
Baltic Way 2000

Oslo, November 4, 2000

Problems

1. Let K be a point inside the triangle ABC . Let M and N be points such
that M and K are on opposite sides of the line AB , and N and K are on
opposite sides of the line BC . Assume that

6 MAB = 6 MBA = 6 NBC = 6 NCB = 6 KAC = 6 KCA .

Show that MBNK is a parallelogram.

2. Given an isosceles triangle ABC with 6 A = 90◦ . Let M be the midpoint
of AB . The line passing through A and perpendicular to CM intersects
the side BC at P . Prove that 6 AMC = 6 BMP .

3. Given a triangle ABC with 6 A = 90◦ and |AB| 6= |AC| . The points
D , E , F lie on the sides BC , CA , AB , respectively, in such a way that
AFDE is a square. Prove that the line BC , the line FE and the line
tangent at the point A to the circumcircle of the triangle ABC intersect
in one point.

4. Given a triangle ABC with 6 A = 120◦ . The points K and L lie on
the sides AB and AC , respectively. Let BKP and CLQ be equilateral
triangles constructed outside the triangle ABC . Prove that

|PQ| >
√
3

2
· (|AB|+ |AC|) .

5. Let ABC be a triangle such that
|BC|

|AB| − |BC| =
|AB|+ |BC|

|AC| . Determine

the ratio 6 A : 6 C .

6. Fredek runs a private hotel. He claims that whenever n > 3 guests visit
the hotel, it is possible to select two guests who have equally many acquain-
tances among the other guests, and who also have a common acquaintance
or a common unknown among the guests. For which values of n is Fredek
right?
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(Acquaintance is a symmetric relation.)

7. In a 40× 50 array of control buttons, each button has two states: ON and
OFF. By touching a button, its state and the states of all buttons in the
same row and in the same column are switched. Prove that the array of
control buttons may be altered from the all-OFF state to the all-ON state
by touching buttons successively, and determine the least number of touches
needed to do so.

8. Fourteen friends met at a party. One of them, Fredek, wanted to go to bed
early. He said goodbye to 10 of his friends, forgot about the remaining
3, and went to bed. After a while he returned to the party, said goodbye
to 10 of his friends (not necessarily the same as before), and went to bed.
Later Fredek came back a number of times, each time saying goodbye to
exactly 10 of his friends, and then went back to bed. As soon as he had said
goodbye to each of his friends at least once, he did not come back again. In
the morning Fredek realised that he had said goodbye a different number of
times to each of his thirteen friends! What is the smallest possible number
of times that Fredek returned to the party?

9. There is a frog jumping on a 2k×2k chessboard, composed of unit squares.
The frog’s jumps are of length

√

1 + k2 and they carry the frog from the
center of a square to the center of another square. Some m squares of the
board are marked with an × , and all the squares into which the frog can
jump from an × ’d square (whether they carry an × or not) are marked
with an ◦ . There are n ◦ ’d squares. Prove that n > m .

10. Two positive integers are written on the blackboard. Initially, one of them
is 2000 and the other is smaller than 2000. If the arithmetic mean m of
the two numbers on the blackboard is an integer, the following operation is
allowed: one of the two numbers is erased and replaced by m . Prove that
this operation cannot be performed more than ten times. Give an example
where the operation can be performed ten times.

11. A sequence of positive integers a1, a2, . . . is such that for each m and n
the following holds: if m is a divisor of n and m < n , then am is a divisor
of an and am < an . Find the least possible value of a2000 .

12. Let x1, x2, . . . , xn be positive integers such that no one of them is an initial
fragment of any other (for example, 12 is an initial fragment of 12, 125 and
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12405). Prove that

1

x1

+
1

x2

+ · · ·+ 1

xn
< 3 .

13. Let a1 , a2, . . . , an be an arithmetic progression of integers such that i
divides ai for i = 1, 2, . . . , n − 1 and n does not divide an . Prove that n
is a power of a prime.

14. Find all positive integers n such that n is equal to 100 times the number
of positive divisors of n .

15. Let n be a positive integer not divisible by 2 or 3. Prove that for all
integers k , the number (k + 1)n − kn − 1 is divisible by k2 + k + 1.

16. Prove that for all positive real numbers a , b , c we have

√

a2 − ab+ b2 +
√

b2 − bc+ c2 >
√

a2 + ac+ c2 .

17. Find all real solutions to the following system of equations:







x + y + z + t = 5
xy + yz + zt + tx = 4
xyz + yzt + ztx + txy = 3
xyzt = −1

18. Determine all positive real numbers x and y satisfying the equation

x+ y +
1

x
+
1

y
+ 4 = 2 · (

√
2x+ 1 +

√

2y + 1) .

19. Let t >
1

2
be a real number and n a positive integer. Prove that

t2n > (t− 1)2n + (2t− 1)n .

20. For every positive integer n , let

xn =
(2n+ 1) · (2n+ 3) · · · · · (4n− 1) · (4n+ 1)

2n · (2n+ 2) · · · · · (4n− 2) · 4n .

Prove that
1

4n
< xn −

√
2 <

2

n
.
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Solutions

1. Denote 6 MAB = 6 MBA = · · · = α . Then

6 MAK = α+ ( 6 BAC − α) = 6 BAC ,

|AM |
|AB| =

1

2 cosα
and

|AK|
|AC| =

1

2 cosα
(see Figure 1). Hence the tri-

angles MAK and BAC are similar, implying |MK| = |BC|
2 cosα

. Since

|BN | = |BC|
2 cosα

, we have |MK| = |BN | . Similarly we can show that
|BM | = |NK| , and the result follows.

C K

N
P

A M B

Figure 1 Figure 2

A B

C

N

K

M

α

α α

α

αα

2. Choose the point K such that ABKC is a square. Let N be the point of
intersection of AP and BK (see Figure 2). Since the lines AN and CM
are perpendicular, N is the midpoint of BK . Moreover, triangles AMC
and BNA are congruent, which gives

6 AMC = 6 BNA . (1)

Since |BM | = |BN | and 6 MBP = 6 NBP , it follows that triangles MBP
and NBP are congruent. This implies that

6 BMP = 6 BNP . (2)

Combining (1) ja (2) yields the required equality.
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3. Let BC and FE meet at P (see Figure 3). It suffices to show that the line
AP is tangent to the circumcircle of the triangle ABC .

PSfrag replacements

A

B CD

E

F

P

Figure 3

Since FE is the axis of symmetry of the square AFDE , we have
6 APE = 6 BPF . Moreover, 6 AEP = 135◦ = 6 BFP . Hence triangles
APE and BPF are similar, and 6 CAP = 6 ABC , i.e. the line AP is
tangent to the circumcircle of ABC .

4. Since 6 ABC + 6 ACB = 60◦ , the lines BP and CQ are parallel. Let X
and Y be the feet of perpendiculars from A to BP and CQ , respectively

(see Figure 4). Then |AX| =
√
3

2
|AB| and |AY | =

√
3

2
|AC| . Since the

points X , A and Y are collinear, we get

|PQ| > |XY | =
√
3

2
(|AB|+ |AC|) .

120◦

K
LP

Q

Y

X

A

B C

Figure 4
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5. Answer: 1 : 2.

Denote |BC| = a , |AC| = b , |AB| = c . The condition
a

c− a
=

c+ a

b

implies c2 = a2 + ab and

c

a+ b
=

a

c
.

Let D be a point on AB such that |BD| = a

a+ b
· c (see Figure 5). Then

|BD|
|BC| =

c

a+ b
=

a

c
=
|BC|
|BA| ,

so triangles BCD and BAC are similar, implying 6 BCD = 6 BAC . Also,
|AC|
|BC| =

|AD|
|BD| yields

|BC|
|BD| =

|AC|
|AD| , and hence by the bisector theorem

CD is the bisector of 6 BCA . So the ratio asked for is 1 : 2.

D
c

B

A Cb

a

Figure 5

6. Answer: Fredek is right for all n 6= 4.
Suppose that any two guests of Fredek having the same number of acquain-
tances have neither a common acquaintance nor a common unknown. From
the set K of Fredek’s guests choose any two guests A and B having the
same number of acquaintances (the existence of such two guests follows
from the pigeonhole principle). It then follows from our assumption that A

and B have both either
1

2
n or

1

2
n− 1 acquaintances in K , depending on

whether A and B are acquainted or not. This proves in particular that for
any odd n Fredek is right.

Assume now that n is even, and n > 6. Choose from K \ {A,B} two
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guests C , D with the same number of acquaintances in K \ {A,B} . Since
every guest in K\{A,B} is acquaintance either with A or with B but not
with both, C and D have the same number of acquaintances in K , which
implies that they both have either

1

2
n or

1

2
n− 1 acquaintances in K .

Finally, choose from K\{A,B,C,D} two guests E , F with the same num-
ber of acquaintances in K \ {A,B,C,D} (this is possible as n > 6). Since
every guest in K \ {A,B,C,D} has exactly two acquaintances in the set
{A,B,C,D} , the guests E and F have the same number of acquaintances

in K , which means that they both have either 1
2
n or

1

2
n−1 acquaintances

in K . Thus at least four people among A , B , C , D , E , F have the same
number of acquaintances in K . Select any three of these four guests – then
one of these three is either a common acquaintance or a common unknown
for the other two.

For n = 4 Fredek is not right. The diagram on Figure 6 gives the coun-
terexample (where points indicate guests and lines show acquaintances).

u u

uu

Figure 6

A B

7. Answer: 2000.

Altering the state from all-OFF to all-ON requires that the state of each
button is changed an odd number of times. This is achieved by touching
each button once. We prove that the desired result cannot be achieved if
some button is never touched. In order to turn this button ON, the total
number of touches of the other buttons in its row and column must be odd.
Hence either the other buttons in its row or in its column — say, in its
row — must be touched an odd number of times altogether. In order to
change the state of each of these (odd number of) buttons an odd number
of times, the total number of touches of all the other buttons on the panel
(i.e. outside of the selected row) must be even. But then we have an even
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total number of state changes for the (odd number of) other buttons in the
selected column, whereas an odd number is required to alter the state of all
these buttons. Hence the minimal number of touches is 40 · 50 = 2000.

8. Answer: Fredek returned at least 32 times.

Assume Fredek returned k times, i.e. he was saying good-bye k + 1 times
to his friends. There exists a friend of Fredek, call him X13 , about whom
Fredek forgot k times in a row, starting from the very first time – otherwise
Fredek would have come back less than k times.

Consider the remaining friends of Fredek: X1, X2, . . . , X12 . Assume that
Fredek forgot xj times about each friend Xj . Since Fredek forgot a different
number of times about each of his friends, so we can assume w.l.o.g. that
xj > j−1 for j = 1, 2, . . . , 12. Since X13 was forgotten by Fredek k times,
and since Fredek forgot about exactly three of his friends each time, we
have

3(k + 1) = x1 + x2 + x3 + . . .+ x12 + k >

> 0 + 1 + 2 + 3 + . . .+ 11 + k =

= 66 + k .

Therefore 2k > 63, which gives k > 32.

It is possible that Fredek returned 32 times, i.e. he was saying good-bye
33 times to his friends. The following table shows this. The i -th column
displays the three friends Fredek forgot while saying good-bye for the i -th
time (i.e. before his i -th return). For simplicity we write j in place of Xj .

13 . . . 13 13 13 . . . 13 13 . . . 13 13 13 13 13 13 13 13 11
11 . . . 11 11 8 . . . 8 7 . . . 7 7 4 4 4 4 3 3 3
10 . . . 10
︸ ︷︷ ︸

10

9 9 . . . 9
︸ ︷︷ ︸

8

6 . . . 6
︸ ︷︷ ︸

6

5 5 5 5 5 2 2 1

9. Label the squares by pairs of integers (i, j) where 1 6 i, j 6 2k . Let L be
the set of all such pairs. Define a function f : L→ L by

f(i, j) =







(i+ 1, j + k) for i odd and j 6 k,
(i− 1, j + k) for i even and j 6 k,
(i+ 1, j − k) for i odd and j > k,
(i− 1, j − k) for i even and j > k.

It is easy to see that f is one-to-one. Let X ⊂ L be the set of × ’d
squares and O ⊂ L the set of ◦ ’d squares. Since the distance from (i, j) to
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(i± 1, j ± k) is
√

1 + k2 , we have f(i, j) ∈ O for every (i, j) ∈ X . Now,
since f is one-to-one, the number of elements in f(S) is the same as the
number of elements in S . As f(X) ⊂ O , the number of elements in X is
at most the number of elements in O , or m 6 n .

10. Each time the operation is performed, the difference between the two num-
bers on the blackboard will become one half of its previous value (regardless
of which number was erased). The mean value of two integers is an integer if
and only if their difference is an even number. Suppose the initial numbers
were a = 2000 and b . It follows that the operation can be performed n
times if and only if a− b is of the form 2nu . This shows that n 6 10 since
211 > 2000. Choosing b = 976 so that a − b = 1024 = 210 , the operation
can be performed 10 times.

11. Answer: 128.

Let d denote the least possible value of a2000 . We shall prove that d = 128.

Clearly the sequence defined by a1 = 1 and an = 2α1+α2+···+αk for
n = pα1

1 pα2

2 · · · · · pαk

k has the required property. Since 2000 = 24 · 53 ,
we have a2000 = 2

4+3 = 128 and therefore d 6 128.

Note that in the sequence 1 < 5 < 25 < 125 < 250 < 500 < 1000 < 2000
each term is divisible by the previous one. As a1 > 1 it follows that

a2000 > 2 · a1000 > 22 · a500 > 23 · a250 > . . . > 27 · a1 > 27 = 128 .

12. Let {y1, . . . , yk} ⊂ {x1, . . . , xn} be a subset of numbers with the maximal
number of digits, and differing from one another only by their last dig-
its: y1 = yα1 , y2 = yα2 , . . . , yk = yαk (here yαi denotes the number
consisting of y as its initial fragment and αi as its last digit). Then we
have

1

y1

+ . . .+
1

yk
6
1

y0
+ . . .+

1

y9
< 10 · 1

y0
=
1

y
.

Let’s replace all numbers y1, y2, . . . , yk by a single y in the set {x1, . . . , xn} .
Then the obtained set of numbers still has the property mentioned in the
statement of the problem, and the sum of their reciprocals does not decrease.
Continuing to reduce the given set of numbers in the same way, we finally
obtain

1

x1

+
1

x2

+ · · ·+ 1

xn
6
1

1
+
1

2
+ . . .+

1

9
< 3 .
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13. Assume ai = k + di for i = 1, 2, . . . , n . Then k is a multiple of every
i ∈ {1, 2, . . . , n − 1} but not a multiple of n . If n = ab with a, b > 1 and
gcd(a, b) = 1, then k is divisible by both a and b , but not by n , which is
a contradiction. Hence, n has only one prime factor.

14. Answer: 2000 is the only such integer.

Let d(n) denote the number of positive divisors of n and p . n denote
the exponent of the prime p in the canonical representation of n . Let

δ(n) =
n

d(n)
. Using this notation, the problem reformulates as follows:

Find all positive integers n such that δ(n) = 100.

Lemma: Let n be an integer and m its proper divisor. Then δ(m) 6 δ(n)
and the equality holds if and only if m is odd and n = 2m .

Proof. Let n = mp for a prime p . By the well-known formula

d(n) =
∏

p

(1 + p . n)

we have

δ(n)

δ(m)
=

n

m
· d(m)
d(n)

= p · 1 + p . m

1 + p . n
= p · p . n

1 + p . n
> 2 · 1

2
= 1,

hence δ(m) 6 δ(n) . It is also clear that equality holds if and only if p = 2
and p . n = 1, i.e. m is odd and n = 2m .

For the general case n = ms where s > 1 is an arbitrary positive integer,
represent s as a product of primes. By elementary induction on the num-
ber of factors in the representation we prove δ(m) 6 δ(n) . The equality
can hold only if all factors are equal to 2 and the number m as well as
any intermediate result of multiplying it by these factors is odd, i.e. the
representation of s consists of a single prime 2, which gives n = 2m . This
proves the lemma.

Now assume that δ(n) = 100 for some n , i.e. n = 100 ·d(n) = 22 ·52 ·d(n) .
In the following, we estimate the exponents of primes in the canonical rep-
resentation of n , using the fact that 100 is a divisor of n .

(1) Observe that δ(27 ·52) = 2
5 · 100
8 · 3 =

3200

24
> 100. Hence 2.n 6 6, since

otherwise 27 · 52 divides n and, by the lemma, δ(n) > 100.
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(2) Observe that δ(22 ·54) = 5
2 · 100
3 · 5 =

2500

15
> 100. Hence 5.n 6 3, since

otherwise 22 · 54 divides n and, by the lemma, δ(n) > 100.

(3) Observe that δ(22 · 52 · 34) = 3
4 · 100
3 · 3 · 5 =

8100

45
> 100. Hence 3 . n 6 3,

since otherwise 22 · 52 · 34 divides n and, by the lemma, δ(n) > 100.

(4) Take a prime q > 5 and an integer k > 4. Then

δ(22 · 52 · qk) = 22 · 52 · qk
d(22 · 52 · qk) =

22 · 52 · qk
d(22 · 52 · 3k) >

22 · 52 · 3k
d(22 · 52 · 3k) =

= δ(22 · 52 · 3k) > 100.

Hence, similarly to the previous cases, we get q . n 6 3.

(5) If a prime q > 7 divides n , then q divides d(n) . Thus q divides
1 + p . n for some prime p . But this is impossible because, as the previous
cases showed, p . n 6 6 for all p . So n is not divisible by primes greater
than 7.

(6) If 7 divides n , then 7 divides d(n) and hence divides 1 + p . n for
some prime p . By (1)–(4), this implies p = 2 and 2 . n = 6. At the same
time, if 2 . n = 6, then 7 divides d(n) and n . So 7 divides n if and only

if 2 . n = 6. Since δ(26 · 52 · 7) = 24 · 7 · 100
7 · 3 · 2 =

11200

42
> 100, both of

these conditions cannot hold simultaneously. So n is not divisible by 7 and
2 . n 6 5.

(7) If 5 . n = 3, then 5 divides d(n) and hence divides 1 + p . n for some
prime p . By (1)–(4), this implies p = 2 and 2 . n = 4. At the same time,

if 2 . n = 4, then 5 divides d(n) , 53 divides n and, by (2), 5 . n = 3. So

5 . n = 3 if and only if 2 . n = 4. Since δ(24 · 53) = 2
2 · 5 · 100
5 · 4 = 100, we

find that n = 24 · 53 = 2000 satisfies the required condition. On the other
hand, if 2 . n = 4 and 5 . n = 3 for some n 6= 2000, then n = 2000s for
some s > 1 and, by the lemma, δ(n) > 100.

(8) The case 5 . n = 2 has remained. By (7), we have 2 . n 6= 4, so
2 . n ∈ {2, 3, 5} . The condition 5 . n = 2 implies that 3 divides d(n)
and n , thus 3 . n ∈ {1, 2, 3} . If 2 . n = 3, then d(n) is divisible by 2
but not by 4. At the same time 2 . n = 3 implies 3 + 1 = 4 divides
d(n) , a contradiction. Thus 2 . n ∈ {2, 5} , and 32 divides d(n) and n , i.e.
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3 . n ∈ {2, 3} . Now 3 . n = 2 would imply that 33 divides d(n) and n , a
contradiction; on the other hand 3 . n = 3 would imply 3 . d(n) = 2 and
hence 3 . n = 2, a contradiction.

15. Note that n must be congruent to 1 or 5 modulo 6, and proceed by
induction on bn/6c . It can easily be checked that the assertion holds for
n ∈ {1, 5} . Let n > 6, and put t = k2 + k + 1. The claim follows by:

(k + 1)n − kn − 1 = (t+ k)(k + 1)n−2 −
(
t− (k + 1)

)
kn−2 − 1

≡ k(k + 1)n−2 + (k + 1)kn−2 − 1
≡ (t− 1)

(
(k + 1)n−3 + kn−3

)
− 1

≡ −(k + 1)n−3 − kn−3 − 1
≡ −(t+ k)(k + 1)n−5 −

(
t− (k + 1)

)
kn−5 − 1

≡ −k(k + 1)n−5 + (k + 1)kn−5 − 1
≡ −(t− 1)

(
(k + 1)n−6 − kn−6

)
− 1

≡ (k + 1)n−6 − kn−6 − 1 (mod t).

Alternative solution. Let P (k) = (k + 1)n − kn − 1, and let ω1 , ω2 be

the two roots of the quadratic polynomial k2 + k+1. The problem is then
equivalent to showing that P (ω1) = P (ω2) = 0 when gcd(n, 6) = 1, which
is easy to check.

A

B

C

O

a c

b

60◦ 60◦

Figure 7

16. If |OA| = a , |OB| = b , |OC| = c (see Figure 7), then the inequality follows
from |AC| 6 |AB|+|BC| by applying the cosine theorem to triangles AOB ,
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BOC and AOC . The same argument holds if the quadrangle OABC is
concave.

17. Answer : x =
1±

√
2

2
, y = 2, z =

1∓
√
2

2
, t = 2 or x = 2, y =

1±
√
2

2
,

z = 2, t =
1∓

√
2

2
.

Let A = x+ z and B = y + t . Then the system of equations is equivalent
to






A+B = 5
AB = 4

Bxz +Ayt = 3
(Bxz) · (Ayt) = −4 .

The first two of these equations imply {A, B} = {1, 4} and the last two
give {Bxz, Ayt} = {−1, 4} . Once A = x + z , B = y + t , Bxz and Ayt
are known, it is easy to find the corresponding values of x , y , z and t .
The solutions are shown in the following table.

A B Bxz Ayt x, z y, t

1 4 -1 4
1±

√
2

2
2

1 4 4 -1 - -
4 1 -1 4 - -

4 1 4 -1 2
1±

√
2

2

18. Answer : x = y = 1 +
√
2.

Note that

x+
1

x
+ 2− 2

√
2x+ 1 =

x2 + 2x+ 1− 2x
√
2x+ 1

x
=
1

x
(x−

√
2x+ 1)2 .

Hence the original equation can be rewritten as

1

x

(

x−
√
2x+ 1

)2

+
1

y

(

y −
√

2y + 1
)2

= 0 .

For x, y > 0 this gives x−
√
2x+ 1 = 0 and y −

√

2y + 1. It follows that

the only solution is x = y = 1 +
√
2.
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19. Use induction. For n = 1 the inequality reads t2 > (t−1)2+(2t−1) which
is obviously true. To prove the induction step it suffices to show that

t2(t− 1)2n + t2(2t− 1)n > (t− 1)2n+2 + (2t− 1)n+1 .

This easily follows from t2 > (t−1)2 (which is true for t >
1

2
) and t2 > 2t−1

(which is true for any real t).

Alternative solution. Note that

t2n = (t2)n =
(
(t− 1)2 + (2t− 1)

)n
.

Applying the binomial formula to the right-hand side we obtain a sum
containing both summands of the right-hand side of the given equality and
other summands each of which is clearly non-negative.

20. Squaring both sides of the given equality and applying x(x+ 2) 6 (x+ 1)2

to the numerator of the obtained fraction and cancelling we have

x2
n 6

(2n+ 1) · (4n+ 1)
(2n)2

< 2 +
2

n
.

Similarly (applying x(x+2) 6 (x+1)2 to the denominator and cancelling)
we get

x2
n >

(4n+ 1)2

2n · 4n > 2 +
1

n
.

Hence

1

n
< x2

n − 2 <
2

n

and

1

n(xn +
√
2)

< xn −
√
2 <

2

n(xn +
√
2)

.

From the first chain of inequalities we get xn >
√
2 and xn < 2. The result

then follows from the second chain of inequalities.
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Comment. These inequalities can easily be improved. For example, the
inequalities in the solution involving x2

n can immediately be replaced by
3

2n
< x2

n − 2 <
2

n
.
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