The $7^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition

Ostrava, $9^{\text {th }}$ April 1997
Category I

Problem 1 Let a be an odd positive integer. Prove that if $d \mid\left(a^{2}+2\right)$ then $d \equiv 1(\bmod 8)$ or $d \equiv 3(\bmod 8)$.
Solution If $p \mid\left(a^{2}+2\right)$ and p is the prime, then -2 is a quadratic residue modulo p. It follows that for the Legendre symbol $\left(\frac{-2}{p}\right)=1$, where $(\doteqdot$) is the Legendre symbol. Using the properties of Legendre symbol we obtain

$$
\left(\frac{-2}{p}\right)=\left(\frac{-1}{p}\right) \cdot\left(\frac{2}{p}\right)=(-1)^{\frac{p-1}{2}+\frac{p^{2}-1}{8}} .
$$

Thus the number $\frac{p-1}{2}+\frac{p^{2}-1}{8}$ is even and so

$$
\begin{equation*}
p^{2}+4 p \equiv 5 \quad(\bmod 16) \tag{1}
\end{equation*}
$$

On the other hand p is an odd prime, thus p is of the form $8 k+1,8 k+3,8 k+5$ or $8 k+7$. This and (1) yield that the prime p is of the form $8 k+1$ or $8 k+3$. The product of an even number of numbers of the form $8 k+3$ is a number b fulfilling $b \equiv 1(\bmod 8)$, and the product of an odd number of numbers of the form $8 k+3$ is c fulfilling $c \equiv 3(\bmod 8)$. The product e of numbers of the form $8 k+1$ satisfies $e \equiv 1(\bmod 8)$. This yields the assertion.

The $7^{\text {th }}$ Annual Vojtěch Jarník
 International Mathematical Competition

Ostrava, $9^{\text {th }}$ April 1997
Category I

Problem 2 Let $\alpha \in(0,1]$ be a given real number and let the real sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ satisfy the inequality

$$
a_{n+1} \leq \alpha a_{n}+(1-\alpha) a_{n-1} \quad \text { for } n=2,3, \ldots
$$

If $\left\{a_{n}\right\}$ is bounded prove that then it must be convergent.
Solution Since $\left(a_{n}\right)$ is bounded there exists both $\lim \inf a_{n}=l$ and $\lim \sup a_{n}=L$. We shall prove that $L=l$. Let suppose the contrary $L>l$. By the definition of limsup and liminf we know that there exist subsequencies $\left(a_{n_{k}}\right)$ and $\left(a_{m_{k}}\right)$ of (a_{n}) which converge to l and L.

Since $L=\limsup a_{n}$ we have:

$$
(\forall \varepsilon>0)\left(\exists n_{0} \in \mathbb{N}\right)\left(\forall n \geq n_{0}\right) a_{n}<L+\varepsilon .
$$

On the other hand

$$
(\forall \varepsilon>0)\left(\exists n_{1} \in \mathbb{N}\right)\left(\forall n \geq n_{1}\right) l-\varepsilon<a_{n}
$$

We choose $m_{k_{0}}$ such that: $m_{k_{0}}>n_{1}, l-\varepsilon<a_{m_{k_{0}}}<l+\varepsilon$. By the inequality we obtain:

$$
a_{m_{k_{0}+1}} \leq(1-\alpha) a_{m_{k_{0}}}+\alpha a_{m_{k_{0}-1}}<(1-\alpha)(l+\varepsilon)+\alpha(L+\varepsilon)=\varepsilon+(1-\alpha) l+\alpha L
$$

and
$a_{m_{k_{0}+2}} \leq(1-\alpha) a_{m_{k_{0}+1}}+\alpha a_{m_{k_{0}}}<(1-\alpha)(\varepsilon+(1-\alpha) l+\alpha L)+\alpha(l+\varepsilon)==\varepsilon+\left((1-\alpha)^{2}+\alpha\right) l+(1-\alpha) \alpha L$.
It is not difficult to demonstrate that we can choose ε such that:

$$
\begin{gathered}
\varepsilon+(1-\alpha) l+\alpha L<L-\frac{\varepsilon}{2} \\
\varepsilon+\left(1-\alpha+\alpha^{2}\right) l+\left(\alpha-\alpha^{2}\right) L<L-\frac{\varepsilon}{2}
\end{gathered}
$$

using the functions: $f(x)=\varepsilon+(1-x) l+x L$ and $g(x)=\varepsilon+\left(1-x-x^{2}\right) l+\left(x-x^{2}\right) L, x \in[0,1]$.
From that we have: $a_{m_{k_{0}+1}} \leq L-\frac{\varepsilon}{2}, a_{m_{k_{0}+2}} \leq L-\frac{\varepsilon}{2}$. From that we obtain:

$$
a_{m_{k_{0}+3}} \leq(1-\alpha) a_{m_{k_{0}+1}}+a_{m_{k_{0}}}<(1-\alpha)\left(L-\frac{\varepsilon}{2}\right)+\alpha\left(L-\frac{\varepsilon}{2}\right)=L-\frac{\varepsilon}{2}
$$

therefore by induction we get:

$$
a_{n}<L-\frac{\varepsilon}{2}, \quad \forall n \geq m_{k_{0}+1}
$$

The last formula yields:

$$
\limsup a_{n} \leq L-\frac{\varepsilon}{2}<L,
$$

which is a contradiction. Thus $L=l$.

The $7^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $9^{\text {th }}$ April 1997
Category I

Problem 3 Let $c_{1}, c_{2}, \ldots, c_{n}$ be real numbers such that

$$
\begin{equation*}
c_{1}^{k}+c_{2}^{k}+\cdots+c_{n}^{k}>0 \quad \text { for } k=1,2, \ldots \tag{1}
\end{equation*}
$$

Let us put

$$
f(x)=\frac{1}{\left(1-c_{1} x\right)\left(1-c_{2} x\right) \ldots\left(1-c_{n} x\right)} .
$$

Show that $f^{(k)}(0)>0$ for all $k=1,2, \ldots$.
Solution Put $g(x):=\log f(x)$. Then

$$
g(x)=-\sum_{j=1}^{n} \log \left(1-c_{j} x\right) \quad \text { and } \quad g^{(k)}(x)=\sum_{j=1}^{n} \frac{(k-1)!c_{j}^{k}}{\left(1-c_{j} x\right)^{k}} .
$$

Assumption (1) and the above result give

$$
g^{(k)}(0)=c_{1}^{k}+c_{2}^{k}+\cdots+c_{n}^{k}>0
$$

Now observe that if all the derivatives of g at the origin are positive, then e^{g} has the same property. For this show by induction that

$$
\left(\mathrm{e}^{g}\right)^{(k)}=\mathrm{e}^{g} \cdot S,
$$

where S is a finite sum of terms of the form

$$
a\left(g^{\left(l_{1}\right)}\right)^{m_{1}}\left(g^{\left(l_{2}\right)}\right)^{m_{2}} \ldots\left(g^{\left(l_{r}\right)}\right)^{m_{r}}
$$

where a, l_{j} and m_{j} are positive integers. For instance:

$$
\begin{aligned}
\left(\mathrm{e}^{g(x)}\right)^{\prime} & =\mathrm{e}^{g(x)} g^{\prime}(x) \\
\left(\mathrm{e}^{g(x)}\right)^{\prime \prime} & =\mathrm{e}^{g(x)}\left(\left(g^{\prime}(x)\right)^{2}+g^{\prime \prime}(x)\right) \\
\left(\mathrm{e}^{g(x)}\right)^{\prime \prime \prime} & =\mathrm{e}^{g(x)}\left(\left(g^{\prime}(x)\right)^{3}+3 g^{\prime}(x) g^{\prime \prime}(x)+g^{\prime \prime \prime}(x)\right) \\
\left(\mathrm{e}^{g(x)}\right)^{(4)} & =\mathrm{e}^{g(x)}\left(\left(g^{\prime}(x)\right)^{4}+6\left(g^{\prime}(x)\right)^{2} g^{\prime \prime}(x)+3\left(g^{\prime \prime}(x)\right)^{2}+4 g^{\prime}(x) g^{\prime \prime \prime}(x)+g^{(4)}(x)\right)
\end{aligned}
$$

The $7^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $9^{\text {th }}$ April 1997
Category I

Problem 4-M Find all real numbers $a>0$ for which the series

$$
\sum_{n=1}^{\infty} \frac{a^{f(n)}}{n^{2}}
$$

is convergent, where $f(n)$ denotes the number of zeros in the decimal expansion of n.
Solution For $n=0,1, \ldots$ let us consider k 's fulfilling the inequality:

$$
\begin{equation*}
10^{n} \leq k<10^{n+1} \tag{1}
\end{equation*}
$$

For a fixed $0 \leq j \leq n$ there are

$$
\binom{n}{j} 9^{n-j+1} \quad k \text { 's fulfilling (1) such that } f(k)=j
$$

Consequently,

$$
\frac{9(9+a)^{n}}{10^{2 n+2}}=\frac{9}{10^{2 n+2}}\left(\sum_{j=0}^{n}\binom{n}{j} a^{j} 9^{n-j}\right) \leq \sum_{k=10^{n}}^{10^{n+1}-1} \frac{a^{f(k)}}{k^{2}} \leq \frac{9}{10^{2 n}}\left(\sum_{j=0}^{n}\binom{n}{j} a^{j} 9^{n-j}\right)=\frac{9(9+a)^{n}}{10^{2 n}} .
$$

This implies that

$$
\frac{9}{100} \sum_{n=0}^{\infty}\left(\frac{9+a}{100}\right)^{n} \leq \sum_{n=1}^{\infty} \frac{a^{f(n)}}{n^{2}} \leq 9 \sum_{n=0}^{\infty}\left(\frac{9+a}{100}\right)^{n}
$$

From the last inequalities we conclude that our series is convergent exactly when

$$
\frac{9+a}{100}<1
$$

or

$$
0<a<91
$$

The $7^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $9^{\text {th }}$ April 1997
Category I

Problem 4-I Let us have declared:
const N_MAX = 255;
type
tR = array[1..N_MAX] of real;
tN = array[1..N_MAX] of integer;
and function random without parameters which returns real random values distributed uniformly in $[0,1)$.
You need to choose K integer numbers $\left(1<K<N, N_{-} M A X \geq N\right)$ without repetitions under the condition that the probability of the choice of a number i equals a given $P_{i}, \sum_{i=1}^{N} P_{i}=1$.

Write the procedure in Pascal that returns such K integer numbers in the first K elements of the vector of $t N$ type. Input parameters of the procedure are K, N and the vector of P_{i}.

Solution

The $7^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $9^{\text {th }}$ April 1997
Category II

Problem 1 Decide whether it is possible to cover a 3-dimensional Euclidean space with lines which are pairwise skew (i.e. not coplanar).
Solution There is (for example) the following covering:

$$
\text { lines } p_{a, b}=\left\{A_{a, b}=[a, b, 0] ; s_{a, b}=(-b, a, 1)\right\},
$$

where $A_{a, b}$ is point and $s_{a, b}$ is vector of $p_{a, b}$. We show that

1. if $[a, b] \neq[c, d]$ then $p_{a, b} \cap p_{c, d}=\emptyset$; and
2. for each $X=[x, y, z]$ there is $[a, b]$ such that $X \in p_{a, b}$.
3. Let $[a, b] \neq[c, d]$ and $p_{a, b} \cap p_{c, d}=\emptyset$. Then (from the parametric expression)

$$
\begin{aligned}
a-t b & =c-r d \\
b+t a & =d+r c \\
t & =r
\end{aligned}
$$

for some real t and r. From the third equality $t=r$ and from the first and the second we have $a-c=t(b-d)$ and $b-d=-t(a-c)$. By linear combination (first times $(a-c)$ plus second times $(b-d)$) we have

$$
(a-c)^{2}+(b-d)^{2}=0 .
$$

But this contradicts $[a, b] \neq[c, d]$.
2. For $X=[x, y, z]$ put $a=\frac{x+y z}{1+z^{2}} ; b=\frac{y-x z}{1+z^{2}}$. Then $X=A_{a, b}+z \cdot s_{a, b}$.

This implies that it is possible to cover 3-dimensional Euclidean space with lines which are pairwise skew.

The $7^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $9^{\text {th }}$ April 1997 Category II

Problem 2 Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function such that $|f(z)|=1$ for all $z \in \mathbb{C}$ with $|z|=1$. Prove that there are $\theta \in \mathbb{R}, k \in\{0,1,2, \ldots\}$ such that

$$
f(z)=\mathrm{e}^{\mathrm{i} \theta} z^{k} \quad \text { for any } z \in \mathbb{C} .
$$

Solution We know that

$$
\begin{equation*}
|f(z)|=1 \quad \text { for all }|z|=1 \tag{1}
\end{equation*}
$$

Let $\Delta:=\{z \in \mathbb{C}:|z|<1\}$. Let $\left\{z_{1}, \ldots, z_{n}\right\}$ be zeros (counted with multiplicity) of the function f belonging to Δ. The number of zeros is finite because of the identity principle and (1).

Let us define the following function:

$$
g(z):=\frac{f(z)}{\prod_{j=1}^{n} \frac{z-z_{j}}{1-\bar{z}_{j} z}}, \quad \text { for all } z \text { with } z \bar{z}_{j} \neq 1 .
$$

From the choice of z_{j} we certainly have that g is holomorphic in some neighbourhood of $\bar{\Delta}$ (even in $\mathbb{C} \backslash$ $\left.\left\{1 / \bar{z}_{1}, \ldots, 1 / \bar{z}_{n}\right\}\right)$.

Because of (1) and the fact that

$$
\left|\frac{z-z_{j}}{1-\bar{z}_{j} z}\right|=1 \quad \text { for all }|z|=1
$$

we have that

$$
\begin{equation*}
|g(z)|=1 \quad \text { for all }|z|=1 \tag{2}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
g(z) \neq 0 \quad \text { for all } z \in \Delta . \tag{3}
\end{equation*}
$$

In view of (2) and (3), the minimum and maximum principles applied to the mapping g imply that

$$
|g| \equiv 1 \text { on } \Delta,
$$

which gives us that

$$
g \equiv \mathrm{e}^{\mathrm{i} \theta} \quad \text { for some } \theta \in \mathbb{R} .
$$

Therefore,

$$
f(z)=\mathrm{e}^{\mathrm{i} \theta} \prod_{j=1}^{n} \frac{z-z_{j}}{1-\bar{z}_{j} z}, \quad z \in \mathbb{C} .
$$

And the last inequality is possible iff $z_{1}=\cdots=z_{n}=0$.

The $7^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $9^{\text {th }}$ April 1997
Category II

Problem 3 Let $u \in C^{2}(\bar{D}), u=0$ on ∂D, where D is an open unit ball in \mathbb{R}^{3}. Prove that the following inequality

$$
\int_{D}|\operatorname{grad} u|^{2} \mathrm{~d} V \leq \varepsilon \int_{D}(\Delta u)^{2} \mathrm{~d} V+\frac{1}{4 \varepsilon} \int_{D} u^{2} \mathrm{~d} V
$$

holds for all $\varepsilon>0$.
Solution Since the inequality must hold for every $\varepsilon>0$ it will hold too for those ε for which the function $g(\varepsilon)=\varepsilon \int_{D}(\Delta u)^{2} \mathrm{~d} V+\frac{1}{4 \varepsilon} \int_{D} u^{2} \mathrm{~d} V$ takes a minimum, i.e., for $\varepsilon=\frac{1}{2} \sqrt{\frac{I_{u}}{I_{l}}}\left(g^{\prime}(\varepsilon)=I_{l}-\frac{1}{4 \varepsilon^{2}} I_{u}=0\right)$. That minimum is $g\left(\frac{1}{2} \sqrt{\frac{I_{u}}{I_{l}}}\right)=\sqrt{I_{u} I_{l}}$. Therefore it suffices to show that

$$
\int_{D}|\operatorname{grad} u|^{2} \mathrm{~d} V \leq \sqrt{\int_{D}(\Delta u)^{2} \mathrm{~d} V \int_{D} u^{2} \mathrm{~d} V}
$$

By placing $(P, Q, R)=u\left(u_{x}, u_{y}, u_{z}\right)$ in the Gauss-Ostrogradski formula we get:

$$
\int_{D}|\operatorname{grad} u|^{2} \mathrm{~d} V+\int_{D} u \Delta u \mathrm{~d} V=-\int_{\partial D} u \frac{\partial u}{\partial n} \mathrm{~d} S=0
$$

where n is inner normal. From this by the Cauchy-Schwartz inequality and the conditions of that statement we obtain

$$
\int_{D}|\operatorname{grad} u|^{2} \mathrm{~d} V=-\int_{D} u \Delta u \mathrm{~d} V \leq \sqrt{\int_{D}(\Delta u)^{2} \mathrm{~d} V \int_{D} u^{2} \mathrm{~d} V}
$$

The $7^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $9^{\text {th }}$ April 1997
Category II

Problem 4-M Prove that

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{(7 n)!}=\frac{1}{7^{3}} \sum_{k=1}^{2} \sum_{j=0}^{6} \mathrm{e}^{\cos \left(\frac{2 \pi j}{7}\right)} \cdot \cos \left(\sin \left(\frac{2 \pi j}{7}\right)+\left(\frac{2 \pi j k}{7}\right)\right)
$$

Solution

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{(7 n)!}=\frac{1}{49} \sum_{n=1}^{\infty} \frac{7 n(7 n-1)+7 n}{(7 n)!}=\sum_{k=1}^{2} \sum_{n=1}^{\infty} \frac{1}{(7 n-k)!}
$$

We have

$$
A=\sum_{k=1}^{2} \sum_{j=0}^{6} \mathrm{e}^{\frac{2 \pi \mathrm{i} j}{7}}+\frac{2 \pi \mathrm{i} j k}{7}=\sum_{k=1}^{2} \sum_{j=0}^{6} \mathrm{e}^{\frac{2 \pi \mathrm{i} j k}{7}} \mathrm{e}^{\frac{2 \pi \mathrm{i} \mathrm{i} j}{7}}=\sum_{k=1}^{2} \sum_{j=0}^{6} \mathrm{e}^{\frac{2 \pi \mathrm{i} j k}{7}} \sum_{n=0}^{\infty} \frac{\mathrm{e}^{\frac{2 \pi \mathrm{i} j k}{7}}}{n!}=\sum_{k=1}^{2} \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{j=0}^{6} \mathrm{e}^{\frac{2 \pi \mathrm{i} j(n+k)}{7}}
$$

If $7 \mid N$, then

$$
\sum_{j=0}^{6} \mathrm{e}^{\frac{2 \pi \mathrm{i} j N}{7}}=7
$$

If $7 \nmid N$, then

$$
\sum_{j=0}^{6} \mathrm{e}^{\frac{2 \pi \mathrm{i} j N}{7}}=\frac{\mathrm{e}^{2 \pi \mathrm{i} N}-1}{\mathrm{e}^{\frac{2 \pi \mathrm{i} j N}{7}}-1}=0
$$

It follows that

$$
A=7 \sum_{k=1}^{2} \sum_{n=1}^{\infty} \frac{1}{(7 n-k)!} .
$$

Thus

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{n^{2}}{(7 n)!}=\frac{1}{7^{3}} \sum_{k=1}^{2} \sum_{j=0}^{6} \mathrm{e}^{\frac{2 \pi \mathrm{i} j}{7}}+\frac{2 \pi \mathrm{i} j k}{7}=\frac{1}{7^{3}} \sum_{k=1}^{2} \sum_{j=0}^{6} \mathrm{e}^{\cos \left(\frac{2 \pi j}{7}\right)+\mathrm{i}\left(\sin \left(\frac{2 \pi j}{7}\right)+\left(\frac{2 \pi j k}{7}\right)\right)}= \\
& =\frac{1}{7^{3}} \sum_{k=1}^{2} \sum_{j=0}^{6} \mathrm{e}^{\cos \left(\frac{2 \pi j}{7}\right)} \cdot \cos \left(\sin \left(\frac{2 \pi j}{7}\right)+\left(\frac{2 \pi j k}{7}\right)\right)
\end{aligned}
$$

The $7^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $9^{\text {th }}$ April 1997
Category II

Problem 4-I Problem Div D_{3} is specified as follows:
Input: any program P,
Output: a finite set $D(P)$ of strings of 0 's and 1's,
where it holds that the program P solves problem $D^{2} v_{3}$ iff it outputs the correct answers for inputs from $D(P)$.
Theorem For any program TRANSF which transforms programs in some way (i.e. for any given program P it constructs some program P^{\prime}, denoted by $P^{\prime}=T R A N S F(P)$) there is a program P_{0} whose input/output behaviour is not changed by the transformation (i.e. P_{0} and $T R A N S F\left(P_{0}\right)$ yield the same outputs for the same inputs).
Solution Suppose there is some GEN-TEST-DATA with the property described above. Now construct a program TRANSF which works as follows:

When given a program P, it constructs $D(P)$ by using GEN-TEST-DATA and then constructs P^{\prime} whose behaviour can be described as follows:

```
s:= input;
if s\inD(P);
then output YES or NO according to whether or not s is
    the binary code of a number divisible by 3;
else output YES;
```

Due to the Recursion Theorem there is a program P_{0} s.t. its input/output behaviour is the same as the behaviour of TRANSF $\left(P_{0}\right)$, and it can be described as follows:

```
s:= input;
if }s\inD(\mp@subsup{P}{0}{})\mathrm{ ;
then output YES or NO according to whether or not s is
    the binary code of a~number divisible by 3;
else output YES;
```

Such a program P_{0} obviously violates the condition supposed for GEN-TEST-DATA.
Hence we have to conclude that there is no desired program GEN-TEST-DATA.

