The $6^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition

Ostrava, $3^{\text {rd }}$ April 1996
Category I

Problem 1 On the ellipse $\frac{x^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1$ find the point $T=\left[x_{0}, z_{0}\right]$ such that the triangle bounded by the axes of the ellipse and the tangent at that point has the least area.

Solution The equation of the tangent at point T is

$$
\frac{x x_{0}}{a^{2}}+\frac{z z_{0}}{b^{2}}=1
$$

and its intersection with the axes occurs at the points $P=\left[\frac{a^{2}}{x_{0}}, 0\right]$ and $Q=\left[0, \frac{b^{2}}{z_{0}}\right]$. The area S of triangle $O P Q$ is

$$
S=\frac{b^{2} a^{2}}{2 z_{0} x_{0}}=\frac{b^{3} a}{2 z_{0} \sqrt{b^{2}-z_{0}^{2}}} .
$$

We will find the extreme point of the function $S\left(z_{0}\right)$. Note that

$$
S^{\prime}\left(z_{0}\right)=\frac{b^{3} a}{2}\left(\frac{1}{\left(b^{2}-z_{0}^{2}\right)^{\frac{3}{2}}}-\frac{1}{z_{0}^{2} \sqrt{b^{2}-z_{0}^{2}}}\right) .
$$

Hence $z_{0}=\frac{b}{\sqrt{2}}$ and $x_{0}=\frac{a}{\sqrt{2}}$. At the points $z_{0}=b$ and $z_{0}=0$, where the derivative does not exist, the function $S\left(z_{0}\right)$ does not have an extremum, because we do not have a triangle. And because $S^{\prime \prime}\left(\frac{b}{\sqrt{2}}\right)>0$ we have a minimum at that point. If we use the same process to find the additional points, we get the other three points $\left[-\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right],\left[\frac{a}{\sqrt{2}},-\frac{b}{\sqrt{2}}\right]$ and $\left[-\frac{a}{\sqrt{2}},-\frac{b}{\sqrt{2}}\right]$.

The $6^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $3^{\text {rd }}$ April 1996
Category I

Problem 2 Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be the sequence of integers such that $a_{0}=1, a_{1}=1, a_{n+2}=2 a_{n+1}-2 a_{n}$. Decide weather

$$
a_{n}=\sum_{k=0}^{[n / 2]}\binom{n}{2 k} .
$$

Solution No. If

$$
a_{n}=\sum_{k=0}^{[n / 2]}\binom{n}{2 k},
$$

then we get the sequence $a_{n}=2^{n-1}$ for $n \geq 1$. But if $a_{n+2}=2 a_{n+1}-2 a_{n}$ holds, then we have the another sequence $a_{n}=\frac{1}{2}(1+\mathrm{i})^{n}+\frac{1}{2}(1-\mathrm{i})^{n}$ for $n \geq 0$.

The $6^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $3^{\text {rd }}$ April 1996
Category I

Problem 3 Prove that the equation

$$
\frac{z}{1+z^{2}}+\frac{y}{1+y^{2}}+\frac{x}{1+x^{2}}=\frac{1}{1996}
$$

has finitely many solutions in positive integers.
Solution Let $x \leq y \leq z$. Then

$$
\begin{equation*}
\frac{z}{1+z^{2}} \leq \frac{y}{1+y^{2}} \leq \frac{x}{1+x^{2}} \tag{1}
\end{equation*}
$$

Hence

$$
\frac{3 x}{1+x^{2}} \geq \frac{1}{1996}
$$

and from this $x^{2}-5988 x+1 \leq 0$ so we have finitely many $x \in \mathbb{N}$. Further we can write

$$
\frac{z}{1+z^{2}}+\frac{y}{1+y^{2}}=\frac{1}{C_{x}},
$$

where $C_{x}=\frac{1}{1996}-\frac{x}{1+x^{2}}$ is bounded number (for particular x). From (1) we get

$$
\frac{2 y}{1+y^{2}} \geq \frac{1}{C_{x}}
$$

and from this $y^{2}-2 C_{x} y+1 \leq 0$ and y is also a bounded number. Then

$$
\frac{z}{1+z^{2}}=\frac{1}{1996}-\frac{x}{1+x^{2}}-\frac{y}{1+y^{2}},
$$

where the term on the right side has finitely many values. For each particular value of $\frac{1}{1996}-\frac{x}{1+x^{2}}-\frac{y}{1+y^{2}}$ we obtain two distinct (or the same) numbers z. So we have only finitely many numbers z.

Hence the equation

$$
\frac{z}{1+z^{2}}+\frac{y}{1+y^{2}}+\frac{x}{1+x^{2}}=\frac{1}{1996}
$$

has finitely many solutions.

The $6^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $3^{\text {rd }}$ April 1996
Category II

Problem 1 Is it possible to cover the plane with the interiors of a finite number of parabolas?
Solution Suppose that there exists a finite system \mathcal{S} of parabolas, which cover the plane. The number of parabolas is n. Take two parabolas from \mathcal{S} which intersect. These parabolas have at most four intersection points. We choose another parabola from \mathcal{S} which covers at least one of the intersection points. Hence we have either a new intersection point or part of a parabola which is not covered. We do this iteration process for all parabolas from \mathcal{S}. At the end of this iteration process we get one intersection point or part of a parabola which is not covered. So we have a contradiction.

The $6^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $3^{\text {rd }}$ April 1996
Category II

Problem 2 Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be the sequence such that $x_{0}=2, x_{1}=1$ and x_{n+2} is the remainder of the number $x_{n+1}+x_{n}$ divided by 7 . Prove that x_{n} is the remainder of the number

$$
4^{n} \sum_{k=0}^{[n / 2]} 2\binom{n}{2 k} 5^{k}
$$

divided by 7 .
Solution

The $6^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $3^{\text {rd }}$ April 1996
Category II

Problem 3 Let $\operatorname{cif}(x)$ denote the sum of the digits of the number x in the decimal system. Put $a_{1}=1997^{1996^{1997}}$, $a_{n+1}=\operatorname{cif}\left(a_{n}\right)$ for every $n>0$. Find $\lim _{n \rightarrow \infty} a_{n}$.
Solution For the function $\operatorname{cif}(x)$ we have $\operatorname{cif}(x) \equiv x(\bmod 9)$. For $x \geq 10$ we obtain $\operatorname{cif}(x)<x$ and for $x \leq 9$ we obtain $\operatorname{cif}(x)=x$. Hence there exists N such that $1 \leq a_{n+1}<a_{n}$ for all $n \leq N-1$ and $1 \leq a_{n+1}=a_{n}$ for all $n \geq N$. This implies that

$$
\lim _{n \rightarrow \infty} a_{n}=a_{N} \equiv a_{1} \quad(\bmod 9) .
$$

We have

$$
1997^{1996^{1997}} \equiv(-1)^{1996^{1997}}=1 \quad(\bmod 9)
$$

From $1 \leq \lim _{n \rightarrow \infty} a_{n} \leq 9$ we obtain $\lim _{n \rightarrow \infty} a_{n}=1$.

