Problem 1 Find the n^{th} derivation of the function

$$f(x) = \frac{x}{x^2 - 1} \,.$$

Solution

$$f(x)^{(n)} = \left(\frac{x}{x^2 - 1}\right)^{(n)} = \frac{1}{2} \left(\frac{1}{x + 1} + \frac{1}{x - 1}\right)^{(n)}$$
$$= \frac{(-1)^n}{2} n! \left(\frac{1}{(x + 1)^{n+1}} + \frac{1}{(x - 1)^{n+1}}\right).$$

_	_
	- I
	_
-	_

Problem 2 Prove that there exist two real convex functions f, g such that

$$f(x) - g(x) = \sin x$$

for all $x \in \mathbb{R}$.

Solution Let $f(x) = x^2 + \sin x$ and $g(x) = x^2$, then $f(x) - g(x) = \sin x$ and f(x), g(x) are convex function because

$$f''(x) = 2 - \sin x > 0,$$

$$g''(x) = 2 > 0.$$

Problem 3 Prove that for all integers n > 1,

$$(n-1)|(n^n - n^2 + n - 1).$$

Solution For n = 2 we get (n - 1) = 1 and $(n^n - n^2 + n - 1) = 1$ so $(n - 1)|(n^n - n^2 + n - 1)$.

Now we prove the result for $n \ge 3$. First we use mathematical induction to prove that $(n-1)|(n^k - n^2)$ for $k \ge 3$. For k = 3 we have

 $(n^3 - n^2): (n - 1) = n^2 \quad \Rightarrow \quad (n - 1)|(n^3 - n^2).$

Suppose that $(n-1)|(n^k - n^2)$. We have to prove that $(n-1)|(n^{k+1} - n^2)$. Hence $(n^{k+1} - n^2)/(n-1) = n^k$ with remainder $(n^k - n^2)$, and because n-1 divides $(n^k - n^2)$ we have shown that $(n-1)|(n^k - n^2)$ for $k \ge 3$. Hence from the facts that $(n-1)|(n^n - n^2)$ and (n-1)|(n-1) we obtain that $(n-1)|(n^n - n^2 + n - 1)$ for all n > 1.

Second solution Let n > 1 be a fixed integer. Let f(x) be the polynomial $x^n - x^2 + x - 1$. Note that f(1) = 0. It follows from the factor theorem that (x - 1)|f(x). Substituting in n for x and noting that $n - 1 \neq 0$, we see that

$$n-1|f(n) = n^n - n^2 + n - 1.$$

Problem 4 Let X be a finite set and $f: X \to X$ be map. Prove that f is an injective map if and only if f is a surjective map.

Solution Let X have n elements.

- 1. Let f be injective, i.e. $\forall x_i, x_j \in X; f(x_i) \neq f(x_j), i \neq j$. Then we have $\forall x_i \in X, f(x_i) = y_i \in X$ and because f is injective then $y_i \neq y_j$ whenever $i \neq j$. Because $f: X \to X$ we get f is surjective.
- 2. Suppose f is surjective, but it is not injective. Then $\exists x_i, x_j$ such that $f(x_i) = f(x_j)$. But because $f: X \to X$ we obtain that f is not surjective. This is contradiction.

Problem 1 Prove that for a continuously differentiable function f(x), where f(a) = f(b) = 0,

$$\max_{x \in [a,b]} |f'(x)| \ge \frac{1}{(b-a)^2} \int_a^b |f(x)| \, \mathrm{d}x \, .$$

Solution

$$\begin{split} \frac{1}{(b-a)^2} \int_a^b |f(x)| \, \mathrm{d}x &\leq \frac{1}{(b-a)^2} \max_{x \in [a,b]} |f(x)| \int_a^b 1 = \frac{\max_{x \in [a,b]} |f(x)|}{b-a} \\ &= \frac{\max_{x \in [a,b]} |f(x) - f(a)|}{b-a} = \frac{\max_{x \in [a,b]} |(x-a)f'(\xi)|}{b-a} \\ &\leq \max_{\xi \in [a,b]} |f'(\xi)| \,. \end{split}$$

-	_	_	_
L			
L			
L			

Problem 2 Find all functions $f : \mathbb{R} \to \mathbb{R}$ which satisfy the equality

$$xf(y) + yf(x) = (x+y)f(x)f(y).$$

Solution For x = y = 1 we get $f(1) = f^2(1)$. Hence we have two possibilities. For f(1) = 0, y = 1 we obtain that f(x) = 0 and for f(1) = 1, y = 1 we have

$$f(x) = \begin{cases} 1 & x \neq 0 \\ a \in \mathbb{R} & x = 0 \end{cases}$$

Problem 3 Let Z_k be the additive group of residual classes modulo k. Decide if Z_6 is isomorphic to $Z_2 \times Z_3$. Solution Let Z_6 be

uuuo	н г		70 D	C		
\oplus	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

and $Z_2 \times Z_3$

Ħ	(0,0)	(0,1)	(0,2)	(1,0)	(1,1)	(1,2)
(0,0)	(0,0)	(0,1)	(0,2)	(1,0)	(1,1)	(1,2)
(0,1)	(0,1)	(0,2)	(0,0)	(1,1)	(1,2)	(1,0)
(0,2)	(0,2)	(0,0)	(0,1)	(1,2)	(1,0)	(1,1)
(1,0)	(1,0)	(1,1)	(1,2)	(0,0)	(0,1)	(0,2)
(1,1)	(1,1)	(1,2)	(1,0)	(0,1)	(0,2)	(0,0)
(1,2)	(1,2)	(1,0)	(1,1)	(0,2)	(0,0)	(0,1)

Let $f: Z_6 \to Z_2 \times Z_3$ be the function defined by

 $f(0) = (0,0), \quad f(1) = (1,1), \quad f(2) = (0,2), \\ f(3) = (1,0), \quad f(4) = (0,1), \quad f(5) = (1,2)$

It is easy to check that this function is an injective function and the condition

$$f(x \oplus y) = f(x) \boxplus f(y)$$

is fulfilled. Thus Z_6 is isomorphic to $Z_2 \times Z_3$.

Problem 4 Prove that each rational number $\frac{p}{q} \neq 0$ can be written in the form

$$\frac{p}{q} = b_1 + \frac{b_2}{2!} + \dots + \frac{b_n}{n!},$$

where n is a sufficiently large positive integer and $b_k \in \mathbb{Z}$ (k > 1) such that $0 \le b_k < k, \ b_n \ne 0$. Solution Let

$$\frac{p}{q} = \frac{p(q-1)!}{q!} \,.$$

Further we have

$$p(q-1)! = s_q q + b_q ,$$

$$s_q = s_{q-1}(q-1) + b_{q-1} ,$$

$$\vdots$$

$$s_1 = b_1 .$$

where $b_i \in \{0, \ldots, i-1\}$. So we obtain

$$\frac{p}{q} = b_1 + \frac{b_2}{2!} + \dots + \frac{b_q}{q!} \,.$$

_		
Г		
L		
L		