The $1^{\text {st }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $10^{\text {th }}$ April 1991
Category I

Problem 1 Show that there is no arithmetic progression with three elements in the infinite geometric sequence $\left\{2^{k}\right\}_{k=0}^{\infty}$.
Solution Suppose $2^{k}, 2^{l}, 2^{m}$ form an arithmetic progression, where $0<k<l<m$. Then $2^{l}-2^{k}=2^{m}-2^{l}$ and therefore $2^{l+1}=2^{k}\left(2^{m-k}+1\right)$. Because of $k<l<m, m \geq k+2,2^{m-k}+1$ is an odd number greater or equal to 5 . This odd number must divide 2^{l+1}. This is a contradiction.

The $1^{\text {st }}$ Annual Vojtěch Jarník International Mathematical Competition

Ostrava, $10^{\text {th }}$ April 1991
Category I

Problem 2 Compute the determinant

$$
\operatorname{det}\left(\begin{array}{ccccc}
0 & a_{12} & a_{13} & \ldots & a_{1 n} \\
-a_{12} & 0 & a_{23} & \ldots & a_{2 n} \\
-a_{13} & -a_{23} & 0 & \ldots & a_{3 n} \\
\ldots & & & & \\
-a_{1 n} & -a_{2 n} & -a_{3 n} & \ldots & 0
\end{array}\right)
$$

where n is an odd number.
Solution Let

$$
A=\left(\begin{array}{ccccc}
0 & a_{12} & a_{13} & \ldots & a_{1 n} \\
-a_{12} & 0 & a_{23} & \ldots & a_{2 n} \\
-a_{13} & -a_{23} & 0 & \ldots & a_{3 n} \\
\ldots & & & & \\
-a_{1 n} & -a_{2 n} & -a_{3 n} & \ldots & 0
\end{array}\right)
$$

and $d=\operatorname{det} A$. If we multiply all rows in A by -1 , we get new determinant d^{\prime}. The following holds:

$$
d^{\prime}=(-1)^{n} d=-d
$$

On the other hand,

$$
d^{\prime}=\operatorname{det} A^{T},
$$

where A^{T} is the transposed matrix of A. Thus

$$
-d=d^{\prime}=\operatorname{det} A^{T}=\operatorname{det} A=d
$$

This implies that $d=0$.

Problem 3 Let $[x]$ be the integer part of x. Find the limit

$$
\lim _{n \rightarrow \infty}\left((\sqrt{3}+1)^{n}-\left[(\sqrt{3}+1)^{n}\right]\right)
$$

Solution For n even we have

$$
\begin{aligned}
(\sqrt{3}+1)^{2 n}-\left[(\sqrt{3}+1)^{2 n}\right] & =(\sqrt{3}+1)^{2 n}+(\sqrt{3}-1)^{2 n}-(\sqrt{3}-1)^{2 n}-\left[(\sqrt{3}+1)^{2 n}\right] \\
& =1-(\sqrt{3}-1)^{2 n}
\end{aligned}
$$

but for n odd we get

$$
\begin{aligned}
(\sqrt{3}+1)^{2 n+1}-\left[(\sqrt{3}+1)^{2 n+1}\right]= & (\sqrt{3}+1)^{2 n+1}-(\sqrt{3}-1)^{2 n+1} \\
& +(\sqrt{3}-1)^{2 n+1}-\left[(\sqrt{3}+1)^{2 n+1}\right] \\
= & (\sqrt{3}-1)^{2 n+1}
\end{aligned}
$$

So the limit does not exists.

The $1^{\text {st }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $10^{\text {th }}$ April 1991
Category I

Problem 4 Let $f(x)$ be an even, twice continuously differentiable function and $f^{\prime \prime}(0) \neq 0$. Prove that there is an extremum of $f(x)$ at the point $x=0$.

Solution

$$
\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h}=f^{\prime}(0),
$$

and because $f(h)=f(-h)$ we have

$$
\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h}+\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}}\left(\frac{f(h)-f(0)}{h}+\frac{f(-h)-f(0)}{-h}\right)=0,
$$

which implies that $2 f^{\prime}(0)=0$. Hence $f^{\prime}(0)=0$ and because $f^{\prime \prime}(0) \neq 0$ we obtain that $f(x)$ has an extremum at the point $x=0$.

