
Baltic Way 1993

Riga, November 13, 1993

Problems and solutions

1. a1a2a3 and a3a2a1 are two three-digit decimal numbers, with a1, a3 being different non-zero digits. The
squares of these numbers are five-digit numbers b1b2b3b4b5 and b5b4b3b2b1 respectively. Find all such three-
digit numbers.

Solution. Assume a1 > a3 > 0. As the square of a1a2a3 must be a five-digit number we have a1 ≤ 3. Now
a straightforward case study shows that a1a2a3 can be 301, 311, 201, 211 or 221.

2. Do there exist positive integers a > b > 1 such that for each positive integer k there exists a positive
integer n for which an + b is a kth power of a positive integer?

Solution. Let a = 6, b = 3 and denote xn = an + b. Then we have xl · xm = x6lm+3(l+m)+1 for any natural
numbers l and m. Thus, any powers of the numbers xn belong to the same sequence.

3. Let’s call a positive integer “interesting” if it is a product of two (distinct or equal) prime numbers. What
is the greatest number of consecutive positive integers all of which are “interesting”?

Solution. The three consecutive numbers 33 = 3 · 11, 34 = 2 · 17 and 35 = 5 · 7 are all “interesting”. On the
other hand, among any four consecutive numbers there is one of the form 4k which is “interesting” only if
k = 1. But then we have either 3 or 5 among the four numbers, neither of which is “interesting”.

4. Determine all integers n for which
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and obviously p is an odd number not less than 5. If p ≥ 9 then n > 625

4 and the
initial expression would be undefined. The two remaining values p = 5 and p = 7 give n = 0 and n = 144
respectively.

5. Prove that for any odd positive integer n, n12 − n8 − n4 + 1 is divisible by 29.

Solution. Factorizing the expression, we get

n12 − n8 − n4 + 1 = (n4 + 1)(n2 + 1)2(n − 1)2(n + 1)2.

Now note that one of the two even numbers n − 1 and n + 1 is divisible by 4.

6. Suppose two functions f(x) and g(x) are defined for all x such that 2 < x < 4 and satisfy 2 < f(x) < 4,
2 < g(x) < 4, f(g(x)) = g(f(x)) = x and f(x) · g(x) = x2 for all such values of x. Prove that f(3) = g(3).

Solution. Let h(x) = f(x)
x

. Then we have g(x) = x2

f(x) = x
h(x) and g(f(x)) = f(x)

h(f(x)) = x which yields

h(f(x)) = f(x)
x

= h(x). Using induction we easily get h(f (k)(x)) = h(x) for any natural number k where

f (k)(x) denotes f(f(. . . f
︸ ︷︷ ︸

k

(x) . . .)). Now

f (k+1)(x) = f(f (k)(x)) = f (k)(x) · h(f (k)(x)) = f (k)(x) · h(x)

and f(k+1)(x)
f(k)(x)

= h(x) for any natural number k. Thus

f (k)(x)

x
=

f (k)(x)

f (k−1)(x)
· · · · · f(x)

x
= (h(x))k

and f(k)(3)
3 = (h(3))k ∈

(
2
3 , 4

3

)
for all k. This is only possible if h(3) = 1 and thus f(3) = g(3) = 3.
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7. Solve the system of equations in integers:






zx = y2x

2z = 4x

x + y + z = 20.

Solution. From the second and third equation we find z = 2x and x = 20−y
3 . Substituting these into

the first equation yields
(

40−2y
3

)x
= (y2)x. As x 6= 0 (otherwise we have 00 in the first equation which is

usually considered undefined) we have y2 = ± 40−2y
3 (the ‘−’ case occurring only if x is even). The equation

y2 = − 40−2y
3 has no integer solutions; from y2 = 40−2y

3 we get y = −4, x = 8, z = 16 (the other solution
y = 10

3 is not an integer).

Remark. If we accept the definition 00 = 1, then we get the additional solution x = 0, y = 20, z = 0.
Defining 00=0 gives no additional solution.

8. Compute the sum of all positive integers whose digits form either a strictly increasing or a strictly decreasing
sequence.

Solution. Denote by I and D the sets of all positive integers with strictly increasing (respectively, decreasing)
sequence of digits. Let D0, D1, D2 and D3 be the subsets of D consisting of all numbers starting with 9,
not starting with 9, ending in 0 and not ending in 0, respectively. Let S(A) denote the sum of all numbers
belonging to a set A. All numbers in I are obtained from the number 123456789 by deleting some of its
digits. Thus, for any k = 0, 1, . . . , 9 there are

(
9
k

)
k-digit numbers in I (here we consider 0 a 0-digit number).

Every k-digit number a ∈ I can be associated with a unique number b0 ∈ D0, b1 ∈ D1 and b3 ∈ D3 such
that

a + b0 = 999 . . . 9 = 10k+1 − 1,

a + b1 = 99 . . . 9 = 10k − 1,

a + b3 = 111 . . . 10 =
10

9
(10k − 1).

Hence we have

S(I) + S(D0) =
9∑

k=0

(
9

k

)

(10k+1 − 1) = 10 · 119 − 29,

S(I) + S(D1) =
9∑

k=0

(
9

k

)

(10k − 1) = 119 − 29,

S(I) + S(D3) =
10

9
(119 − 29).

Noting that S(D0) + S(D1) = S(D2) + S(D3) = S(D) and S(D2) = 10S(D3) we obtain the system of
equations







2S(I) + S(D) = 1110 − 210

S(I) +
1

11
S(D) =

10

9
(119 − 29)

which yields

S(I) + S(D) =
80

81
· 1110 − 35

81
· 210.

This sum contains all one-digit numbers twice, so the final answer is

80

81
· 1110 − 35

81
· 210 − 45 = 25617208995.

9. Solve the system of equations:






x5 = y + y5

y5 = z + z5

z5 = t + t5

t5 = x + x5.
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Solution. Adding all four equations we get x + y + z + t = 0. On the other hand, the numbers x, y, z, t are
simultaneously positive, negative or equal to zero. Thus, x = y = z = t = 0 is the only solution.

10. Let a1, a2, . . . , an and b1, b2, . . . , bn be two finite sequences consisting of 2n different real numbers.
Rearranging each of the sequences in the increasing order we obtain a′

1, a′
2, . . . , a′

n and b′1, b′2, . . . , b′n. Prove
that

max
1≤i≤n

|ai − bi| ≥ max
1≤i≤n

|a′
i − b′i|.

Solution. Let m be such index that |a′
m − b′m| = max1≤i≤n |a′

i − b′i| = c. Without loss of generality we may
assume a′

m > b′m. Consider the numbers a′
m, a′

m+1, . . . , a′
n and b′1, b′2, . . . , b′m. As there are n + 1 numbers

altogether and only n places in the initial sequence there must exist an index j such that we have aj among
a′

m, a′
m+1, . . . , a′

n and bj among b′1, b′2, . . . , b′m. Now, as bj ≤ b′m < a′
m ≤ aj we have |aj−bj| ≥ |a′

m−b′m| = c

and max1≤i≤n |ai − bi| ≥ c = max1≤i≤n |a′
i − b′i|.

11. An equilateral triangle is divided into n2 congruent equilateral triangles. A spider stands at one of the
vertices, a fly at another. Alternately each of them moves to a neighbouring vertex. Prove that the spider
can always catch the fly.

Solution. Assume that the big triangle lies on one of its sides. Then a suitable strategy for the spider will
be as follows:

(1) First, move to the lower left vertex of the big triangle.

(2) Then, as long as the fly is higher than the spider, move upwards along the left side of the big triangle.

(3) After reaching the horizontal line where the fly is, retain this situation while moving to the right (more
precisely: move “right”, “right and up” or “right and down” depending on the last move of the fly).

12. There are 13 cities in a certain kingdom. Between some pairs of cities two-way direct bus, train or plane
connections are established. What is the least possible number of connections to be established in order
that choosing any two means of transportation one can go from any city to any other without using the
third kind of vehicle?

Solution. An example for 18 connections is shown in Figure 1 (where single, double and dashed lines denote
the three different kinds of transportation). On the other hand, a connected graph with 13 vertices has at
least 12 edges, so the total number of connections for any two kinds of vehicle is at least 12. Thus, twice
the total number of all connections is at least 12 + 12 + 12 = 36.
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13. An equilateral triangle ABC is divided into 100 congruent equilateral triangles. What is the greatest number
of vertices of small triangles that can be chosen so that no two of them lie on a line that is parallel to any
of the sides of the triangle ABC?

Solution. An example for 7 vertices is shown in Figure 2. Now assume we have chosen 8 vertices satisfying
the conditions of the problem. Let the height of each small triangle be equal to 1 and denote by ai, bi, ci

the distance of the ith point from the three sides of the big triangle. For any i = 1, 2, . . . , 8 we then have
ai, bi, ci ≥ 0 and ai + bi + ci = 10. Thus, (a1 + a2 + · · ·+ a8) + (b1 + b2 + · · ·+ b8)+ (c1 + c2 + · · ·+ c8) = 80.
On the other hand, each of the sums in the brackets is not less than 0+1+ · · ·+7 = 28, but 3 ·28 = 84 > 80,
a contradiction.
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14. A square is divided into 16 equal squares, obtaining the set of 25 different vertices. What is the least number
of vertices one must remove from this set, so that no 4 points of the remaining set are the vertices of any
square with sides parallel to the sides of the initial square?

Remark. The proposed solution to this problem claimed that it is enough to remove 7 vertices but the
example to demonstrate this appeared to be incorrect. Below we show that removing 6 vertices is not
sufficient but removing 8 vertices is. It seems that removing 7 vertices is not sufficient but we currently
know no potential way to prove this, apart from a tedious case study.

Solution. The example in Figure 3a demonstrates that it suffices to remove 8 vertices to “destroy” all
squares. Assume now that we have managed to do that by removing only 6 vertices. Denote the horizontal
and vertical lines by A, B, . . . , E and 1, 2, . . . , 5 respectively. Obviously, one of the removed vertices must
be a vertex of the big square — let this be vertex A1. Then, in order to “destroy” all the squares shown in
Figure 3b–e we have to remove vertices B2, C3, D4, D2 and B4. Thus we have removed 6 vertices without
having any choice but a square shown in Figure 3f is still left intact.
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15. On each face of two dice some positive integer is written. The two dice are thrown and the numbers on the
top faces are added. Determine whether one can select the integers on the faces so that the possible sums
are 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, all equally likely?

Solution. We can write 1, 2, 3, 4, 5, 6 on the sides of one die and 1, 1, 1, 7, 7, 7 on the sides of the other.
Then each of the 12 possible sums appears in exactly 3 cases.

16. Two circles, both with the same radius r, are placed in the plane without intersecting each other. A
line in the plane intersects the first circle at the points A, B and the other at the points C, D so that
|AB| = |BC| = |CD| = 14 cm. Another line intersects the circles at points E, F and G, H respectively, so
that |EF | = |FG| = |GH | = 6 cm. Find the radius r.

Solution. First, note that the centres O1 and O2 of the two circles lie on different sides of the line EH —
otherwise we have r < 12 and AB cannot be equal to 14. Let P be the intersection point of EH and O1O2

(see Figure 4). Points A and D lie on the same side of the line O1O2 (otherwise the three lines AD, EH

and O1O2 would intersect in P and |AB| = |BC| = |CD|, |EF | = |FG| = |GH | would imply |BC| = |FG|,
a contradiction). It is easy to see that |O1O2| = 2 · |O1P | = |AC| = 28 cm. Let h = |O1T | be the height
of triangle O1EP . Then we have h2 = 142 − 62 = 160 from triangle O1TP and r2 = h2 + 32 = 169 from
triangle O1TF . Thus r = 13 cm.
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17. Let’s consider three pairwise non-parallel straight lines in the plane. Three points are moving along these
lines with different non-zero velocities, one on each line (we consider the movement as having taken place
for infinite time and continuing infinitely in the future). Is it possible to determine these straight lines, the
velocities of each moving point and their positions at some “zero” moment in such a way that the points
never were, are or will be collinear?

Solution. Yes, it is. First, place the three points at the vertices of an equilateral triangle at the “zero”
moment and let them move with equal velocities along the straight lines determined by the sides of the
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triangle as shown in Figure 5. Then, at any moment in the past or future, the points are located at the
vertices of some equilateral triangle, and thus cannot be collinear. Finally, to make the velocities of the
points also differ, take any non-zero constant vector such that its projections on the three lines have different
lengths and add it to each of the velocity vectors. This is equivalent to making the whole picture “drift”
across the plane with constant velocity, so the non-collinearity of our points is preserved (in fact, they are
still located at the vertices of an equilateral triangle at any given moment).

18. In the triangle ABC we have |AB| = 15, |BC| = 12 and |AC| = 13. Let the median AM and bisector BK

intersect at point O, where M ∈ BC, K ∈ AC. Let OL⊥AB, where L ∈ AB. Prove that ∠OLK = ∠OLM .

Solution. Let the line OC intersect AB in point P . As AM is a median, we have |AP |
|PB| = |AK|

|KC| (this

obviously holds if |AB| = |AC| and the equality is preserved under uniform compression of the plane

along BK). Applying the sine theorem to the triangles ABK and BCK we obtain |AP |
|PB| = |AK|

|KC| = |AB|
|BC| = 5

4

(see Figure 6). As |AP | + |PB| = |AB| = 15, we have |AP | = 25
3 and |PB| = 20

3 . Thus |AC|2 − |BC|2 =
25 = |AP |2 − |BP |2 and |AC|2 − |AP |2 = |BC|2 − |BP |2. Applying now the cosine theorem to the triangles
APC and BPC we get cos∠APC = cos∠BPC, i.e., P = L. As above, we can use a compression of the
plane to show that KP ‖ BC and therefore ∠OPK = ∠OCB. As |BM | = |MC| and ∠BPC = 90◦ we have
∠OCB = ∠OPM . Combining these equalities, we get ∠OLK = ∠OPK = ∠OCB = ∠OPM = ∠OLM .
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19. A convex quadrangle ABCD is inscribed in a circle with the centre O. The angles ∠AOB, ∠BOC, ∠COD

and ∠DOA, taken in some order, are of the same size as the angles of quadrangle ABCD. Prove that
ABCD is a square.

Solution. As the quadrangle ABCD is inscribed in a circle, we have ∠ABC +∠CDA = ∠BCD +∠DAB =
180◦. It suffices to show that if each of these angles is equal to 90◦, then each of the angles AOB, BOC,
COD and DOA is also equal to 90◦ and thus ABCD is a square. We consider the two possible situations:

(a) At least one of the diagonals of ABCD is a diameter — say, ∠AOB + ∠BOC = 180◦. Then ∠ABC =
∠CDA = 90◦ and at least two of the angles AOB, BOC, COD and DOA must be 90◦: say, ∠AOB =
∠BOC = 90◦. Now, ∠COD = ∠DAB and ∠DOA = ∠BCD (see Figure 7). Using the fact that
1
2∠DOA = ∠DCA = ∠BCD − 45◦ we have ∠BCD = ∠DAB = 90◦.

(b) None of the diagonals of the quadrangle ABCD is a diameter. Then ∠AOB + ∠COD = ∠BOC +
∠DOA = 180◦ and no angle of the quadrangle ABCD is equal to 90◦. Consequently, none of the angles
AOB, BOC, COD and DOA is equal to 90◦. Without loss of generality we assume that ∠AOB > 90◦,
∠BOC > 90◦ (see Figure 8). Then ∠ABC < 90◦ and thus ∠ABC = ∠COD or ∠ABC = ∠DOA.
As ∠COD + ∠DOA = ∠AOC = 2∠ABC, we have ∠COD = ∠DOA and ∠AOB + ∠DOA = 180◦, a
contradiction.

20. Let Q be a unit cube. We say a tetrahedron is “good” if all its edges are equal and all its vertices lie on the
boundary of Q. Find all possible volumes of “good” tetrahedra.

Solution. Clearly, the volume of a regular tetrahedron contained in a sphere reaches its maximum value
if and only if all four vertices of the tetrahedron lie on the surface of the sphere. Therefore, a “good”
tetrahedron with maximum volume must have its vertices at the vertices of the cube (for a proof, inscribe
the cube in a sphere). There are exactly two such tetrahedra, their volume being equal to 1 − 4 · 1

6 = 1
3 .

On the other hand, one can find arbitrarily small “good” tetrahedra by applying homothety to the maximal
tetrahedron, with the centre of the homothety in one of its vertices.
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