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Abstract

These are my solutions to the 2014 Putnam Competition. This is not a list of all
solutions, merely the ones that I handed in worthy of credit. Some proofs are more
rigorous than others, and it should be noted that for problem A4, while I’m confident
my answer is correct, I did not rigorously prove that P (X ≥ 4) = 0, and merely
assumed that that was the case based on intuitive reasoning. Thus, the solutions I
present here are not guaranteed to be worthy of full credit, but they should provide
valuable insights on how to approach some of these problems.

Problem A1. Prove that every nonzero coefficient of the Taylor series expansion of

(1− x + x2)ex

about x = 0 is a rational number whose numerator (in lowest terms) is either 1 or a
prime number.

Proof. Let f(x) = ex(x2 − x + 1). Then the Taylor series expansion for f(x) about
x = 0 is

T (x) =

∞∑
i=0

f (n)(0)

n!
xn

f(x) =ex(x2 − x + 1)

f ′(x) =ex(x2 + x + 0)

f ′′(x) =ex(x2 + 3x + 1)

...

f (n)(x) =ex(x2 + (2n− 1)x + (n− 1)2)

The general formula f (n)(x) is can be proved with induction.

f (n+1)(x) = ex(x2 + (2n− 1)x + (n− 1)2) + ex(2x + (2n− 1)

f (n+1)(x) = ex(x2 + (2n + 1)x + n2)
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Thus,
f (n)(0) = e0(02 + (2n− 1)(0) + (n− 1)2) = (n− 1)2

Therefore the coefficient nth term in T (x) is

(n− 1)2

n!
=

(n− 1)

n(n− 2)!

For n = 0, the coefficient is 1, and for n = 1, the coefficient is 0. Thereafter, the
coefficient is either 1 or prime.

Proof by Cases:

1. (n− 1) is prime (we are done)

2. (n− 1) = p2 for some prime p

Since (n− 1) = p2, p < n− 1 so p is a term in (n− 2)! that can get canceled out.
This leaves a single p on the numerator, so we are done.

3. (n− 1) is composite

Since (n − 1) is composite, we can write it as (n − 1) = pq where p 6= q and
p, q < n − 1. Clearly, both p and q are factors of (n − 2)!, so they can both be
canceled out leaving 1 on the numerator.

Thus, in every case the numerator of the reduced fraction is either 1 or prime.
Therefore, every non-zero coefficient of T (x) is either 1 or prime and we are done.

Problem A2. Let A be the n × n matrix whose entry in the i − th row and j − th
column is

1

min(i, j)

for 1 ≤ i, j ≤ n. Compute det(A).

Proof.

A =


1 1 1 . . . 1
1 1

2
1
2 . . . 1

2
1 1

2
1
3 . . . 1

3
...

...
...

. . .
...

1 1
2

1
3 . . . 1

n


Now, we can compute the determinant about the nth row. Notice that the sub

matrix without the nth row is of the following form

A =


1 1 . . . 1 1
1 1

2 . . . 1
2

1
2

...
...

. . .
...

...
1 1

2 . . . 1
n−1

1
n−1


The nth and (n − 1)th columns are the same, indicating that the matrix is not

full rank. Thus, for any sub matrix containing both the nth and (n − 1)th columns,
the determinant is 0. Thus, we only need to consider the sub matrices that don’t
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contain one of those columns. Further, notice that if n is even, our coefficients will be
[−+−...−+] and if n is odd, our coefficients will be [+−+...−+]. In either case, the
determinant is going to be∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
1 1

2
1
2 . . . 1

2
1 1

2
1
3 . . . 1

3
...

...
...

. . .
...

1 1
2

1
3 . . . 1

n

∣∣∣∣∣∣∣∣∣∣∣
=
−1

n− 1

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
1 1

2 . . . 1
2

...
...

. . .
...

1 1
2 . . . 1

n−1

∣∣∣∣∣∣∣∣∣+
1

n

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
1 1

2 . . . 1
2

...
...

. . .
...

1 1
2 . . . 1

n−1

∣∣∣∣∣∣∣∣∣
Let Dn = det(A) for an n× n matrix A.

Dn =
( 1

n
− 1

n− 1

)
Dn−1

Dn =
−1

n(n− 1)
Dn−1

Further, we have the initial condition D1 = 1 because det(
[
1
]
) = 1.

Dn =
−1

n(n− 1)

−1

(n− 1)(n− 2)

−1

(n− 2)(n− 3)
. . .
−1

3 · 2
−1

2 · 1

Dn =
(−1)n+1

n[(n− 1)!]2
=

(−1)n+1

n!(n− 1)!

Problem A4. Suppose X is a random variable that takes on only non-negative integer
values, with E[X] = 1, E[X2] = 2, E[X3] = 5. (Here E[Y ] denotes the expectation
of the random variable Y .) Determine the smallest possible value of the probability of
the event X = 0.

Proof. Notice that for large k, we want P (X = k) = 0 because if it were nonzero, then
P (X = 0) would have to increase to overcompensate. Thus, I will assume P (X ≥ 4) =
0. There are 4 unknown variables, P (X = 0), . . . , P (X = 3), and 4 constraints: the
expected values must match and the probabilities must add to 1. Thus, I can setup
and solve a 4× 4 linear system.

1 1 1 1
0 1 2 3
0 1 4 9
0 1 8 27



P0

P1

P2

P3

 =


1
1
2
5


where Pk = P (X = k). Using Guassian elimination, we can easily solve this system:

1 1 1 1 1
0 1 2 3 1
0 1 4 9 2
0 1 8 27 5

→


1 1 1 1 1
0 1 2 3 1
0 0 2 6 1
0 0 6 24 4

→


1 1 1 1 1
0 1 2 3 1
0 0 2 6 1
0 0 0 6 1


Using back substitution, we get
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P (X = 3) =
1

6

P (X = 2) =
1− 6(16)

2
= 0

P (X = 1) = 1− 3
1

6
− 2(0) =

1

2

P (X = 0) = 1− 1

6
− 0− 1

2
=

1

3

Thus, the minimum possible value for P (X = 0) is

P (X = 0) =
1

3

Problem B1. A base 10 over-expansion of a positive integer N is an expression of
the form

N = dk10k + dk−110k−1 + ... + d0100

with dk 6= 0 and di ∈ {0, 1, 2, ..., 10} for all i. For instance, the integer N = 10
has two base 10 over-expansions: 10 = 10 · 100 and the usual base 10 expression
10 = 1 · 101 + 0 · 100. Which positive integers have a unique base 10 over-expansion?

Proof. A positive integer N has a unique base 10 over-expansion if and only
if di 6= 0 for all i in the usual base 10 expansion of N.

To show this, I will break up the proof into two parts:

1. If N has a unique base 10 over-expansion, di 6= 0 for all i in the usual base 10
expansion of N.

2. If di 6= 0 for all i in the usual base 10 expansion of N, then N has a unique base
10 over-expansion.

Part 1: If N has a unique base 10 over-expansion, di 6= 0 for all i in the
usual base 10 expansion of N.
Alternatively, I will show that if there is some i such that di = 0, then N does not have
a unique base 10 over-expansion.
Assume there is some di = 0 in the usual base 10 expansion of N, and let dj be the
leftmost di = 0 (the di = 0 where i is maximized.) I can construct a base 10 over-
expansion for N by letting d′j = 10 and d′j+1 = dj+1 − 1. This new expression for N is
a base 10 over-expansion, which means N has at least 2 base 10 over-expansions (this
one and the usual one). Thus, N does not have a unique base 10 over-expansion.

Part 2: If di 6= 0 for all i in the usual base 10 expansion of N, then N has
a unique base 10 over-expansion.

Alternatively, I will show that if N does not have a unique base 10 over-expansion,
there exists some i such that di = 0.

If N does not have a unique base 10 over-expansion, then N has at least 2 repre-
sentations in the base 10 over-expansion (the usual base 10 expansion, and at least
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one additional over-expansion). In the additional over-expansion, there is at least one
di = 10, because if there wasn’t, then it would be the usual expansion, not an over-
expansion. Let dj be the rightmost di = 10 (that is, the di = 10 where i is minimized).
Then, to get to the usual base 10 expansion, we need to let d′i = 0 and d′i+1 = d′i+1 + 1.
Since it’s possible for d′i+1 to equal 10 or 11, we need to propagate this transformation
from right to left (small i to large i) until the new expression is in the usual represen-
tation. The final result will be the usual base 10 expression for N, and d′i = 0, so the
claim is true.

Thus, a positive integer N has a unique base 10 over-expansion if and only if di 6= 0
for all i in the usual base 10 expansion of N.

Problem B2. Suppose that f is a function on the interval [1, 3] such that −1 ≤
f(x) ≤ 1 for all x and

∫ 3
1 f(x)dx = 0. How large can

∫ 3
1

f(x)
x be?

Proof. The largest possible value for
∫ 3
1

f(x)
x is ln(4/3). The function corresponding to

this value is

f(x) =

{
1 : 1 ≤ x ≤ 2
−1 : 2 < x ≤ 3

x1 2 3

y

1

-1

Clearly, this function satisfies the constraint
∫ 3
1 f(x)dx = 0 because the area of the

two disjoint regions cancel each other out.
By symmetry, since we want the areas to cancel out, we should have f(x) = −f(4−

x) for all x ∈ [1, 2]. If this were not the case, then either condition 1 wouldn’t be
satisfied, or the value of the definite integral wouldn’t be optimal. Thus, let y = f(x)
denote the optimal value for y. We want to maximize the following function with
respect to y (possibly in terms of x indicating that the optimal curve is non-constant).

g(y) =
y

x
− y

4− x

g′(y) =
1

x
− 1

4− x
=

2(2− x)

x(4− x)

Thus, the derivative is constant (in terms of y), which indicates that there is no
local extrema. Thus, we must check the endpoints for the possible values of y (1 and
-1). Clearly, g(1) > g(−1) under the constraint x ∈ [1, 2], so this function is maximized
when y = 1. Thus, the f(x) we defined above is optimal. Let’s evaluate the integral∫ 3

1

f(x)

x
=

∫ 2

1

1

x
+

∫ 3

2

−1

x
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[ln(2)− ln(1)]− [ln(3)− ln(2)]

2ln(2)− ln(3) = ln(4/3)
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