

Art of Problem Solving

2014 Putnam

Putnam 2014

_	A
1	Prove that every nonzero coefficient of the Taylor series of $(1-x+x^2)e^x$ about $x=0$ is a rational number whose numerator (in lowest terms) is either 1 or a prime number.
2	Let A be the $n \times n$ matrix whose entry in the i -th row and j -th column is $\frac{1}{\min(i,j)}$
	for $1 \le i, j \le n$. Compute $det(A)$.
3	Let $a_0 = 5/2$ and $a_k = a_{k-1}^2 - 2$ for $k \ge 1$. Compute
	$\prod_{k=0}^{\infty} \left(1 - \frac{1}{a_k} \right)$
	in closed form.
4	Suppose X is a random variable that takes on only nonnegative integer values, with $E[X] = 1$, $E[X^2] = 2$, and $E[X^3] = 5$. (Here $E[Y]$ denotes the expectation of the random variable Y .) Determine the smallest possible value of the probability of the event $X = 0$.
5	Let $P_n(x) = 1 + 2x + 3x^2 + \dots + nx^{n-1}$. Prove that the polynomials $P_j(x)$ and $P_k(x)$ are relatively prime for all positive integers j and k with $j \neq k$.
6	Let n be a positive integer. What is the largest k for which there exist $n \times n$ matrices M_1, \ldots, M_k and N_1, \ldots, N_k with real entries such that for all i and j , the matrix product M_iN_j has a zero entry somewhere on its diagonal if and only if $i \neq j$?
	В
1	A base 10 over-expansion of a positive integer N is an expression of the form $N = d_k 10^k + d_{k-1} 10^{k-1} + \cdots + d_0 10^0$ with $d_k \neq 0$ and $d_i \in \{0, 1, 2, \dots, 10\}$ for all i . For instance, the integer $N = 10$ has two base 10 over-expansions: $10 = 10 \cdot 10^0$ and the usual base 10 expansion $10 = 1 \cdot 10^1 + 0 \cdot 10^0$. Which positive integers have a unique base 10 over-expansion?

Contributors: Kent Merryfield

Art of Problem Solving 2014 Putnam

2	Suppose that f is a function on the interval $[1,3]$ such that $-1 \le f(x) \le 1$ for all x and $\int_1^3 f(x) dx = 0$. How large can $\int_1^3 \frac{f(x)}{x} dx$ be?
3	Let A be an $m \times n$ matrix with rational entries. Suppose that there are at least $m+n$ distinct prime numbers among the absolute values of the entries of A . Show that the rank of A is at least 2.
4	Show that for each positive integer n , all the roots of the polynomial
	$\sum_{k=0}^{n} 2^{k(n-k)} x^k$
	are real numbers.
5	In the 75th Annual Putnam Games, participants compete at mathematical games. Patniss and Keeta play a game in which they take turns choosing an element from the group of invertible $n \times n$ matrices with entries in the field $\mathbb{Z}/p\mathbb{Z}$ of integers modulo p , where n is a fixed positive integer and p is a fixed prime number. The rules of the game are:
	(1) A player cannot choose an element that has been chosen by either player on any previous turn.
	(2) A player can only choose an element that commutes with all previously chosen elements.
	(3) A player who cannot choose an element on his/her turn loses the game.
	Patniss takes the first turn. Which player has a winning strategy?
6	Let $f:[0,1] \to \mathbb{R}$ be a function for which there exists a constant $K > 0$ such that $ f(x) - f(y) \le K x - y $ for all $x, y \in [0,1]$. Suppose also that for each rational number $r \in [0,1]$, there exist integers a and b such that $f(r) = a + br$. Prove that there exist finitely many intervals I_1, \ldots, I_n such that f is a linear function on each I_i and $[0,1] = \bigcup_{i=1}^n I_i$.

www.artofproblemsolving.com/community/c4319

Contributors: Kent Merryfield