The $2^{\text {nd }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $28^{\text {th }}$ April 1992
Category I

Problem 1 Find the $n^{\text {th }}$ derivation of the function

$$
f(x)=\frac{x}{x^{2}-1} .
$$

Solution

$$
\begin{aligned}
f(x)^{(n)} & =\left(\frac{x}{x^{2}-1}\right)^{(n)}=\frac{1}{2}\left(\frac{1}{x+1}+\frac{1}{x-1}\right)^{(n)} \\
& =\frac{(-1)^{n}}{2} n!\left(\frac{1}{(x+1)^{n+1}}+\frac{1}{(x-1)^{n+1}}\right) .
\end{aligned}
$$

The $2^{\text {nd }}$ Annual Vojtěch Jarník
 International Mathematical Competition
 Ostrava, $28^{\text {th }}$ April 1992
 Category I

Problem 2 Prove that there exist two real convex functions f, g such that

$$
f(x)-g(x)=\sin x
$$

for all $x \in \mathbb{R}$.
Solution Let $f(x)=x^{2}+\sin x$ and $g(x)=x^{2}$, then $f(x)-g(x)=\sin x$ and $f(x), g(x)$ are convex function because

$$
\begin{aligned}
f^{\prime \prime}(x) & =2-\sin x>0, \\
g^{\prime \prime}(x) & =2>0 .
\end{aligned}
$$

The $2^{\text {nd }}$ Annual Vojtěch Jarník International Mathematical Competition
Ostrava, $28^{\text {th }}$ April 1992
Category I

Problem 3 Prove that for all integers $n>1$,

$$
(n-1) \mid\left(n^{n}-n^{2}+n-1\right) .
$$

Solution For $n=2$ we get $(n-1)=1$ and $\left(n^{n}-n^{2}+n-1\right)=1$ so $(n-1) \mid\left(n^{n}-n^{2}+n-1\right)$.
Now we prove the result for $n \geq 3$. First we use mathematical induction to prove that $(n-1) \mid\left(n^{k}-n^{2}\right)$ for $k \geq 3$. For $k=3$ we have

$$
\left(n^{3}-n^{2}\right):(n-1)=n^{2} \quad \Rightarrow \quad(n-1) \mid\left(n^{3}-n^{2}\right) .
$$

Suppose that $(n-1) \mid\left(n^{k}-n^{2}\right)$. We have to prove that $(n-1) \mid\left(n^{k+1}-n^{2}\right)$. Hence $\left(n^{k+1}-n^{2}\right) /(n-1)=n^{k}$ with remainder $\left(n^{k}-n^{2}\right)$, and because $n-1$ divides $\left(n^{k}-n^{2}\right)$ we have shown that $(n-1) \mid\left(n^{k}-n^{2}\right)$ for $k \geq 3$. Hence from the facts that $(n-1) \mid\left(n^{n}-n^{2}\right)$ and $(n-1) \mid(n-1)$ we obtain that $(n-1) \mid\left(n^{n}-n^{2}+n-1\right)$ for all $n>1$.
Second solution Let $n>1$ be a fixed integer. Let $f(x)$ be the polynomial $x^{n}-x^{2}+x-1$. Note that $f(1)=0$. It follows from the factor theorem that $(x-1) \mid f(x)$. Substituting in n for x and noting that $n-1 \neq 0$, we see that

$$
n-1 \mid f(n)=n^{n}-n^{2}+n-1
$$

The $2^{\text {nd }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $28^{\text {th }}$ April 1992
Category I

Problem 4 Let X be a finite set and $f: X \rightarrow X$ be map. Prove that f is an injective map if and only if f is a surjective map.
Solution Let X have n elements.

1. Let f be injective, i.e. $\forall x_{i}, x_{j} \in X ; f\left(x_{i}\right) \neq f\left(x_{j}\right), i \neq j$. Then we have $\forall x_{i} \in X, f\left(x_{i}\right)=y_{i} \in X$ and because f is injective then $y_{i} \neq y_{j}$ whenever $i \neq j$. Because $f: X \rightarrow X$ we get f is surjective.
2. Suppose f is surjective, but it is not injective. Then $\exists x_{i}, x_{j}$ such that $f\left(x_{i}\right)=f\left(x_{j}\right)$. But because $f: X \rightarrow X$ we obtain that f is not surjective. This is contradiction.

The $2^{\text {nd }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $28^{\text {th }}$ April 1992 Category II

Problem 1 Prove that for a continuously differentiable function $f(x)$, where $f(a)=f(b)=0$,

$$
\max _{x \in[a, b]}\left|f^{\prime}(x)\right| \geq \frac{1}{(b-a)^{2}} \int_{a}^{b}|f(x)| \mathrm{d} x .
$$

Solution

$$
\begin{aligned}
\frac{1}{(b-a)^{2}} \int_{a}^{b}|f(x)| \mathrm{d} x & \leq \frac{1}{(b-a)^{2}} \max _{x \in[a, b]}|f(x)| \int_{a}^{b} 1=\frac{\max _{x \in[a, b]|f(x)|}}{b-a} \\
& =\frac{\max _{x \in[a, b]|f(x)-f(a)|}^{b-a}=\frac{\max _{x \in[a, b]}\left|(x-a) f^{\prime}(\xi)\right|}{b-a}}{} \\
& \leq \max _{\xi \in[a, b]}\left|f^{\prime}(\xi)\right| .
\end{aligned}
$$

The $2^{\text {nd }}$ Annual Vojtěch Jarník
 International Mathematical Competition
 Ostrava, $28^{\text {th }}$ April 1992 Category II

Problem 2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy the equality

$$
x f(y)+y f(x)=(x+y) f(x) f(y) .
$$

Solution For $x=y=1$ we get $f(1)=f^{2}(1)$. Hence we have two possibilities. For $f(1)=0, y=1$ we obtain that $f(x)=0$ and for $f(1)=1, y=1$ we have

$$
f(x)=\left\{\begin{array}{ll}
1 & x \neq 0 \\
a \in \mathbb{R} & x=0
\end{array} .\right.
$$

The $2^{\text {nd }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $28^{\text {th }}$ April 1992
Category II

Problem 3 Let Z_{k} be the additive group of residual classes modulo k. Decide if Z_{6} is isomorphic to $Z_{2} \times Z_{3}$.
Solution Let Z_{6} be

\oplus	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

and $Z_{2} \times Z_{3}$

\boxplus	$(0,0)$	$(0,1)$	$(0,2)$	$(1,0)$	$(1,1)$	$(1,2)$
$(0,0)$	$(0,0)$	$(0,1)$	$(0,2)$	$(1,0)$	$(1,1)$	$(1,2)$
$(0,1)$	$(0,1)$	$(0,2)$	$(0,0)$	$(1,1)$	$(1,2)$	$(1,0)$
$(0,2)$	$(0,2)$	$(0,0)$	$(0,1)$	$(1,2)$	$(1,0)$	$(1,1)$
$(1,0)$	$(1,0)$	$(1,1)$	$(1,2)$	$(0,0)$	$(0,1)$	$(0,2)$
$(1,1)$	$(1,1)$	$(1,2)$	$(1,0)$	$(0,1)$	$(0,2)$	$(0,0)$
$(1,2)$	$(1,2)$	$(1,0)$	$(1,1)$	$(0,2)$	$(0,0)$	$(0,1)$

Let $f: Z_{6} \rightarrow Z_{2} \times Z_{3}$ be the function defined by

$$
\begin{array}{lll}
f(0)=(0,0), & f(1)=(1,1), & f(2)=(0,2), \\
f(3)=(1,0), & f(4)=(0,1), & f(5)=(1,2)
\end{array}
$$

It is easy to check that this function is an injective function and the condition

$$
f(x \oplus y)=f(x) \boxplus f(y)
$$

is fulfilled. Thus Z_{6} is isomorphic to $Z_{2} \times Z_{3}$.

The $2^{\text {nd }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $28^{\text {th }}$ April 1992
Category II

Problem 4 Prove that each rational number $\frac{p}{q} \neq 0$ can be written in the form

$$
\frac{p}{q}=b_{1}+\frac{b_{2}}{2!}+\cdots+\frac{b_{n}}{n!},
$$

where n is a sufficiently large positive integer and $b_{k} \in \mathbb{Z}(k>1)$ such that $0 \leq b_{k}<k, b_{n} \neq 0$.

Solution Let

$$
\frac{p}{q}=\frac{p(q-1)!}{q!} .
$$

Further we have

$$
\begin{aligned}
p(q-1)! & =s_{q} q+b_{q} \\
s_{q} & =s_{q-1}(q-1)+b_{q-1} \\
& \vdots \\
s_{1} & =b_{1}
\end{aligned}
$$

where $b_{i} \in\{0, \ldots, i-1\}$. So we obtain

$$
\frac{p}{q}=b_{1}+\frac{b_{2}}{2!}+\cdots+\frac{b_{q}}{q!} .
$$

