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Problems and solutions

Problem 1. Determine all polynomials p(x) with real coefficients such that

p((x + 1)3) = (p(x) + 1)3

and

p(0) = 0.

Answer: p(x) = x .

Solution: Consider the sequence defined by

{
a0 = 0

an+1 = (an + 1)3.

It follows inductively that p(an) = an . Since the polynomials p and x agree on infinitely many points, they
must be equal, so p(x) = x .

Problem 2. Prove that if the real numbers a , b and c satisfy a2 + b2 + c2 = 3 then

a2

2 + b + c2 + b2

2 + c + a2 + c2

2 + a + b2 ≥ (a + b + c)2

12
.

When does equality hold?

Solution: Let 2 + b + c2 = u , 2 + c + a2 = v , 2 + a + b2 = w . We note that it follows from a2 + b2 + c2 = 3 that
a, b, c ≥ −

p
3 > −2. Therefore, u , v and w are positive. From the Cauchy-Schwartz inequality we get then

(a + b + c)2 =
(

ap
u

p
u + bp

v

p
v + cp

w

p
w

)2

≤
(

a2

u
+ b2

v
+ c2

w

)
(u + v + w) .

Here,

u + v + w = 6 + a + b + c + a2 + b2 + c2 = 9 + a + b + c .

Invoking once more the Cauchy-Schwartz inequality, we get

(a + b + c)2 = (a · 1 + b · 1 + c · 1)2 ≤ (a2 + b2 + c2)(1 + 1 + 1) = 9 ,

whence a + b + c ≤ 3 and u + v + w ≤ 12. The proposed inequality follows.

In the second application above of the Cauchy-Schwartz inequality, equality requires a = b = c . If this is
satified, u + v + w = 12, which is equivalent to a + b + c = 3, requires a = b = c = 1. It is seen by a direct
check that equality holds in the proposed inequality in this case.

Problem 3. Does there exist an angle α ∈ (0,π/2) such that sinα, cosα, tanα and cotα, taken in some order,
are consecutive terms of an arithmetic progression?

Answer: No.
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Solution: Suppose that there is an x such that 0 < x < π

2
and sin x , cos x , tan x , cot x in some order are

consecutive terms of an arithmetic progression.

Suppose x ≤ π

4
. Then sin x ≤ sin

π

4
= cos

π

4
≤ cos x < 1 ≤ cot x and sin x < sin x

cos x
= tan x ≤ 1 ≤ cot x , hence

sin x is the least and cot x is the greatest among the four terms. Thereby, sin x < cot x , therefore equalities
do not occur.

Independently on whether the order of terms is sin x < tan x < cos x < cot x or sin x < cos x < tan x < cot x ,
we have cos x − sin x = cot x − tan x . As

cot x − tan x = cos x

sin x
− sin x

cos x
= cos2 x − sin2 x

cos x sin x
= (cos x − sin x)(cos x + sin x)

cos x sin x
,

we obtain cos x − sin x = (cos x − sin x)(cos x + sin x)

cos x sin x
. As cos x > sin x , we can reduce by cos x − sin x and

get

1 = cos x + sin x

cos x sin x
= 1

sin x
+ 1

cos x
.

But 0 < sin x < 1 and 0 < cos x < 1, hence
1

sin x
and

1

cos x
are greater than 1 and their sum cannot equal 1,

a contradiction.

If x > π

4
then 0 < π

2
− x < π

4
. As the sine, cosine, tangent and cotangent of

π

2
− x are equal to the sine,

cosine, tangent and cotangent of x in some order, the contradiction carries over to this case, too.

Solution 2: The case x ≤ π

4
can also be handled as follows. Consider two cases according to the order of the

intermediate two terms.

If the order is sin x < tan x < cos x < cot x then using AM-GM gives

cos x = tan x + cot x

2
>
p

tan x · cot x =
p

1 = 1

which is impossible.

Suppose the other case, sin x < cos x < tan x < cot x . From equalities

sin x + tan x

2
= cos x and

cos x + cot x

2
= tan x,

one gets

tan x(cos x + 1) = 2 cos x,

cot x(sin x + 1) = 2 tan x,

respectively. By multiplying the corresponding sides, one obtains (cos x + 1)(sin x + 1) = 4 sin x , leading to
cos x sin x + cos x + 1 = 3 sin x . On the other hand, using cos x > sin x and AM-GM gives

cos x sin x + cos x + 1 > sin2 x + sin x + 1 ≥ 2 sin x + sin x = 3 sin x,

a contradiction.

Problem 4. The polynomial P has integer coefficients and P (x) = 5 for five different integers x . Show that
there is no integer x such that −6 ≤ P (x) ≤ 4 or 6 ≤ P (x) ≤ 16.

Solution: Assume P (xk ) = 5 for different integers x1 , x2 , . . . , x5 . Then

P (x) − 5 =
5∏

k=1
(x − xk )Q(x),
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where Q is a polynomial with integral coefficients. Assume n satisfies the condition in the problem. Then
|n−5| ≤ 11. If P (x0) = n for some integer x0 , then n−5 is a product of six non-zero integers, five of which are
different. The smallest possible absolute value of a product of five different non-zero integers is 12 ·22 ·3 = 12.

Problem 5. Suppose that Romeo and Juliet each have a regular tetrahedron to the vertices of which some
positive real numbers are assigned. They associate each edge of their tetrahedra with the product of the two
numbers assigned to its end points. Then they write on each face of their tetrahedra the sum of the three
numbers associated to its three edges. The four numbers written on the faces of Romeo’s tetrahedron turn
out to coincide with the four numbers written on Juliet’s tetrahedron. Does it follow that the four numbers
assigned to the vertices of Romeo’s tetrahedron are identical to the four numbers assigned to the vertices of
Juliet’s tetrahedron?

Answer: Yes.

Solution: Let us prove that this conclusion can in fact be drawn. For this purpose we denote the numbers
assigned to the vertices of Romeo’s tetrahedron by r1 , r2 , r3 , r4 and the numbers assigned to the vertices of
Juliette’s tetrahedron by j1 , j2 , j3 , j4 in such a way that

r2r3 + r3r4 + r4r2 = j2 j3 + j3 j4 + j4 j2 (1)

r1r3 + r3r4 + r4r1 = j1 j3 + j3 j4 + j4 j1 (2)

r1r2 + r2r4 + r4r1 = j1 j2 + j2 j4 + j4 j1 (3)

r1r2 + r2r3 + r3r1 = j1 j2 + j2 j3 + j3 j1 (4)

We intend to show that r1 = j1 , r2 = j2 , r3 = j3 and r4 = j4 , which clearly suffices to establish our claim.
Now let

R = {i | ri > ji }

denote the set indices where Romeo’s corresponding number is larger and define similarly

J = {i | ri < ji }.

If we had |R| > 2, then w.l.o.g. {1, 2, 3} ⊆ R , which easily contradicted (4). Therefore |R| ≤ 2, so let us suppose
for the moment that |R| = 2. Then w.l.o.g. R = {1, 2}, i.e. r1 > j1 , r2 > j2 , r3 ≤ j3 , r4 ≤ j4 . It follows that
r1r2 − r3r4 > j1 j2 − j3 j4 , but (1) + (2) − (3) − (4) actually tells us that both sides of this strict inequality are
equal. This contradiction yields |R| ≤ 1 and replacing the roles Romeo and Juliet played in the argument just
performed we similarly infer |J | ≤ 1. For these reasons at least two of the four desired equalities hold, say
r1 = 11 and r2 = j2 . Now using (3) and (4) we easily get r3 = j3 and r4 = j4 as well.

Problem 6. Find all finite sets of positive integers with at least two elements such that for any two numbers

a , b (a > b ) belonging to the set, the number
b2

a − b
belongs to the set, too.

Answer: X = {a, 2a}, where a is an arbitrary nonnegative integer.

Solution: Let X be a set we seek for, and a be its minimal element. For each other element b we have
a2

b − a
≥ a , hence b ≤ 2a . Therefore all the elements of X belong to the interval [a, 2a]. So the quotient of

any two elements of X is at most 2.

Now consider two biggest elements d and c , c < d . Since d ≤ 2c we conclude that
c2

d − c
≥ c . Hence

c2

d − c
= d or

c2

d − c
= c . The first case is impossible because we obtain an equality (c/d)2 + (c/d) − 1 = 0,

which implies that c/d is irrational. Therefore we have the second case and c2 = dc − c2 , i.e. c = d/2. Thus
the set X could contain only one element except d , and this element should be equal to d/2. It is clear that
all these sets satisfy the condition of the problem.
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Problem 7. How many pairs (m, n) of positive integers with m < n fulfill the equation

3

2008
= 1

m
+ 1

n
?

Answer: 5.

Solution: Let d be the greatest common divisor of m and n , and let m = d x and n = d y . Then the equation
is equivalent to

3d x y = 2008(x + y).

The numbers x and y are relatively prime and have no common divisors with x + y and hence they are both
divisors of 2008. Notice that 2008 = 8 · 251 and 251 is a prime. Then x and y fulfil:
1) They are both divisors of 2008.
2) Only one of them can be even.
3) The number 251 can only divide none or one of them.
4) x < y .

That gives the following possibilities of (x, y):

(1, 2), (1, 4), (1, 8), (1, 251), (1, 2 · 251), (1, 4 · 251), (1, 8 · 251), (2, 251), (4, 251), (8, 251).

The number 3 does not divide 2008 and hence 3 divides x + y . That shortens the list down to

(1, 2), (1, 8), (1, 251), (1, 4 · 251), (4, 251).

For every pair (x, y) in the list determine the number d = 2008

x y
· x + y

3
. It is seen that x y divides 2008 for all

(x, y) in the list and hence d is an integer. Hence exactly 5 solutions exist to the equation.

Problem 8. Consider a set A of positive integers such that the least element of A equals 1001 and the product
of all elements of A is a perfect square. What is the least possible value of the greatest element of A?

Answer: 1040.

Solution: We first prove that max A has to be at least 1040.

As 1001 = 13 · 77 and 13 - 77, the set A must contain a multiple of 13 that is greater than 13 · 77. Consider
the following cases:

• 13 · 78 ∈ A . But 13 · 78 = 132 · 6, hence A must also contain some greater multiple of 13.

• 13 · 79 ∈ A . As 79 is a prime, A must contain another multiple of 79, which is greater than 1040 as
14 · 79 > 1040 and 12 · 79 < 1001.

• 13 · k ∈ A for k ≥ 80. As 13 · k ≥ 13 · 80 = 1040, we are done.

Now take A = {1001, 1008, 1012, 1035, 1040}. The prime factorizations are 1001 = 7 · 11 · 13, 1008 = 7 · 24 · 32 ,
1012 = 22 · 11 · 23, 1035 = 5 · 32 · 23, 1040 = 24 · 5 · 13. The sum of exponents of each prime occurring in these
representations is even. Thus the product of elements of A is a perfect square.

Problem 9. Suppose that the positive integers a and b satisfy the equation

ab − ba = 1008.

Prove that a and b are congruent modulo 1008.
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Solution: Observe that 1008 = 24 · 32 · 7. First we show that a and b cannot both be even. For suppose the
largest of them were equal to 2x and the smallest of them equal to 2y , where x ≥ y ≥ 1. Then

±1008 = (2x)2y − (2y)2x ,

so that 22y divides 1008. It follows that y ≤ 2. If y = 2, then ±1008 = (2x)4 − 42x , and

±63 = x4 − 42x−2 = (x2 + 4x−1)(x2 − 4x−1).

But x2 − 4x−1 is easily seen never to divide 63; already at x = 4 it is too large. Suppose that y = 1. Then
±1008 = (2x)2 − 22x , and

±252 = x2 − 22x−2 = (x + 2x−1)(x − 2x−1).

This equation has no solutions. Clearly x must be even. x = 2, 4, 6, 8 do not work, and when x ≥ 10, then
x + 2x−1 > 252.

We see that a and b cannot both be even, so they must both be odd. They cannot both be divisible by 3, for

then 1008 = ab −ba would be divisible by 27; therefore neither of them is. Likewise, none of them is divisible
by 7.

Everything will now follow from repeated use of the following fact, where ϕ denotes Euler’s totient function:

If n | 1008, a and b are relatively prime to both n and ϕ(n), and a ≡ b mod ϕ(n), then also a ≡ b mod n.

To prove the fact, use Euler’s Totient Theorem: aϕ(n) ≡ bϕ(n) ≡ 1 mod n . From a ≡ b ≡ d mod ϕ(n), we get

0 ≡ 1008 = ab − ba ≡ ad − bd mod n,

and since d is invertible modulo ϕ(n), we may deduce that a ≡ b mod n .

Now begin with a ≡ b ≡ 1 mod 2. From ϕ(4) = 2, ϕ(8) = 4 and ϕ(16) = 8, we get congruence of a and b
modulo 4, 8 and 16 in turn. We established that a and b are not divisible by 3. Since ϕ(3) = 2, we get a ≡ b
mod 3, then from ϕ(9) = 6, deduce a ≡ b mod 9. Finally, since a and b are not divisible by 7, and ϕ(7) = 6,
infer a ≡ b mod 7.

Consequently, a ≡ b mod 1008. We remark that the equation possesses at least one solution, namely
10091 − 11009 = 1008. It is unknown whether there exist others.

Problem 10. For a positive integer n , let S(n) denote the sum of its digits. Find the largest possible value of

the expression
S(n)

S(16n)
.

Answer: 13

Solution: It is obvious that S(ab) ≤ S(a)S(b) for all positive integers a and b . From here we get

S(n) = S(n · 10000) = S(16n · 625) ≤ S(16n) · 13;

so we get
S(n)

S(16n)
≤ 13.

For n = 625 we have an equality. So the largest value is 13.

Problem 11. Consider a subset A of 84 elements of the set {1, 2, . . . , 169} such that no two elements in the
set add up to 169. Show that A contains a perfect square.

Solution: If 169 ∈ A , we are done. If not, then

A ⊂
84⋃

k=1
{k, 169 − k}.
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Since the sum of the numbers in each of the sets in the union is 169, each set contains at most one element
of A ; on the other hand, as A has 84 elements, each set in the union contains exactly one element of A . So
there is an a ∈ A such that a ∈ {25, 144}. a is a perfect square.

Problem 12. In a school class with 3n children, any two children make a common present to exactly one
other child. Prove that for all odd n it is possible that the following holds:

For any three children A , B and C in the class, if A and B make a present to C then A and C make a present
to B .

Solution: Assume there exists a set S of sets of three children such that any set of two children is a subset of
exactly one member of S , and assume that the children A and B make a common present to C if and only
if {A, B , C } ∈ S . Then it is true that any two children A and B make a common present to exactly one other
child C , namely the unique child such that {A, B , C } ∈ S . Because {A, B , C } = {A, C , B } it is also true that if A
and B make a present to C then A and C make a present to B . We shall construct such a set S .

Let A1 , . . . , An , B1 , . . . Bn , C1 , . . . , Cn be the children, and let the following sets belong to S . (1) {Ai , Bi , Ci }
for 1 ≤ i ≤ n . (2) {Ai , A j , Bk }, {Bi , B j , Ck } and {Ci , C j , Ak } for 1 ≤ i < j ≤ n , 1 ≤ k ≤ n and i+ j ≡ 2k (mod n).
We note that because n is odd, the congruence i + j ≡ 2k (mod n) has a unique solution with respect to k
in the interval 1 ≤ k ≤ n . Hence for 1 ≤ i < j ≤ n the set {Ai , A j } is a subset of a unique set {Ai , A j , Bk } ∈ S ,
and similarly the sets {Bi , B j } and {Ci , C j }. The relations i + j ≡ 2i (mod n) and i + j ≡ 2 j (mod n) both
imply i ≡ j (mod n), which contradicts 1 ≤ i < j ≤ n . Hence for 1 ≤ i ≤ n , the set {Ai , Bi , Ci } is the only
set in S of which any of the sets {Ai , Bi } {Ai , Ci } and {Bi , Ci } is a subset. For i 6= k , the relations i + j ≡ 2k
(mod n) and 1 ≤ j ≤ n determine j uniquely, and we have i 6= j because otherwise i + j ≡ 2k (mod n)
implies i ≡ k (mod n), which contradicts i 6= k . Thus {Ai , Bk } is a subset of the unique set {Ai , A j , Bk } ∈ S .
Similarly {Bi , Ck } and {Ai , Ck }. Altogether, each set of two children is thus a subset of a unique set in S .

Problem 13. For an upcoming international mathematics contest, the participating countries were asked to
choose from nine combinatorics problems. Given how hard it usually is to agree, nobody was surprised that
the following happened:

• Every country voted for exactly three problems.

• Any two countries voted for different sets of problems.

• Given any three countries, there was a problem none of them voted for.

Find the maximal possible number of participating countries.

Answer: 56

Solution: Certainly, the 56 three-element subsets of the set {1, 2, . . . , 8} would do. Now we prove that 56 is
the maximum. Assume we have a maximal configuration. Let Y be the family of the three-element subsets,
which were chosen by the participating countries and N be the family of the three-element subsets, which

were not chosen by the participating countries. Then |Y | + |N | =
(

9

3

)
= 84. Consider an x ∈ Y . There are

(
6

3

)
= 20 three-element subsets disjoint to x , which can be partitioned into 10 pairs of complementary sub-

sets. At least one of the two sets of those pairs of complementary sets have to belong to N , otherwise these
two together with x have the whole sets as union, i.e., three countries would have voted for all problems.
Therefore, to any x ∈ Y there are associated at least 10 sets of N . On the other hand, a set y ∈ N can be asso-
ciated not more than to 20 sets, since there are exactly 20 disjoint sets to y . Together we have 10 · |Y | ≤ 20 · |N |
and

|Y | = 2

3
|Y | + 1

3
|Y | ≤ 2

3
|Y | + 2

3
|N | = 2

3
(|Y | + |N |) = 2

3
· 84 = 56.

Remark: The set of the 84 three-element subsets can be partitioned into 28 triples of pairwise disjoint sets.
From any of those triples at most two can be chosen. The partition is not obvious, but possible.
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Problem 14. Is it possible to build a 4 × 4 × 4 cube from blocks of the following shape consisting of 4 unit
cubes?

Answer: Yes.

Solution: It is possible to put two blocks together to form a new block that covers an area of shape

whereby the part marked with crosses has two layers.

From two such new blocks, one can build figure

Taking two such figures, turning one of them upside down and rotating 90 degrees, leads to a 4 × 4× 2 block.
Finally, two such blocks together form the desired cube.

Problem 15. Some 1 × 2 dominoes, each covering two adjacent unit squares, are placed on a board of size
n × n so that no two of them touch (not even at a corner). Given that the total area covered by the dominoes
is 2008, find the least possible value of n .

Answer: 77

Solution: Following the pattern from the figure, we have space for

6 + 18 + 30 + . . . + 150 = 156 · 13

2
= 1014

dominoes, giving the area 2028 > 2008.
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The square 76× 76 is not enough. If it was, consider the "circumferences" of the 1004 dominoes of size 2× 3,
see figure; they should fit inside 77 × 77 square without overlapping. But 6 · 1004 = 6024 > 5929 = 77 · 77.

Problem 16. Let ABC D be a parallelogram. The circle with diameter AC intersects the line BD at points
P and Q . The perpendicular to the line AC passing through the point C intersects the lines AB and AD at
points X and Y , respectively. Prove that the points P , Q , X and Y lie on the same circle.

Solution: If the lines BD and X Y are parallel the statement is trivial. Let M be the intersection point of BD
and X Y .

By Intercept Theorem MB/MD = MC /MY and MB/MD = M X /MC , hence MC 2 = M X · MY . By the
circle property MC 2 = MP · MQ (line MC is tangent and line MP is secant to the circle). Therefore we have
M X · MY = MP · MQ and the quadrilateral PQY X is inscribed.

Problem 17. Assume that a , b , c and d are the sides of a quadrilateral inscribed in a given circle. Prove that
the product (ab + cd)(ac + bd)(ad + bc) acquires its maximum when the quadrilateral is a square.

Solution: Let ABC D be the quadrilateral, and let AB = a , BC = b , C D = c , AD = d , AC = e , BD = f .
Ptolemy’s Theorem gives ac + bd = e f . Since the area of triangle ABC is abe/4R , where R is the circumra-
dius, and similarly the area of triangle AC D , the product (ab + cd)e equals 4R times the area of quadrilateral
ABC D . Similarly, this is also the value of the product f (ad + bc), so (ab + cd)(ac + bd)(ad + bc) is maximal

when the quadrilateral has maximal area. Since the area of the quadrilateral is equal to
1

2
e f sin u , where u

is one of the angles between the diagonals AC and BD , it is maximal when all the factors of the product
de sin u are maximal. The diagonals d and e are maximal when they are diagonals of the circle, and sin u is
maximal when u = 90◦ . Thus, (ab + cd)(ac + bd)(ad + bc) is maximal when ABC D is a square.

Problem 18. Let AB be a diameter of a circle S , and let L be the tangent at A . Furthermore, let c be a
fixed, positive real, and consider all pairs of points X and Y lying on L , on opposite sides of A , such that
|AX | · |AY | = c . The lines B X and BY intersect S at points P and Q , respectively. Show that all the lines PQ
pass through a common point.

Solution: Let S be the unit circle in the x y -plane with origin O , put A = (1, 0), B = (−1, 0), take L as the line

x = 1, and suppose X = (1, 2p) and Y = (1,−2q), where p and q are positive real numbers with pq = c

4
. If

α = ∠ABP and β = ∠ABQ , then tanα = p and tanβ = q .

Let PQ intersect the x -axis in the point R . By the Inscribed Angle Theorem, ∠ROP = 2α and ∠ROQ = 2β.
The triangle OPQ is isosceles, from which ∠OPQ = ∠OQP = 90◦ −α−β, and ∠ORP = 90◦ −α+β. The Law
of Sines gives

OR

sin ∠OPR
= OP

sin ∠ORP
,

which implies

OR = sin ∠OPR

sin ∠ORP
= sin(90◦ − α− β)

sin(90◦ − α+ β)
= cos(α+ β)

cos(α− β)

= cosα cosβ− sinα sinβ

cosα cosβ+ sinα sinβ
= 1 − tanα tanβ

1 + tanα tanβ

= 1 − pq

1 + pq
=

1 − c
4

1 + c
4

= 4 − c

4 + c
.
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Hence the point R lies on all lines PQ .

Solution 2: Perform an inversion in the point B . Since angles are preserved under inversion, the problem
transforms into the following: Let S be a line, let the circle L be tangent to it at point A , with ∞ as the
diametrically opposite point. Consider all points X and Y lying on L , on opposite sides of A , such that if

α = ∠AB X and β = ∠ABY , then tanα tanβ = c

4
. The lines X∞ and Y ∞ will intersect S in points P and Q ,

respectively. Show that all the circles PQ∞ will pass through a common point.

To prove this, draw the line through A and ∞, and define R as the point lying on this line, opposite to ∞,

and at distance
cr

2
from A , where r is the radius of L . Since

tanα = |AP |
2r

, tanβ = |AQ|
2r

,

we have

c

4
= tanα tanβ = |AP ||AQ|

4r 2 ,

so that |AP | = cr 2

|AQ| , whence

tan ∠∞RP = |AP |
|AR| =

cr 2

|AQ|
cr
2

= 2r

|AQ| = tan ∠∞QP.

Consequently, ∞, P , Q , and R are concyclic.

Problem 19. In a circle of diameter 1, some chords are drawn. The sum of their lengths is greater than 19.
Prove that there is a diameter intersecting at least 7 chords.

Solution: For each hord consider the smallest arc subtended by it and the symmetric image of this arc ac-

cordingly to the center. The sum of lengths of all these arcs is more than 19 · 2 = 38. As
38

π · 1
> 12, there is a

point on the circumference belonging to > 12

2
original arcs, so it belongs to ≥ 7 original arcs. We can take a

diameter containing this point.

Problem 20. Let M be a point on BC and N be a point on AB such that AM and C N are angle bisectors of
the triangle ABC . Given that

∠B N M

∠M NC
= ∠B M N

∠N M A
,

prove that the triangle ABC is isosceles.

I

B

A C

MN

O
α

α β

β

γ
ε

δ
φ
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Solution: Let O and I be the incentres of ABC and N B M , respectively; denote angles as in the figure. We
get

α+ β = ε+ϕ, γ+ δ = 2α+ 2β, γ = k · ε, δ = k ·ϕ.

From here we get k = 2. Therefore 4N I M = 4NOM , so IO ⊥ N M . In the triangle N B M the bisector
coincides with the altitude, so B N = B M . So we get

AB · BC

AC + BC
= BC · AB

AB + AC

and AB = BC .
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