
English

BALTIC WAY 2010 � SOLUTIONS

REYKJAVIK, NOVEMBER 6TH 2010

Time allowed: 41
2 hours.

Questions may be asked during the �rst 30 minutes.
The only tools allowed are a ruler and a compass.
Each problem is worth 5 points.

Problem 1. Find all quadruples of real numbers (a, b, c, d) satisfying the system of equations
(b+ c+ d)2010 = 3a

(a+ c+ d)2010 = 3b

(a+ b+ d)2010 = 3c

(a+ b+ c)2010 = 3d.

Solution. There are two solutions: (0, 0, 0, 0) and (13 ,
1
3 ,

1
3 ,

1
3).

If (a, b, c, d) satis�es the equations, then we may as well assume a ≤ b ≤ c ≤ d. These are
non-negative because an even power of a real number is always non-negative. It follows that

b+ c+ d ≥ a+ c+ d ≥ a+ b+ d ≥ a+ b+ c

and since x 7→ x2010 is increasing for x ≥ 0 we have that

3a = (b+ c+ d)2010 ≥ (a+ c+ d)2010 ≥ (a+ b+ d)2010 ≥ (a+ b+ c)2010 = 3d.

We conclude that a = b = c = d and all the equations take the form (3a)2010 = 3a, so a = 0 or
3a = 1. Finally, it is clear that a = b = c = d = 0 and a = b = c = d = 1

3 solve the system.

Problem 2. Let x be a real number such that 0 < x < π
2 . Prove that

cos2(x) cot(x) + sin2(x) tan(x) ≥ 1.

Solution. The geometric-arithmetic inequality gives

cosx sinx ≤ cos2 x+ sin2 x

2
=

1

2
.

It follows that

1 = (cos2 x+ sin2 x)2 = cos4 x+ sin4 x+ 2 cos2 x sin2 x ≤ cos4 x+ sin4 x+ 1
2

so

cos4 x+ sin4 x ≥ 1
2 ≥ cosx sinx.

The required inequality follows.

Problem 3. Let x1, x2, . . ., xn (n ≥ 2) be real numbers greater than 1. Suppose that
|xi − xi+1| < 1 for i = 1, 2, . . . , n− 1. Prove that

x1
x2

+
x2
x3

+ . . .+
xn−1
xn

+
xn
x1

< 2n− 1.
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Solution. The proof is by induction on n.
We establish �rst the base case n = 2. Suppose that x1 > 1, x2 > 1, |x1 − x2| < 1 and

moreover x1 ≤ x2. Then
x1
x2

+
x2
x1
≤ 1 +

x2
x1

< 1 +
x1 + 1

x1
= 2 +

1

x1
< 2 + 1 = 2 · 2− 1.

Now we proceed to the inductive step, and assume that the numbers x1, x2, . . ., xn, xn+1 > 1
are given such that |xi − xi+1| < 1 for i = 1, 2, . . . , n− 1, n. Let

S =
x1
x2

+
x2
x3

+ . . .+
xn−1
xn

+
xn
x1
, S′ =

x1
x2

+
x2
x3

+ . . .+
xn−1
xn

+
xn
xn+1

+
xn+1

x1
.

The inductive assumption is that S < 2n− 1 and the goal is that S′ < 2n+ 1. From the above
relations involving S and S′ we see that it su�ces to prove the inequality

xn
xn+1

+
xn+1 − xn

x1
≤ 2.

We consider two cases. If xn ≤ xn+1, then using the conditions x1 > 1 and xn+1 − xn < 1 we
obtain

xn
xn+1

+
xn+1 − xn

x1
≤ 1 +

xn+1 − xn
x1

< 1 +
1

x1
< 2,

and if xn > xn+1, then using the conditions xn < xn+1 + 1 and xn+1 > 1 we get

xn
xn+1

+
xn+1 − xn

x1
<

xn
xn+1

<
xn+1 + 1

xn+1
= 1 +

1

xn+1
< 1 + 1 = 2.

The induction is now complete.

Problem 4. Find all polynomials P (x) with real coe�cients such that

(x− 2010)P (x+ 67) = xP (x)

for every integer x.

Solution. Taking x = 0 in the given equality leads to −2010P (67) = 0, implying P (67) = 0.
Whenever i is an integer such that 1 ≤ i < 30 and P (i · 67) = 0, taking x = i · 67 leads to
(i · 67 − 2010)P ((i + 1) · 67) = 0; as i · 67 < 2010 for i < 30, this implies P ((i + 1) · 67) = 0.
Thus, by induction, P (i · 67) = 0 for all i = 1, 2, . . . , 30. Hence

P (x) ≡ (x− 67)(x− 2 · 67) . . . (x− 30 · 67)Q(x)

where Q(x) is another polynomial.
Substituting this expression for P in the original equality, one obtains

(x− 2010) · x(x− 67) . . . (x− 29 · 67)Q(x+ 67) = x(x− 67)(x− 2 · 67) . . . (x− 30 · 67)Q(x)

which is equivalent to

(1) x(x− 67)(x− 2 · 67) . . . (x− 30 · 67)(Q(x+ 67)−Q(x)) = 0.

By conditions of the problem, this holds for every integer x. Hence there are in�nitely many
roots of polynomial Q(x+67)−Q(x), implying that Q(x+67)−Q(x) ≡ 0. Let c = Q(0); then
Q(i ·67) = c for every integer i by easy induction. Thus polynomial Q(x)−c has in�nitely many
roots whence Q(x) ≡ c.

Consequently, P (x) = c(x−67)(x−2 ·67) . . . (x−30 ·67) for some real number c. As equation
(1) shows, all such polynomials �t.
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Problem 5. Let R denote the set of real numbers. Find all functions f : R→ R such that

f(x2) + f(xy) = f(x)f(y) + yf(x) + xf(x+ y)

for all x, y ∈ R.

Solution. Setting x = 0 in the equation we get f(0)f(y) = (2 − y)f(0). If f(0) 6= 0, then
f(y) = 2− y and it is easy to verify that this is a solution to the equation.

Now assume f(0) = 0. Setting y = 0 in the equation we get f(x2) = xf(x). Interchanging x
and y and subtracting from the original equation we get

xf(x)− yf(y) = yf(x)− xf(y) + (x− y)f(x+ y)

or equivalently
(x− y)(f(x) + f(y)) = (x− y)f(x+ y).

For x 6= y we therefore have f(x + y) = f(x) + f(y). Since f(0) = 0 this clearly also holds for
x = 0, and for x = y 6= 0 we have

f(2x) = f(x3 ) + f(5x3 ) = f(x3 ) + f(2x3 ) + f(x) = f(x) + f(x).

Setting x = y in the original equation, using f(x2) = xf(x) and f(2x) = 2f(x) we get

0 = f(x)2 + xf(x) = f(x)(f(x) + x).

So for each x, either f(x) = 0 or f(x) = −x. But then

f(x) + f(y) = f(x+ y) =

{
0 or

−(x+ y)

and we conclude that f(x) = −x if and only if f(y) = −y when x, y 6= 0. We therefore have
either f(x) = −x for all x or f(x) = 0 for all x. It is easy to verify that both are solutions to
the original equation.

Problem 6. An n×n board is coloured in n colours such that the main diagonal (from top-left
to bottom-right) is coloured in the �rst colour; the two adjacent diagonals are coloured in the
second colour; the two next diagonals (one from above and one from below) are coloured in the
third colour, etc.; the two corners (top-right and bottom-left) are coloured in the n-th colour.
It happens that it is possible to place on the board n rooks, no two attacking each other and
such that no two rooks stand on cells of the same colour. Prove that n ≡ 0 (mod 4) or n ≡ 1
(mod 4).

Solution. Use the usual coordinate system for which the cells of the main diagonal have coor-
dinates (k, k), where k = 1, . . . , n. Let (k, f(k)) be the coordinates of the k-th rook. Then by
color restrictions for rooks we have

n∑
k=1

(f(k)− k)2 =
n−1∑
i=0

i2 =
n(n− 1)(2n− 1)

6
.

Since the rooks are non-attacking we have
n∑
k=1

(f(k))2 =
n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

By subtracting these equalities we obtain
n∑
k=1

kf(k) =
n(2n2 + 9n+ 1)

12
.

Now it is trivial to check that the last number is integer if and only if n ≡ 0 or 1 (mod 4).
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Problem 7. There are some cities in a country; one of them is the capital. For any two cities
A and B there is a direct �ight from A to B and a direct �ight from B to A, both having the
same price. Suppose that all round trips with exactly one landing in every city have the same
total cost. Prove that all round trips that miss the capital and with exactly one landing in every
remaining city cost the same.

Solution. Let C be the capital and C1, C2, . . ., Cn be the remaining cities. Denote by d(x, y)
the price of the connection between the cities x and y, and let σ be the total price of a round
trip going exactly once through each city.

Now consider a round trip missing the capital and visiting every other city exactly once; let
s be the total price of that trip. Suppose Ci and Cj are two consecutive cities on the route.
Replacing the �ight Ci → Cj by two �ights: from Ci to the capital and from the capital to Cj , we
get a round trip through all cities, with total price σ. It follows that σ = s+d(C,Ci)+d(C,Cj)−
d(Ci, Cj), so it remains to show that the quantity α(i, j) = d(C,Ci)+d(C,Cj)−d(Ci, Cj) is the
same for all 2-element subsets {i, j} ⊂ {1, 2, . . . , n}.

For this purpose, note that α(i, j) = α(i, k) whenever i, j, k are three distinct indices; indeed,
this equality is equivalent to d(Cj , C) + d(C,Ci) + d(Ci, Ck) = d(Cj , Ci) + d(Ci, C) + d(C,Ck),
which is true by considering any trip from Ck to Cj going through all cities except C and Ci
exactly once and completing this trip to a round trip in two ways: Cj → C → Ci → Ck and
Cj → Ci → C → Ck. Therefore the values of α coincide on any pair of 2-element sets sharing
a common element. But then clearly α(i, j) = α(i, j′) = α(i′, j′) for all indices i, j, i′, j′ with
i 6= j, i′ 6= j′, and the solution is complete.

Problem 8. In a club with 30 members, every member initially had a hat. One day each
member sent his hat to a di�erent member (a member could have received more than one hat).
Prove that there exists a group of 10 members such that no one in the group has received a hat
from another one in the group.

Solution. Let S be the given group of 30 people. Consider all subsets A ⊂ S such that no
member of A received a hat from a member of A. Among such subsets, let T be a subset of
maximal cardinality. The assertion of the problem is that |T | ≥ 10.

Let U ⊂ S consist of all people that have received a hat from a person belonging to T . Now
consider any member x ∈ S \ (T ∪U). Since x 6∈ U , no member of T sent his hat to x. It follows
that no member of T sent a hat to a person from T ∪{x}. But the maximality of T implies that
some person from T ∪ {x} sent his hat to a person from the same subset. This means that x
sent his hat to a person from T . Consequently, all members of the subset S \ (T ∪U) sent their
hats to people in T . In particular, S \ (T ∪U) has the property described in the beginning. The
maximality of T gives |S \ (T ∪ U)| ≤ |T |. Finally, we obviously have |U | ≤ |T |, so

|T | ≥ |S \ (T ∪ U)| = |S| − |T | − |U | ≥ |S| − 2|T |,

or |T | ≥ 1
3 |S| = 10, as desired.

Problem 9. There is a pile of 1000 matches. Two players each take turns and can take 1 to
5 matches. It is also allowed at most 10 times during the whole game to take 6 matches, for
example 7 exceptional moves can be done by the �rst player and 3 moves by the second and
then no more exceptional moves are allowed. Whoever takes the last match wins. Determine
which player has a winning strategy.

Solution. The second player wins.
Let r be the number of the remaining exceptional moves in the current position (at the

beginning of the game r = 10 and r decreases during the game). The winning strategy of the



BALTIC WAY 2010 � SOLUTIONS 5

second player is the following. After his move the number of matches in the pile must have the
form 6n+ r, where n > r, or 7n, where n ≤ r (observe that 6n+ r = 7n for n = r).

At the beginning of the game the initial number of matches 1000 = 6 · 165 + 10 agrees with
this strategy.

What happens during two consecutive moves?
Consider the case n > r �rst. If the �rst player takes k = 1, 2, . . . 5 matches (and hence r is

not changing during his move) then the second player takes 6 − k matches. So players take 6
matches together and the pile contains now 6(n− 1) + r matches.

If the �rst player takes 6 matches, then r decreases by 1. The second player takes 1 match.
After his turn the pile contains 6(n− 1) + (r − 1) matches as he wish.

Now consider the case n ≤ r. In this situation we have much enough exceptional moves, and
we may assume that now each move the players can take up to 6 matches. Then if the �rst
player takes k matches, the second player takes 7− k matches.

Problem 10. Let n be an integer with n ≥ 3. Consider all dissections of a convex n-gon into
triangles by n− 3 non-intersecting diagonals, and all colourings of the triangles with black and
white so that triangles with a common side are always of a di�erent colour. Find the least
possible number of black triangles.

Solution 1. The answer is
⌊
n−1
3

⌋
.

Let f(n) denote the minimum number of black triangles in an n-gon. It is clear that f(3) = 0
and that f(n) is at least 1 for n = 4, 5, 6. It is easy to see that for n = 4, 5, 6 there is a coloring
with only one black triangle, so f(n) = 1 for n = 4, 5, 6.

First we prove by induction that f(n) ≤ bn−13 c. The case for n = 3, 4, 5 has already been
established. Given an (n + 3)-gon, draw a diagonal that splits it into an n-gon and a 5-gon.
Color the n-gon with at most bn−13 c black triangles. We can then color the 5-gon compatibly

with only one black triangle so f(n+ 3) ≤ bn−13 c+ 1 = bn+3−1
3 c.

Now we prove by induction that f(n) ≥ bn−13 c. The case for n = 3, 4, 5 has already been
established. Given an (n+ 3)-gon, we color it with f(n+ 3) black triangles and pick one of the
black triangles. It separates theree polygons from the (n+3)-gon, say an (a+1)-gon, (b+1)-gon
and a (c+ 1)-gon such that n+ 3 = a+ b+ c. We write rm for the remainder of the integer m
when divided by 3. Then

f(n+ 3) ≥ f(a+ 1) + f(b+ 1) + f(c+ 1) + 1

≥
⌊a
3

⌋
+

⌊
b

3

⌋
+
⌊ c
3

⌋
+ 1

=
a− ra

3
+
b− rb
3

+
c− rc
3

+ 1

=
n+ 3− 1− rn

3
+

4 + rn − (ra + rb + rc)

3

=

⌊
n+ 3− 1

3

⌋
+

4 + rn − (ra + rb + rc)

3
.

Since 0 ≤ rn, ra, rb, rc ≤ 2, we have that 4+ rn− (ra+ rb+ rc) ≥ 4+ 0− 6 = −2. But since this
number is divisible by 3, it is in fact ≥ 0. This completes the induction.

Solution 2. Call two triangles neighbours if they have a common side. Let the dissections of
convex n-gons together with appropriate colourings be called n-colourings.

Observe that all triangles of an arbitrary n-colouring can be listed, starting with an arbitrary
triangle and always continuing the list by a triangle that is a neighbour to some triangle already
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in the list. Indeed, suppose that some triangle ∆ is missing from the list. Choose a point A
inside a triangle in the list, as well as a point D inside ∆. By convexity, the line segment AD
is entirely inside the polygon. As the vertices of the triangles are vertices of the polygon, AD
crosses the sides of the triangles only outside their vertices. Hence any consecutive triangles
that AD passes through are neighbours. The �rst triangle that ray AD visits and that is not in
the list is one that the list can be continued with.

Consider such a list of all triangles that starts with a white triangle. Each triangle has at
most three neighbours and each black triangle has at least one neighbour occurring in the list
before it. Thus at most two neighbours of any black triangle are following it in the list. Each
white triangle except for the �rst one is a neighbour of some triangle preceding it in the list,
and according to the construction, that triangle is black. Hence among all triangles except
for the �rst one, there are at most twice as many white triangles as there are black triangles.
Altogether, this means w ≤ 2b+ 1 where b and w are the numbers of black and white triangles
in the construction, respectively. Observe that this formula holds also if there are no white
triangles.

Hence there are at most 3b + 1 triangles altogether, i.e., n − 2 ≤ 3b + 1. In integers, this
implies b ≥

⌈
n
3

⌉
− 1 which is equivalent to b ≥

⌊
n−1
3

⌋
.

This number of black triangles can be achieved as follows. Number all vertices of the polygon
by 0 through n− 1.

If n = 3k, k ∈ N+, then draw diagonals (0, 3i − 1), (3i − 1, 3i + 1), (3i + 1, 0) for all
i = 1, . . . , k − 1. Colour black every triangle whose vertices are 0, 3i − 1 and 3i + 1 for some
i = 1, . . . , k − 1.

If n = 3k − 1 or n = 3k − 2 then take a described 3k-colouring and cut out 1 or 2 white
triangles, respectively (e.g., triangles with vertices 0, 1, 2 and 0, n− 1, n− 2).

Problem 11. Let ABCD be a square and let S be the point of intersection of its diagonals
AC and BD. Two circles k, k′ go through A, C and B, D; respectively. Furthermore, k and k′

intersect in exactly two di�erent points P and Q. Prove that S lies on PQ.

Solution. It is clear that PQ is the radical axis of k and k′. The power of S with respect to k is
−|AS| · |CS| and the power of S with respect to k′ is −|BS| · |DS|. Because ABCD is a square,
these two numbers are clearly the same. Thus, S has the same power with respect to k and k′

and lies on the radical axis PQ of k and k′.

Problem 12. Let ABCD be a convex quadrilateral with precisely one pair of parallel sides.

a) Show that the lengths of its sides AB, BC, CD, DA (in this order) do not form an
arithmetic progression.

b) Show that there is such a quadrilateral for which the lengths of its sides AB, BC, CD,
DA form an arithmetic progression after the order of the lengths is changed.

Solution. Assume that the lengths of the sides form an arithmetic progression with the �rst
term a and the di�erence d. Suppose that sides AB and CD are parallel, |AB| > |CD| and
let E be a point on AB such that |BE| = |CD|. Then |DE| = |CB| as opposite sides of a
parallelogram, so |AD| and |DE| are two non-consequent terms of the arithmetic progression
and |AD| − |DE| = ±2d. Further, |AE| = |AB| − |DC| = 2d. We get a contradiction to the
triangle inequality |AE| > ||AD| − |DE||.

We take a triangle with sides 3, 3, 2 and add a parallelogram with sides 1 and 2 on the side of
length 2 to obtain a trapezoid. Then the lengths of the sides are 1, 2, 4, 3.

Problem 13. In an acute triangleABC, the segment CD is an altitude andH is the orthocentre.
Given that the circumcentre of the triangle lies on the line containing the bisector of the angle
DHB, determine all possible values of ∠CAB.
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Solution. The value is ∠CAB = 60◦.
Denote by ` the line containing the angle bisector of DHB, and let E be the point where

the ray CD→ intersects the circumcircle of the triangle ABC again. The rays HD→ and HB→

are symmetric with respect to ` by the de�nition of `. On the other hand, if the circumcenter
of ABC lies on `, then the circumcircle is symmetric with respect to `. It follows that the
intersections of the rays HD→ and HB→ with the circle, which are E and B, are symmetric
with respect to `. Moreover, since H ∈ `, we conclude that HE = HB.

However, as E lies on the circumcircle of ABC, we have

∠ABE = ∠ACE = 90◦ − ∠CAB = ∠HBA.

This proves that the pointsH and E are symmetric with respect to the line AB. ThusHB = EB
and the triangle BHE is equilateral. Finally, ∠CAB = ∠CEB = 60◦.

Obviously the value ∠CAB = 60◦ is attained for an equilateral triangle ABC.

Problem 14. Assume that all angles of a triangle ABC are acute. Let D and E be points on
the sides AC and BC of the triangle such that A,B,D, and E lie on the same circle. Further
suppose the circle through D,E, and C intersects the side AB in two points X and Y . Show
that the midpoint of XY is the foot of the altitude from C to AB.

Solution. We write the power of the point A with respect to the circle γ trough D, E, and C:

|AX||AY | = |AD||AC| = |AC|2 − |AC||CD|.
Similarly, if we calculate the power of B with respect to γ we get

|BX||BY | = |BC|2 − |BC||CE|.
We have also that |AC||CD| = |BC||CE|, the power of the point C with respect to the circle
through A,B,D, and E. Further if M is the middle point of XY then

|AX||AY | = |AM |2 − |XM |2 and |BX||BY | = |BM |2 − |XM |2.
Combining the four displayed identities we get

|AM |2 − |BM |2 = |AC|2 − |BC|2.
By the theorem of Pythagoras the same holds for the point H on AB such that CH is the
altitude of the triangle ABC. Then since H lies on the side AB we get

|AB|(|AM |−|BM |) = |AM |2−|BM |2 = |AC|2−|BC|2 = |AH|2−|BH|2 = |AB|(|AH|−|BH|).
We conclude that M = H.

Problem 15. The points M and N are chosen on the angle bisector AL of a triangle ABC
such that ∠ABM = ∠ACN = 23◦. X is a point inside the triangle such that BX = CX and
∠BXC = 2∠BML. Find ∠MXN .

Solution. Answer: ∠MXN = 2∠ABM = 46◦.
Let ∠BAC = 2α. The triangles ABM and ACN are similar, therefore ∠CNL = ∠BML =

α + 23◦. Let K be the midpoint of the arc BC of the circumcircle of the triangle ABC. Then
K belongs to the the line AL and ∠KBC = α. Both X and K belong to the perpendicular
bisector of the segment BC, hence ∠BXK = 1

2∠BXC = ∠BML, so the quadrilateral BMXK
is inscribed. Then

∠XMN = ∠XBK = ∠XBC + ∠KBC = (90◦ − ∠BML) + α = 90◦ − (∠BML− α) = 67◦.

Analogously we have ∠CXK = 1
2∠BXC = ∠CNL, therefore the quadrilateral CXNK

is inscribed also and ∠XNM = ∠XCK = 67◦. Thus, the triangle MXN is equilateral and
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∠MXN = 180◦ − 2 · 67◦ = 46◦.

B C

A

L

M

N

K

X

Problem 16. For a positive integer k, let d(k) denote the number of divisors of k (e.g. d(12) = 6)
and let s(k) denote the digit sum of k (e.g. s(12) = 3). A positive integer n is said to be amusing

if there exists a positive integer k such that d(k) = s(k) = n. What is the smallest amusing odd
integer greater than 1?

Solution. The answer is 9. For every k we have s(k) ≡ k (mod 9). Calculating remainders
modulo 9 we have the following table

m 0 1 2 3 4 5 6 7 8
m2 0 1 4 0 7 7 0 4 1
m6 0 1 1 0 1 1 0 1 1

If d(k) = 3, then k = p2 with p a prime, but p2 ≡ 3 (mod 9) is impossible. This shows that
3 is not an amusing number. If d(k) = 5, then k = p4 with p a prime, but p4 ≡ 5 (mod 9) is
impossible. This shows that 5 is not an amusing number. If d(k) = 7, then k = p6 with p a
prime, but p6 ≡ 7 (mod 9) is impossible. This shows that 7 is not an amusing number. To see
that 9 is amusing, note that d(36) = s(36) = 9.

Problem 17. Find all positive integers n such that the decimal representation of n2 consists of
odd digits only.

Solution. The only such numbers are n = 1 and n = 3.
If n is even, then so is the last digit of n2. If n is odd and divisible by 5, then n = 10k+5 for

some integer k ≥ 0 and the second-to-last digit of n2 = (10k+5)2 = 100k2+100k+25 equals 2.
Thus we may restrict ourselves to numbers of the form n = 10k±m, where m ∈ {1, 3}. Then

n2 = (10k ±m)2 = 100k2 ± 20km+m2 = 20k(5k ±m) +m2

and since m2 ∈ {1, 9}, the second-to-last digit of n2 is even unless the number 20k(5k −m) is
equal to zero. We therefore have n2 = m2 so n = 1 or n = 3. These numbers indeed satisfy the
required condition.

Problem 18. Let p be a prime number. For each k, 1 ≤ k ≤ p−1, there exists a unique integer
denoted by k−1 such that 1 ≤ k−1 ≤ p− 1 and k−1 · k ≡ 1 (mod p). Prove that the sequence

1−1, 1−1 + 2−1, 1−1 + 2−1 + 3−1, . . . , 1−1 + 2−1 + · · ·+ (p− 1)−1

(addition modulo p) contains at most (p+ 1)/2 distinct elements.
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Solution. Calculating modulo p we have that (p− k)k−1 = −1 so (p− k)−1 = −k−1. If p is odd,
we set m = p−1

2 and it follows that

p−1∑
k=1

k−1 =
m∑
k=1

(
k−1 + (p− k)−1

)
= 0.

For ` such that m < ` < p− 1 we calculate the `-th term in the sequence∑̀
k=1

k−1 =
∑̀
k=1

k−1 −
p−1∑
k=1

k−1 = −
p−1∑
k=`+1

k−1 = −
p−`−1∑
k=1

(p− k)−1 =
p−`−1∑
k=1

k−1

and see that it is equal to one of the �rst m− 1 terms in the sequence. We conclude that there
are at most m+ 1 = p+1

2 distinct terms in the sequence (the �rst m and the last one).
If p is the even prime 2, then the sequence contains only one term 1, and 1 < (2 + 1)/2.

Problem 19. For which k do there exist k pairwise distinct primes p1, p2, . . . , pk such that

p21 + p22 + · · ·+ p2k = 2010?

Solution. We show that it is possible only if k = 7.
The 15 smallest prime squares are:

4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209.

Since 2209 > 2010 we see that k ≤ 14.
Now we note that p2 ≡ 1mod 8 if p is an odd prime. We also have that 2010 ≡ 2 mod 8. If

all the primes are odd, then writing the original equation modulo 8 we get

k · 1 ≡ 2 mod 8

so either k = 2 or k = 10.
k = 2 : As 2010 ≡ 0 mod 3 and x2 ≡ 0 or x2 ≡ 1 mod 3 we conclude that p1 ≡ p2 ≡ 0

mod 3. But that is impossible.
k = 10 : The sum of �rst 10 odd prime squares is already greater than 2010 (961 + 841 +

529 + · · · > 2010) so this is impossible.
Now we consider the case when one of the primes is 2. Then the original equation modulo 8

takes the form

4 + (k − 1) · 1 ≡ 2 mod 8

so k ≡ 7 mod 8 and therefore k = 7.
For k = 7 there are 4 possible solutions:

4 + 9 + 49 + 169 + 289 + 529 + 961 = 2010,

4 + 9 + 25 + 121 + 361 + 529 + 961 = 2010,

4 + 9 + 25 + 49 + 121 + 841 + 961 = 2010,

4 + 9 + 49 + 121 + 169 + 289 + 1369 = 2010.

Finding them should not be too hard. We are already asuming that 4 is included. Considera-
tions modulo 3 show that 9 must also be included. The square 1681 together with the 6 smallest
prime squares gives a sum already greater than 2010, so only prime squares up to 372 = 1369 can
be considered. If 25 is included, then for the remaining 4 prime squares considerations modulo
10 one can see that 3 out of 4 prime squares from {121, 361, 841, 961} have to be used and two of
four cases are successful. If 25 is not included, then for the remaining 5 places again from con-
siderations modulo 10 one can see, that 4 of them will be from the set {49, 169, 289, 529, 1369}
and two out of �ve cases are successful.
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Problem 20. Determine all positive integers n for which there exists an in�nite subset A of
the set N of positive integers such that for all pairwise distinct a1, . . . , an ∈ A the numbers
a1 + · · ·+ an and a1 · · · an are coprime.

Solution. For n = 1 the statement is obviously false. We assert that it is true for all n > 1.
We �rst consider the sequence x0, x1, . . . of positive integers which is recursively de�ned by

x0 = n and xk+1 = (x0 + · · · + xk)! + 1 for k ≥ 0. We claim that the set A := {xk | k ≥ 1}
satis�es the condition.

Suppose the contrary that there exist 1 ≤ i1 < · · · < in such that xi1 + · · ·+xin and xi1 · · ·xin
have a common prime factor p. Then there exist a j ∈ {1, . . . , n} such that p | xij . From the
de�nition of the sequence (x1, x2, . . . ) we get xk ≡ 1 (mod p) for every integer k > ij . This
implies p | xi1 + . . . xij−1 + n − j =: S. Because of S > 0 and S ≤ x0 + · · · + xij−1 we have
p | (x0 + · · ·+ xij−1)! = xij − 1 which contradicts p | xij .

Thus, for every pairwise distinct a1, . . . , an ∈ A the numbers a1 + · · · + an and a1 · · · an are
indeed coprime.


