The 6" Romanian Master of Mathematics Competition

Solutions for the Day 1

Problem 1. For a positive integer a, define a sequence of integers x1,x9,... by letting 1 = a
and xpy1 = 22, + 1 for n > 1. Let y,, = 2% — 1. Determine the largest possible k such that, for
some positive integer a, the numbers yq, ...,y are all prime.

(RussiA) VALERY SENDEROV

Solution. The largest such is £ = 2. Notice first that if y; is prime, then z; is prime as well.
Actually, if ; = 1 then y; = 1 which is not prime, and if z; = mn for integer m,n > 1 then
2m —1|2% — 1 =y, so y; is composite. In particular, if yq,ys2,...,y; are primes for some k > 1
then a = x; is also prime.

Now we claim that for every odd prime a at least one of the numbers y1, 2, y3 is composite
(and thus k£ < 3). Assume, to the contrary, that yi, ya, and ys are primes; then x1,x9,z3 are
primes as well. Since z; > 3 is odd, we have z9 > 3 and x2 = 3 (mod 4); consequently, x3 = 7
(mod 8). This implies that 2 is a quadratic residue modulo p = x3, so 2 = s% (mod p) for
some integer s, and hence 272 = 20-1/2 = gr=1 =1 (mod p). This means that p|ys2, thus
272 — 1 = g3 = 219 + 1. But it is easy to show that 28 — 1 > 2¢ + 1 for all integer t > 3. A
contradiction.

Finally, if a = 2, then the numbers y; = 3 and y, = 31 are primes, while y3 = 2! — 1 is
divisible by 23; in this case we may choose k = 2 but not k = 3.

Remark. The fact that 23|2!' — 1 can be shown along the lines in the solution, since 2 is a
quadratic residue modulo x4 = 23.



Problem 2. Does there exist a pair (g, h) of functions g, h: R — R such that the only function
f: R — R satisfying f(g(z)) = g(f(z)) and f(h(x)) = h(f(z)) for all z € R is the identity
function f(z) = «?

(UNITED KINGDOM) ALEXANDER BETTS

Solution 1. Such a tester pair exists. We may biject R with the closed unit interval, so it
suffices to find a tester pair for that instead. We give an explicit example: take some positive
real numbers «, 8 (which we will specify further later). Take

g(z) = max(x — «,0) and h(z) = min(z + 5,1).

Say a set S C [0,1] is invariant if f(S) C S for all functions f commuting with both g and h.
Note that intersections and unions of invariant sets are invariant. Preimages of invariant sets
under g and h are also invariant; indeed, if S is invariant and, say, T = g~1(9), then g(f(T)) =
flg(T)) € F(S) € S, thus f(T) C T

We claim that (if we choose o + § < 1) the intervals [0,na — mf] are invariant where n
and m are nonnegative integers with 0 < na —mg < 1. We prove this by induction on m + n.

The set {0} is invariant, as for any f commuting with g we have g(f(0)) = f(¢(0)) = f(0),
so f(0) is a fixed point of g. This gives that f(0) = 0, thus the induction base is established.

Suppose now we have some m,n such that [0,n’a — m’j] is invariant whenever m’ + n’ <
m+mn. At least one of the numbers (n —1)a —mf and na— (m — 1) lies in (0, 1). Note however
that in the first case [0,na — mpB] = ¢~ ([0, (n — 1)a — mf3]), so [0,na — mf] is invariant. In
the second case [0,na —mfB] = h=1 ([0, na — (m — 1)8]), so again [0, na — mf3] is invariant. This
completes the induction.

We claim that if we choose a + 8 < 1, where 0 < a ¢ Q and 8 = 1/k for some integer
k > 1, then all intervals [0, §] are invariant for 0 < é < 1. This occurs, as by the previous claim,
for all nonnegative integers n we have [0, (na mod 1)] is invariant. The set of na mod 1 is dense
in [0, 1], so in particular
0,6= () [0, (namod 1)]
(na mod 1)>§

is invariant.

A similar argument establishes that [4,1] is invariant, so by intersecting these {d} is in-
variant for 0 < 6 < 1. Yet we also have {0}, {1} both invariant, which proves f to be the
identity.

Solution 2. Let us agree that a sequence x = (2 )n=12,.. is cofinally non-constant if for every
index m there exists an index n > m such that x,, # x,.

Biject R with the set of cofinally non-constant sequences of 0’s and 1’s, and define g and h

goee

by

X else X else

if e = ife=1
g(e,x)—{e’x ife=0 and h(e,x)—{e’x it €

where €,x denotes the sequence formed by appending x to the single-element sequence €. Note
that g fixes precisely those sequences beginning with 0, and h fixes precisely those beginning
with 1.

Now assume that f commutes with both f and g. To prove that f(x) = x for all x we
show that x and f(x) share the same first n terms, by induction on n.

The base case n = 1 is simple, as we have noticed above that the set of sequences beginning
with a 0 is precisely the set of g-fixed points, so is preserved by f, and similarly for the set of
sequences starting with 1.



Suppose that f(x) and x agree for the first n terms, whatever x. Consider any sequence,
and write it as x = €,y. Without loss of generality, we may (and will) assume that ¢ = 0, so
f(x) = 0,y by the base case. Yet then f(y) = f(h(x)) = h(f(x)) = h(0,y’) = y’. Consequently,
f(x) =0, f(y), so f(x) and x agree for the first n + 1 terms by the inductive hypothesis.

Thus f fixes all of cofinally non-constant sequences, and the conclusion follows.

Solution 3. (Ilya Bogdanov) We will show that there exists a tester pair of bijective functions g
and h.

First of all, let us find out when a pair of functions is a tester pair. Let g,h: R — R be
arbitrary functions. We construct a directed graph G, with R as the set of vertices, its edges
being painted with two colors: for every vertex = € R, we introduce a red edge © — g(x) and a
blue edge © — h(z).

Now, assume that the function f: R — R satisfies f(g(x)) = g(f(x)) and f(h(z)) = h(f(z))
for all x € R. This means exactly that if there exists an edge  — y, then there also exists an
edge f(x) — f(y) of the same color; that is — f is an endomorphism of G .

Thus, a pair (g,h) is a tester pair if and only if the graph G,j admits no nontrivial
endomorphisms. Notice that each endomorphism maps a component into a component. Thus,
to construct a tester pair, it suffices to construct a continuum of components with no nontrivial
endomorphisms and no homomorphisms from one to another. It can be done in many ways;
below we present one of them.

Let g(x) = x + 1; the construction of & is more involved. For every z € [0,1) we define the
set S, = = + Z; the sets S, will be exactly the components of G, ;. Now we will construct these
components.

Let us fix any = € [0,1); let © = 0.x122... be the binary representation of x. Define
h(x —n) = x —n+1 for every n > 3. Next, let h(z —3) =z, h(z) =2 —2, h(r —2) =z —1, and
h(z —1) = x + 1 (that would be a “marker” which fixes a point in our component).

Next, for every i = 1,2,..., we define

(1) A(z+3i—2)=2+3i—1, h(x+3i—1) =2+ 3i, and h(x + 3i) =x + 3i + 1, if z; = 0;
(2) Mz +3i—2)=2+3i, h(x+3i)=3i—1l,and h(z +3i — 1) =2+ 3i+ 1, if z; = 1.

Clearly, h is a bijection mapping each S, to itself. Now we claim that the graph G,
satisfies the desired conditions.

Consider any homomorphism f,: S; — Sy (z and y may coincide). Since g is a bijection,
consideration of the red edges shows that f.(z +n) = x +n+ k for a fixed real k. Next, there
exists a blue edge (z — 3) — z, and the only blue edge of the form (y +m —3) — (y +m) is
(y — 3) — y; thus fy(x) =y, and k = 0.

Next, if x; = 0 then there exists a blue edge (x + 3i — 2) — (2 + 3i — 1); then the edge
(y+3i —2) — (y+ 3i — 1) also should exist, so y; = 0. Analogously, if x; = 1 then there exists
a blue edge (z + 3i — 2) — (x + 3i); then the edge (y + 3i — 2) — (y + 3i) also should exist, so
y; = 1. We conclude that x = y, and f, is the identity mapping, as required.

Remark. If g and h are injections, then the components of G ), are at most countable. So the
set of possible pairwise non-isomorphic such components is continual; hence there is no bijective
tester pair for a hyper-continual set instead of R.



Problem 3. Let ABCD be a quadrilateral inscribed in a circle w. The lines AB and C'D meet
at P, the lines AD and BC meet at @), and the diagonals AC and BD meet at R. Let M be
the midpoint of the segment P(Q), and let K be the common point of the segment M R and the
circle w. Prove that the circumcircle of the triangle K P() and w are tangent to one another.

(Russia) MEDEUBEK KUNGOZHIN

Solution. Let O be the centre of w. Notice that the points P, @, and R are the poles (with
respect to w) of the lines QR, RP, and PQ, respectively. Hence we have OP L QR, OQ L RP,
and OR 1 PQ, thus R is the orthocentre of the triangle OPQ. Now, if MR 1 P(Q), then the
points P and @ are the reflections of one another in the line M R = MO, and the triangle PQK
is symmetrical with respect to this line. In this case the statement of the problem is trivial.
Otherwise, let V' be the foot of the perpendicular from O to M R, and let U be the common
point of the lines OV and PQ. Since U lies on the polar line of R and OU L MR, we obtain
that U is the pole of M R. Therefore, the line UK is tangent to w. Hence it is enough to prove
that UK?2 = UP - UQ, since this relation implies that UK is also tangent to the circle K PQ.
From the rectangular triangle OKU, we get UK? = UV -UO. Let Q be the circumcircle of
triangle OPQ, and let R’ be the reflection of its orthocentre R in the midpoint M of the side PQ.
It is well known that R’ is the point of 2 opposite to O, hence OR’ is the diameter of 2. Finally,
since ZOV R’ = 90°, the point V also lies on Q, hence UP-UQ = UV -UO = UK?, as required.
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Remark. The statement of the problem is still true if K is the other common point of the
line MR and w.



