
The 6th Romanian Master of Mathematics Competition

Solutions for the Day 1

Problem 1. For a positive integer a, define a sequence of integers x1, x2, . . . by letting x1 = a
and xn+1 = 2xn + 1 for n ≥ 1. Let yn = 2xn − 1. Determine the largest possible k such that, for
some positive integer a, the numbers y1, . . . , yk are all prime.

(Russia) Valery Senderov

Solution. The largest such is k = 2. Notice first that if yi is prime, then xi is prime as well.
Actually, if xi = 1 then yi = 1 which is not prime, and if xi = mn for integer m,n > 1 then
2m − 1 | 2xi − 1 = yi, so yi is composite. In particular, if y1, y2, . . . , yk are primes for some k ≥ 1
then a = x1 is also prime.

Now we claim that for every odd prime a at least one of the numbers y1, y2, y3 is composite
(and thus k < 3). Assume, to the contrary, that y1, y2, and y3 are primes; then x1, x2, x3 are
primes as well. Since x1 ≥ 3 is odd, we have x2 > 3 and x2 ≡ 3 (mod 4); consequently, x3 ≡ 7
(mod 8). This implies that 2 is a quadratic residue modulo p = x3, so 2 ≡ s2 (mod p) for
some integer s, and hence 2x2 = 2(p−1)/2 ≡ sp−1 ≡ 1 (mod p). This means that p | y2, thus
2x2 − 1 = x3 = 2x2 + 1. But it is easy to show that 2t − 1 > 2t + 1 for all integer t > 3. A
contradiction.

Finally, if a = 2, then the numbers y1 = 3 and y2 = 31 are primes, while y3 = 211 − 1 is
divisible by 23; in this case we may choose k = 2 but not k = 3.

Remark. The fact that 23 | 211 − 1 can be shown along the lines in the solution, since 2 is a
quadratic residue modulo x4 = 23.
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Problem 2. Does there exist a pair (g, h) of functions g, h : R→ R such that the only function
f : R → R satisfying f(g(x)) = g(f(x)) and f(h(x)) = h(f(x)) for all x ∈ R is the identity
function f(x) ≡ x?

(United Kingdom) Alexander Betts

Solution 1. Such a tester pair exists. We may biject R with the closed unit interval, so it
suffices to find a tester pair for that instead. We give an explicit example: take some positive
real numbers α, β (which we will specify further later). Take

g(x) = max(x− α, 0) and h(x) = min(x+ β, 1).

Say a set S ⊆ [0, 1] is invariant if f(S) ⊆ S for all functions f commuting with both g and h.
Note that intersections and unions of invariant sets are invariant. Preimages of invariant sets
under g and h are also invariant; indeed, if S is invariant and, say, T = g−1(S), then g(f(T )) =
f(g(T )) ⊆ f(S) ⊆ S, thus f(T ) ⊆ T .

We claim that (if we choose α + β < 1) the intervals [0, nα −mβ] are invariant where n
and m are nonnegative integers with 0 ≤ nα−mβ ≤ 1. We prove this by induction on m+ n.

The set {0} is invariant, as for any f commuting with g we have g(f(0)) = f(g(0)) = f(0),
so f(0) is a fixed point of g. This gives that f(0) = 0, thus the induction base is established.

Suppose now we have some m,n such that [0, n′α −m′β] is invariant whenever m′ + n′ <
m+n. At least one of the numbers (n−1)α−mβ and nα− (m−1)β lies in (0, 1). Note however
that in the first case [0, nα − mβ] = g−1 ([0, (n− 1)α−mβ]), so [0, nα − mβ] is invariant. In
the second case [0, nα−mβ] = h−1 ([0, nα− (m− 1)β]), so again [0, nα−mβ] is invariant. This
completes the induction.

We claim that if we choose α + β < 1, where 0 < α /∈ Q and β = 1/k for some integer
k > 1, then all intervals [0, δ] are invariant for 0 ≤ δ < 1. This occurs, as by the previous claim,
for all nonnegative integers n we have [0, (nα mod 1)] is invariant. The set of nα mod 1 is dense
in [0, 1], so in particular

[0, δ] =
⋂

(nα mod 1)>δ

[0, (nα mod 1)]

is invariant.

A similar argument establishes that [δ, 1] is invariant, so by intersecting these {δ} is in-
variant for 0 < δ < 1. Yet we also have {0}, {1} both invariant, which proves f to be the
identity.

Solution 2. Let us agree that a sequence x = (xn)n=1,2,... is cofinally non-constant if for every
index m there exists an index n > m such that xm 6= xn.

Biject R with the set of cofinally non-constant sequences of 0’s and 1’s, and define g and h
by

g(ε,x) =

{
ε,x if ε = 0

x else
and h(ε,x) =

{
ε,x if ε = 1

x else

where ε,x denotes the sequence formed by appending x to the single-element sequence ε. Note
that g fixes precisely those sequences beginning with 0, and h fixes precisely those beginning
with 1.

Now assume that f commutes with both f and g. To prove that f(x) = x for all x we
show that x and f(x) share the same first n terms, by induction on n.

The base case n = 1 is simple, as we have noticed above that the set of sequences beginning
with a 0 is precisely the set of g-fixed points, so is preserved by f , and similarly for the set of
sequences starting with 1.
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Suppose that f(x) and x agree for the first n terms, whatever x. Consider any sequence,
and write it as x = ε,y. Without loss of generality, we may (and will) assume that ε = 0, so
f(x) = 0,y′ by the base case. Yet then f(y) = f(h(x)) = h(f(x)) = h(0,y′) = y′. Consequently,
f(x) = 0, f(y), so f(x) and x agree for the first n+ 1 terms by the inductive hypothesis.

Thus f fixes all of cofinally non-constant sequences, and the conclusion follows.

Solution 3. (Ilya Bogdanov) We will show that there exists a tester pair of bijective functions g
and h.

First of all, let us find out when a pair of functions is a tester pair. Let g, h : R → R be
arbitrary functions. We construct a directed graph Gg,h with R as the set of vertices, its edges
being painted with two colors: for every vertex x ∈ R, we introduce a red edge x → g(x) and a
blue edge x→ h(x).

Now, assume that the function f : R→ R satisfies f(g(x)) = g(f(x)) and f(h(x)) = h(f(x))
for all x ∈ R. This means exactly that if there exists an edge x → y, then there also exists an
edge f(x)→ f(y) of the same color; that is — f is an endomorphism of Gg,h.

Thus, a pair (g, h) is a tester pair if and only if the graph Gg,h admits no nontrivial
endomorphisms. Notice that each endomorphism maps a component into a component. Thus,
to construct a tester pair, it suffices to construct a continuum of components with no nontrivial
endomorphisms and no homomorphisms from one to another. It can be done in many ways;
below we present one of them.

Let g(x) = x+ 1; the construction of h is more involved. For every x ∈ [0, 1) we define the
set Sx = x+ Z; the sets Sx will be exactly the components of Gg,h. Now we will construct these
components.

Let us fix any x ∈ [0, 1); let x = 0.x1x2 . . . be the binary representation of x. Define
h(x−n) = x−n+ 1 for every n > 3. Next, let h(x− 3) = x, h(x) = x− 2, h(x− 2) = x− 1, and
h(x− 1) = x+ 1 (that would be a “marker” which fixes a point in our component).

Next, for every i = 1, 2, . . . , we define

(1) h(x+ 3i− 2) = x+ 3i− 1, h(x+ 3i− 1) = x+ 3i, and h(x+ 3i) = x+ 3i+ 1, if xi = 0;

(2) h(x+ 3i− 2) = x+ 3i, h(x+ 3i) = 3i− 1, and h(x+ 3i− 1) = x+ 3i+ 1, if xi = 1.

Clearly, h is a bijection mapping each Sx to itself. Now we claim that the graph Gg,h
satisfies the desired conditions.

Consider any homomorphism fx : Sx → Sy (x and y may coincide). Since g is a bijection,
consideration of the red edges shows that fx(x + n) = x + n + k for a fixed real k. Next, there
exists a blue edge (x − 3) → x, and the only blue edge of the form (y + m − 3) → (y + m) is
(y − 3)→ y; thus fx(x) = y, and k = 0.

Next, if xi = 0 then there exists a blue edge (x + 3i − 2) → (x + 3i − 1); then the edge
(y + 3i− 2) → (y + 3i− 1) also should exist, so yi = 0. Analogously, if xi = 1 then there exists
a blue edge (x + 3i − 2) → (x + 3i); then the edge (y + 3i − 2) → (y + 3i) also should exist, so
yi = 1. We conclude that x = y, and fx is the identity mapping, as required.

Remark. If g and h are injections, then the components of Gg,h are at most countable. So the
set of possible pairwise non-isomorphic such components is continual; hence there is no bijective
tester pair for a hyper-continual set instead of R.
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Problem 3. Let ABCD be a quadrilateral inscribed in a circle ω. The lines AB and CD meet
at P , the lines AD and BC meet at Q, and the diagonals AC and BD meet at R. Let M be
the midpoint of the segment PQ, and let K be the common point of the segment MR and the
circle ω. Prove that the circumcircle of the triangle KPQ and ω are tangent to one another.

(Russia) Medeubek Kungozhin

Solution. Let O be the centre of ω. Notice that the points P , Q, and R are the poles (with
respect to ω) of the lines QR, RP , and PQ, respectively. Hence we have OP ⊥ QR, OQ ⊥ RP ,
and OR ⊥ PQ, thus R is the orthocentre of the triangle OPQ. Now, if MR ⊥ PQ, then the
points P and Q are the reflections of one another in the line MR = MO, and the triangle PQK
is symmetrical with respect to this line. In this case the statement of the problem is trivial.

Otherwise, let V be the foot of the perpendicular from O to MR, and let U be the common
point of the lines OV and PQ. Since U lies on the polar line of R and OU ⊥ MR, we obtain
that U is the pole of MR. Therefore, the line UK is tangent to ω. Hence it is enough to prove
that UK2 = UP · UQ, since this relation implies that UK is also tangent to the circle KPQ.

From the rectangular triangle OKU , we get UK2 = UV ·UO. Let Ω be the circumcircle of
triangle OPQ, and let R′ be the reflection of its orthocentre R in the midpoint M of the side PQ.
It is well known that R′ is the point of Ω opposite to O, hence OR′ is the diameter of Ω. Finally,
since ∠OV R′ = 90◦, the point V also lies on Ω, hence UP ·UQ = UV ·UO = UK2, as required.
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Remark. The statement of the problem is still true if K is the other common point of the
line MR and ω.
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