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Problem 1 On the ellipse x2

a2 + z2

b2 = 1 find the point T = [x0, z0] such that the triangle bounded by the axes
of the ellipse and the tangent at that point has the least area.

Solution The equation of the tangent at point T is

xx0

a2
+

zz0
b2

= 1

and its intersection with the axes occurs at the points P = [a
2

x0
, 0] and Q = [0, b2

z0
]. The area S of triangle OPQ

is

S =
b2a2

2z0x0
=

b3a

2z0
√
b2 − z20

.

We will find the extreme point of the function S(z0). Note that

S′(z0) =
b3a

2

( 1

(b2 − z20)
3
2

− 1

z20
√
b2 − z20

)
.

Hence z0 = b√
2

and x0 = a√
2
. At the points z0 = b and z0 = 0, where the derivative does not exist, the function

S(z0) does not have an extremum, because we do not have a triangle. And because S′′
(

b√
2

)
> 0 we have a

minimum at that point. If we use the same process to find the additional points, we get the other three points
[− a√

2
, b√

2
], [ a√

2
,− b√

2
] and [− a√

2
,− b√

2
]. �
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Problem 2 Let {an}∞n=0 be the sequence of integers such that a0 = 1, a1 = 1, an+2 = 2an+1 − 2an. Decide
weather

an =

[n/2]∑
k=0

(
n

2k

)
.

Solution No. If

an =

[n/2]∑
k=0

(
n

2k

)
,

then we get the sequence an = 2n−1 for n ≥ 1. But if an+2 = 2an+1 − 2an holds, then we have the another
sequence an = 1

2 (1 + i)n + 1
2 (1− i)n for n ≥ 0. �
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Problem 3 Prove that the equation

z

1 + z2
+

y

1 + y2
+

x

1 + x2
=

1

1996

has finitely many solutions in positive integers.

Solution Let x ≤ y ≤ z. Then
z

1 + z2
≤ y

1 + y2
≤ x

1 + x2
. (1)

Hence
3x

1 + x2
≥ 1

1996

and from this x2 − 5988x+ 1 ≤ 0 so we have finitely many x ∈ N. Further we can write

z

1 + z2
+

y

1 + y2
=

1

Cx
,

where Cx = 1
1996 −

x
1+x2 is bounded number (for particular x). From (1) we get

2y

1 + y2
≥ 1

Cx

and from this y2 − 2Cxy + 1 ≤ 0 and y is also a bounded number. Then

z

1 + z2
=

1

1996
− x

1 + x2
− y

1 + y2
,

where the term on the right side has finitely many values. For each particular value of 1
1996 −

x
1+x2 − y

1+y2 we
obtain two distinct (or the same) numbers z. So we have only finitely many numbers z.

Hence the equation
z

1 + z2
+

y

1 + y2
+

x

1 + x2
=

1

1996

has finitely many solutions. �
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Problem 1 Is it possible to cover the plane with the interiors of a finite number of parabolas?

Solution Suppose that there exists a finite system S of parabolas, which cover the plane. The number of
parabolas is n. Take two parabolas from S which intersect. These parabolas have at most four intersection
points. We choose another parabola from S which covers at least one of the intersection points. Hence we have
either a new intersection point or part of a parabola which is not covered. We do this iteration process for all
parabolas from S. At the end of this iteration process we get one intersection point or part of a parabola which
is not covered. So we have a contradiction. �
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Problem 2 Let {xn}∞n=0 be the sequence such that x0 = 2, x1 = 1 and xn+2 is the remainder of the number
xn+1 + xn divided by 7. Prove that xn is the remainder of the number

4n
[n/2]∑
k=0

2

(
n

2k

)
5k

divided by 7.

Solution
�
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Problem 3 Let cif(x) denote the sum of the digits of the number x in the decimal system. Put a1 = 19971996
1997

,
an+1 = cif(an) for every n > 0. Find limn→∞ an.

Solution For the function cif(x) we have cif(x) ≡ x (mod 9). For x ≥ 10 we obtain cif(x) < x and for x ≤ 9
we obtain cif(x) = x. Hence there exists N such that 1 ≤ an+1 < an for all n ≤ N − 1 and 1 ≤ an+1 = an for
all n ≥ N . This implies that

lim
n→∞

an = aN ≡ a1 (mod 9) .

We have
19971996

1997

≡ (−1)1996
1997

= 1 (mod 9) .

From 1 ≤ limn→∞ an ≤ 9 we obtain limn→∞ an = 1. �


