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Problem 1 Let a be an odd positive integer. Prove that if d | (a2 + 2) then d ≡ 1 (mod 8) or d ≡ 3 (mod 8).

Solution If p | (a2 + 2) and p is the prime, then −2 is a quadratic residue modulo p. It follows that for the
Legendre symbol

(−2
p

)
= 1, where

( ·
·
)

is the Legendre symbol. Using the properties of Legendre symbol we
obtain (−2

p

)
=
(−1

p

)
·
(2

p

)
= (−1)

p−1
2 + p2−1

8 .

Thus the number p−1
2 + p2−1

8 is even and so

p2 + 4p ≡ 5 (mod 16). (1)

On the other hand p is an odd prime, thus p is of the form 8k + 1, 8k + 3, 8k + 5 or 8k + 7. This and (1) yield
that the prime p is of the form 8k+ 1 or 8k+ 3. The product of an even number of numbers of the form 8k+ 3
is a number b fulfilling b ≡ 1 (mod 8), and the product of an odd number of numbers of the form 8k + 3 is c
fulfilling c ≡ 3 (mod 8). The product e of numbers of the form 8k + 1 satisfies e ≡ 1 (mod 8). This yields the
assertion. �
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Problem 2 Let α ∈ (0, 1] be a given real number and let the real sequence {an}∞n=1 satisfy the inequality

an+1 ≤ αan + (1− α)an−1 for n = 2, 3, . . .

If {an} is bounded prove that then it must be convergent.

Solution Since (an) is bounded there exists both lim inf an = l and lim sup an = L. We shall prove that L = l.
Let suppose the contrary L > l. By the definition of lim sup and lim inf we know that there exist subsequencies
(ank) and (amk) of (an) which converge to l and L.

Since L = lim sup an we have:

(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)an < L+ ε.

On the other hand
(∀ε > 0)(∃n1 ∈ N)(∀n ≥ n1)l − ε < an.

We choose mk0 such that: mk0 > n1, l − ε < amk0 < l + ε. By the inequality we obtain:

amk0+1
≤ (1− α)amk0 + αamk0−1

< (1− α)(l + ε) + α(L+ ε) = ε+ (1− α)l + αL

and

amk0+2
≤ (1− α)amk0+1

+ αamk0 < (1− α)(ε+ (1− α)l + αL) + α(l + ε) == ε+ ((1− α)2 + α)l + (1− α)αL.

It is not difficult to demonstrate that we can choose ε such that:

ε+ (1− α)l + αL < L− ε

2
,

ε+ (1− α+ α2)l + (α− α2)L < L− ε

2
,

using the functions: f(x) = ε+ (1− x)l + xL and g(x) = ε+ (1− x− x2)l + (x− x2)L, x ∈ [0, 1].
From that we have: amk0+1

≤ L− ε
2 , amk0+2

≤ L− ε
2 . From that we obtain:

amk0+3
≤ (1− α)amk0+1

+ amk0 < (1− α)
(
L− ε

2

)
+ α

(
L− ε

2

)
= L− ε

2
,

therefore by induction we get:

an < L− ε

2
, ∀n ≥ mk0+1.

The last formula yields:

lim sup an ≤ L−
ε

2
< L,

which is a contradiction. Thus L = l. �
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Problem 3 Let c1, c2, . . . , cn be real numbers such that

ck1 + ck2 + · · ·+ ckn > 0 for k = 1, 2, . . . (1)

Let us put

f(x) =
1

(1− c1x)(1− c2x) . . . (1− cnx)
.

Show that f (k)(0) > 0 for all k = 1, 2, . . . .

Solution Put g(x) := log f(x). Then

g(x) = −
n∑
j=1

log(1− cjx) and g(k)(x) =

n∑
j=1

(k − 1)!ckj
(1− cjx)k

.

Assumption (1) and the above result give

g(k)(0) = ck1 + ck2 + · · ·+ ckn > 0.

Now observe that if all the derivatives of g at the origin are positive, then eg has the same property. For this
show by induction that

(eg)(k) = eg · S ,

where S is a finite sum of terms of the form

a(g(l1))m1(g(l2))m2 . . . (g(lr))mr ,

where a, lj and mj are positive integers. For instance:

(eg(x))′ = eg(x)g′(x)

(eg(x))′′ = eg(x)((g′(x))2 + g′′(x))

(eg(x))′′′ = eg(x)((g′(x))3 + 3g′(x)g′′(x) + g′′′(x))

(eg(x))(4) = eg(x)((g′(x))4 + 6(g′(x))2g′′(x) + 3(g′′(x))2 + 4g′(x)g′′′(x) + g(4)(x))

�
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Problem 4-M Find all real numbers a > 0 for which the series

∞∑
n=1

af(n)

n2

is convergent, where f(n) denotes the number of zeros in the decimal expansion of n.

Solution For n = 0, 1, . . . let us consider k’s fulfilling the inequality:

10n ≤ k < 10n+1. (1)

For a fixed 0 ≤ j ≤ n there are(
n

j

)
9n−j+1 k’s fulfilling (1) such that f(k) = j.

Consequently,

9(9 + a)n

102n+2
=

9

102n+2

(
n∑
j=0

(
n

j

)
aj9n−j

)
≤

10n+1−1∑
k=10n

af(k)

k2
≤ 9

102n

(
n∑
j=0

(
n

j

)
aj9n−j

)
=

9(9 + a)n

102n
.

This implies that
9

100

∞∑
n=0

(9 + a

100

)n
≤
∞∑
n=1

af(n)

n2
≤ 9

∞∑
n=0

(9 + a

100

)n
.

From the last inequalities we conclude that our series is convergent exactly when

9 + a

100
< 1

or
0 < a < 91.

�
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Problem 4-I Let us have declared:

const N_MAX = 255;
type
tR = array[1..N_MAX] of real;
tN = array[1..N_MAX] of integer;

and function random without parameters which returns real random values distributed uniformly in [0, 1).
You need to choose K integer numbers (1 < K < N,N MAX ≥ N) without repetitions under the condition

that the probability of the choice of a number i equals a given Pi,
N∑
i=1

Pi = 1.

Write the procedure in Pascal that returns such K integer numbers in the first K elements of the vector of
tN type. Input parameters of the procedure are K,N and the vector of Pi.

Solution
�
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Problem 1 Decide whether it is possible to cover a 3-dimensional Euclidean space with lines which are pairwise
skew (i.e. not coplanar).

Solution There is (for example) the following covering:

lines pa,b = {Aa,b = [a, b, 0]; sa,b = (−b, a, 1)},

where Aa,b is point and sa,b is vector of pa,b. We show that

1. if [a, b] 6= [c, d] then pa,b ∩ pc,d = ∅; and

2. for each X = [x, y, z] there is [a, b] such that X ∈ pa,b.

1. Let [a, b] 6= [c, d] and pa,b ∩ pc,d = ∅. Then (from the parametric expression)

a− tb = c− rd
b+ ta = d+ rc

t = r

for some real t and r. From the third equality t = r and from the first and the second we have a−c = t(b−d)
and b− d = −t(a− c). By linear combination (first times (a− c) plus second times (b− d)) we have

(a− c)2 + (b− d)2 = 0.

But this contradicts [a, b] 6= [c, d].

2. For X = [x, y, z] put a = x+yz
1+z2 ; b = y−xz

1+z2 . Then X = Aa,b + z · sa,b.

This implies that it is possible to cover 3-dimensional Euclidean space with lines which are pairwise skew. �
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Problem 2 Let f : C → C be a holomorphic function such that |f(z)| = 1 for all z ∈ C with |z| = 1. Prove
that there are θ ∈ R, k ∈ {0, 1, 2, . . . } such that

f(z) = eiθzk for any z ∈ C.

Solution We know that
|f(z)| = 1 for all |z| = 1. (1)

Let ∆ := {z ∈ C : |z| < 1}. Let {z1, . . . , zn} be zeros (counted with multiplicity) of the function f belonging
to ∆. The number of zeros is finite because of the identity principle and (1).

Let us define the following function:

g(z) :=
f(z)∏n

j=1
z−zj
1−z̄jz

, for all z with zz̄j 6= 1.

From the choice of zj we certainly have that g is holomorphic in some neighbourhood of ∆̄ (even in C \
{1/z̄1, . . . , 1/z̄n}).

Because of (1) and the fact that ∣∣∣ z − zj
1− z̄jz

∣∣∣ = 1 for all |z| = 1

we have that
|g(z)| = 1 for all |z| = 1. (2)

Moreover,
g(z) 6= 0 for all z ∈ ∆. (3)

In view of (2) and (3), the minimum and maximum principles applied to the mapping g imply that

|g| ≡ 1 on ∆,

which gives us that
g ≡ eiθ for some θ ∈ R.

Therefore,

f(z) = eiθ
n∏
j=1

z − zj
1− z̄jz

, z ∈ C.

And the last inequality is possible iff z1 = · · · = zn = 0. �
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Problem 3 Let u ∈ C2(D̄), u = 0 on ∂D, where D is an open unit ball in R3. Prove that the following
inequality ∫

D

|grad u|2 dV ≤ ε
∫
D

(∆u)2 dV +
1

4ε

∫
D

u2 dV

holds for all ε > 0.

Solution Since the inequality must hold for every ε > 0 it will hold too for those ε for which the function

g(ε) = ε
∫
D

(∆u)2 dV + 1
4ε

∫
D
u2 dV takes a minimum, i.e., for ε = 1

2

√
Iu
Il

(g′(ε) = Il − 1
4ε2 Iu = 0). That

minimum is g( 1
2

√
Iu
Il

) =
√
IuIl. Therefore it suffices to show that

∫
D

|grad u|2 dV ≤

√∫
D

(∆u)2 dV

∫
D

u2 dV .

By placing (P,Q,R) = u(ux, uy, uz) in the Gauss-Ostrogradski formula we get:∫
D

|grad u|2 dV +

∫
D

u∆udV = −
∫
∂D

u
∂u

∂n
dS = 0,

where n is inner normal. From this by the Cauchy-Schwartz inequality and the conditions of that statement we
obtain ∫

D

|grad u|2 dV = −
∫
D

u∆udV ≤

√∫
D

(∆u)2 dV

∫
D

u2 dV .
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Problem 4-M Prove that

∞∑
n=1

n2

(7n)!
=

1

73

2∑
k=1

6∑
j=0

ecos
(

2πj
7

)
· cos

(
sin
(2πj

7

)
+
(2πjk

7

))
.

Solution
∞∑
n=1

n2

(7n)!
=

1

49

∞∑
n=1

7n(7n− 1) + 7n

(7n)!
=

2∑
k=1

∞∑
n=1

1

(7n− k)!

We have

A =

2∑
k=1

6∑
j=0

ee
2πij
7 + 2πijk

7 =

2∑
k=1

6∑
j=0

e
2πijk

7 ee
2πij
7 =

2∑
k=1

6∑
j=0

e
2πijk

7

∞∑
n=0

e
2πijk

7

n!
=

2∑
k=1

∞∑
n=0

1

n!

6∑
j=0

e
2πij(n+k)

7 .

If 7 | N , then
6∑
j=0

e
2πijN

7 = 7.

If 7 - N , then
6∑
j=0

e
2πijN

7 =
e2πiN − 1

e
2πijN

7 − 1
= 0.

It follows that

A = 7

2∑
k=1

∞∑
n=1

1

(7n− k)!
.

Thus

∞∑
n=1

n2

(7n)!
=

1

73

2∑
k=1

6∑
j=0

ee
2πij
7 + 2πijk

7 =
1

73

2∑
k=1

6∑
j=0

ecos( 2πj
7 )+i(sin( 2πj

7 )+( 2πjk
7 )) =

=
1

73

2∑
k=1

6∑
j=0

ecos( 2πj
7 ) · cos

(
sin
(2πj

7

)
+
(2πjk

7

))
.
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Problem 4-I Problem Div3 is specified as follows:

Input: any program P ,

Output: a finite set D(P ) of strings of 0’s and 1’s,

where it holds that the program P solves problem Div3 iff it outputs the correct answers for inputs from D(P ).

Theorem For any program TRANSF which transforms programs in some way (i.e. for any given program P
it constructs some program P ′, denoted by P ′ = TRANSF (P )) there is a program P0 whose input/output
behaviour is not changed by the transformation (i.e. P0 and TRANSF (P0) yield the same outputs for the same
inputs).

Solution Suppose there is some GEN-TEST-DATA with the property described above. Now construct a
program TRANSF which works as follows:

When given a program P , it constructs D(P ) by using GEN-TEST-DATA and then constructs P ′ whose
behaviour can be described as follows:

s:= input;
if s ∈ D(P );
then output YES or NO according to whether or not s is

the binary code of a number divisible by 3;
else output YES;

Due to the Recursion Theorem there is a program P0 s.t. its input/output behaviour is the same as the
behaviour of TRANSF (P0), and it can be described as follows:

s:= input;
if s ∈ D(P0);
then output YES or NO according to whether or not s is

the binary code of a~number divisible by 3;
else output YES;

Such a program P0 obviously violates the condition supposed for GEN-TEST-DATA.
Hence we have to conclude that there is no desired program GEN-TEST-DATA. �


