence between Tn,k and the collection (which we denote by Fn,k) of

all functions f : [n] → [n] such that for all i ∈ [n], there exists j ≥ 0 such that f(j)(i) ≤ k.

Given f ∈ Fn,k, let S ⊆ [n] be the (nonempty) set of all elements permuted in cycles,

and let σ be the permutation induced on S by f . Construct a labeled tree T = T (f) ∈ Tn,k

as follows: the elements of S form a path in T (f) with vertices listed in order as given

by the sequence sσ = (s1,1, . . . , s`,t`
), with the terminal vertices s1,1 and s`,t`

designated

as the Start and Finish respectively. Since f ∈ Fn,k, the least elements in the orbits of σ

satisfy

s1,t1 < s2,t2 < · · · < s`,t`
≤ k

so that the vertex marked as Finish lies in [k] as required. To complete the tree T (f),

add an edge from vertex i to vertex f(i) for each i ∈ [n] with i /∈ S. The correspondence

Fn,k ↔ Tn,k given by f ↔ T (f) is bijective. The essential details of this argument are as

described in Bóna [1, Theorem 10.7]; our construction of T (f) differs from his only in the

particular choice of ordering of vertices on the distinguished path from Start to Finish.

B6 The case n = 1 is trivial, with a guaranteed win for Alice. Henceforth we assume

that n ≥ 3. It is convenient to represent all possible positions of play by bitstrings of

length n, i.e. sequences w ∈ {0, 1}n of 0’s and 1’s representing unoccupied and occupied

spaces respectively. The weight of any bitstring w, denoted wt(w) ∈ {0, 1, 2, . . . , n}, is the

number of 1’s (i.e. stones). Denote by Wn,k the set of bitstrings of length n and weight k.
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Play begins with the initial sequence 0n; thereafter the weight changes by −1, 0 or 1 at

every turn. The first player to reach a position in Wn,n−1 loses, because then all remaining

play positions form a set Wn,n−1 ∪Wn,n of even cardinality n+1, and any position in this

set Wn,1 ∪ Wn,0 is attainable from any other in a single move.

We will show that Alice has the advantage iff on her first turn she places a stone in

any space other than one of the two end spaces (‘terminal’ spaces). Thereafter her winning

strategy is as follows. We assume it is Bob’s turn to play. By induction, we may assume

that the position has odd weight ` ∈ {1, 3, 5, . . . , n−2} and that the terminal spaces are

either both occupied or both unoccupied.

(i) If Bob places a stone in a non-terminal space, then so does Alice.

(ii) If Bob places a stone in a terminal space, then Alice places a stone in the other

terminal space.

(iii) If Bob removes a stone from one terminal space (and inserts a stone in an interior

space), then Alice removes the stone in the other terminal space (and also inserts

a stone in an interior space.

Each of the cases (i)–(iii) describes a consecutive pair of turns which preserves the

symmetry of the terminal spaces (i.e. either both occupied or both unoccupied). Cases (i)

and (ii) add 2 to the weight, whereas case (iii) leaves the weight unchanged; but if case

(iii) occurs, then the next two turns will be described by (i) or (ii), thus incrementing the

weight by 2. This strategy means that the weight is always odd after Alice’s turn, so that

the first move to attain a weight of n−1 is by Bob, who therefore must lose.

If instead Alice places a stone in a terminal space on her first move, then Bob responds

by removing that stone and placing a stone in the adjacent space. This way Bob leaves

an odd weight position on his first turn. Now the roles of Alice and Bob are reversed,

and Bob uses the strategy described above to ensure that he leaves positions of weight

1, 3, 5, . . . , n−2 after his turns, and that Alice is the first to attain weight n−1, so that

Alice loses.
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