The $5^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $25^{\text {th }}-26^{\text {th }}$ April 1995 Category I

Problem 1 Discuss the solvability of the equations

$$
\begin{aligned}
& \lambda x+y+z=a \\
& x+\lambda y+z=b \\
& x+y+\lambda z=c
\end{aligned}
$$

for all numbers $\lambda, a, b, c \in \mathbb{R}$.
Solution The characteristic polynomial of this system is $(\lambda-1)(\lambda-1)(\lambda+2)$. Hence we have three possibilities of solution:

1. For $\lambda=1$ we obtain that if $a=b=c$ then the system has infinity many solutions in the form $x=$ $a-u-v, y=u, z=v$, where u, v are parameters. Otherwise the system has no solution.
2. For $\lambda=-2$ we get if $a+b+c=0$ the system has infinitely many solutions. Otherwise the system has no solution.
3. For $\lambda \in \mathbb{R} \backslash\{1,-2\}$ the system has just one solution.

The $5^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $25^{\text {th }}-26^{\text {th }}$ April 1995
Category I

Problem 2 Let $f(x)$ be an even twice differentiable function such that $f^{\prime \prime}(0) \neq 0$. Prove that $f(x)$ has a local extremum at $x=0$.

Solution

$$
\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h}=f^{\prime}(0)
$$

and because $f(h)=f(-h)$ we have

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h}+\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0^{+}}\left(\frac{f(h)-f(0)}{h}+\frac{f(-h)-f(0)}{-h}\right)=0 \\
2 f^{\prime}(0) & =0
\end{aligned}
$$

Hence $f^{\prime}(0)=0$ and because $f^{\prime \prime}(0) \neq 0$, we obtain that $f(x)$ has an extremum at the point $x=0$.

The $5^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $25^{\text {th }}-26^{\text {th }}$ April 1995
Category I

Problem 3 Let $f(x)$ and $g(x)$ be mutually inverse decreasing functions on the interval ($0, \infty$). Can it hold that $f(x)>g(x)$ for all $x \in(0, \infty)$?
Solution The answer is yes. For example, the functions $f(x)=-\frac{1}{2} x-1$ and $g(x)=-2 x-2$ are mutually inverse functions and $f(x)>g(x)$ for all $x \in(0, \infty)$.

The $5^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $25^{\text {th }}-26^{\text {th }}$ April 1995
Category II

Problem 1 Prove that the systems of hyperbolas

$$
\begin{align*}
x^{2}-y^{2} & =a \tag{1}\\
x y & =b \tag{2}
\end{align*}
$$

are orthogonal.
Solution An arbitrary point lying on hyperbola (1) has the form $H_{1}=\left[x, \sqrt{x^{2}-a}\right]$ and $H_{\overline{1}}=\left[x,-\sqrt{x^{2}-a}\right]$ and points lying on hyperbola (2) have the form $H_{2}=\left[x, \frac{b}{x}\right]$. The tangent vectors to hyperbola (1) are $H_{1}^{\prime}=\left(1, \frac{x}{\sqrt{x^{2}-a}}\right)$ and $H_{1}^{\prime}=\left(1, \frac{-x}{\sqrt{x^{2}-a}}\right)$ and the tangent vector to hyperbola (2) is $H_{2}^{\prime}=\left(1, \frac{-b}{x^{2}}\right]$.

The point H is the point of intersection if and only if

$$
\begin{equation*}
H=\left[x, \sqrt{x^{2}-a}\right]=\left[x, \frac{b}{x}\right] \Rightarrow \frac{b}{x}=\sqrt{x^{2}-a} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
H=\left[x,-\sqrt{x^{2}-a}\right]=\left[x, \frac{b}{x}\right] \Rightarrow \frac{b}{x}=-\sqrt{x^{2}-a} \tag{4}
\end{equation*}
$$

Hyperbolas are orthogonal at the intersection point if and only if the scalar product of the tangent vectors at this point is equal to 0 . From (3) and (4) we have

$$
H_{1}^{\prime} \cdot H_{2}=1-\frac{b}{x \sqrt{x^{2}-a}}=0
$$

and

$$
H_{\overline{1}}^{\prime} \cdot H_{2}=1-\frac{b}{x \sqrt{x^{2}-a}}=0 .
$$

So the systems of hyperbolas are orthogonal.

The $5^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $25^{\text {th }}-26^{\text {th }}$ April 1995
Category II

Problem 2 Let $f=f_{0}+f_{1} z+f_{2} z^{2}+\ldots+f_{2 n} z^{2 n}$ and $f_{k}=f_{2 n-k}$ for each k. Prove that $f(z)=z^{n} g\left(z+z^{-1}\right)$, where g is a polynomial of degree n.

Solution Let

$$
\begin{aligned}
f_{2 n} & =f_{0}=a_{n}\binom{n}{0} \\
f_{2 n-1} & =f_{1}=a_{n-1}\binom{n-1}{0} \\
f_{2 n-2} & =f_{2}=a_{n}\binom{n}{1}+a_{n-2}\binom{n-2}{0} \\
f_{2 n-3} & =f_{3}=a_{n-1}\binom{n-1}{1}+a_{n-3}\binom{n-3}{0} \\
f_{2 n-4} & =f_{4}=a_{n}\binom{n}{2}+a_{n-2}\binom{n-2}{1}+a_{n}\binom{n-4}{0} \\
\vdots & \\
f_{2 n-k} & =f_{k}
\end{aligned}= \begin{cases}\sum_{i=0}^{k / 2} a_{n-2 i}\binom{n-2 i}{\frac{k}{2}-i} & \text { for } k \text { even } \\
\sum_{i=0}^{\frac{k-1}{2}} a_{n-2 i-1}\binom{n-2 i-1}{\frac{k-1}{2}-i} & \text { for } k \text { odd }\end{cases}
$$

Then we get $f(z)$ in the form

$$
\begin{aligned}
f(z)= & \sum_{k=0}^{n} a_{k}\left(\binom{k}{0}\left(z^{n+k}+z^{n-k}\right)+\binom{k}{1}\left(z^{n+k-2}+z^{n-k+2}\right)+\ldots\right. \\
& +\left\{\begin{array}{c}
\binom{k}{\frac{k}{2}}\left(z+z^{-1}\right) \quad \text { for } k \text { even } \\
\binom{k-1}{\frac{k}{2}}\left(z+z^{-1}\right) \quad \text { for } k \text { odd }
\end{array}\right) \\
= & z^{n} \sum_{k=0}^{n} a_{k}\left(\binom{k}{0}\left(z^{k}+z^{-k}\right)+\binom{k}{1}\left(z^{k-2}+z^{2-k}+\ldots\right)\right) \\
= & \left.z^{n} \sum_{k=0}^{n} a_{k}\left(\binom{k}{0} z^{k}+\binom{k}{1} z^{k-2}+\ldots+\binom{k}{k} z^{-k}\right)\right) \\
= & z^{n} \sum_{k=0}^{n} a_{k}\left(z+z^{-1}\right)^{k} \\
= & z^{n} g\left(z+z^{-1}\right)
\end{aligned}
$$

where g denotes the polynomial of degree n.

The $5^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $25^{\text {th }}-26^{\text {th }}$ April 1995
Category II

Problem 3 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Do there exist continuous functions $g: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=g(x) \sin x+h(x) \cos x$ holds for every $x \in \mathbb{R}$?
Solution Let $g(x)=f(x) \sin x$ and $h(x)=f(x) \cos x$. Both functions $g(x)$ and $h(x)$ are continuous function and the condition

$$
f(x)=g(x) \sin x+h(x) \cos x
$$

holds.

The $5^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $25^{\text {th }}-26^{\text {th }}$ April 1995
Category II

Problem 4 Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence such that $x_{1}=25, x_{n}=\arctan x_{n-1}$. Prove that this sequence has a limit and find it.
Solution The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence because $0<\frac{\arctan x}{x}<1$ and $\left\{x_{n}\right\}_{n=1}^{\infty}$ is bounded by 0 . So there exists a limit of this sequence. Let $\lim _{n \rightarrow \infty} x_{n}=L$. Then $L=\arctan L$, hence $L=0$ and $\lim _{n \rightarrow \infty} x_{n}=0$.

