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Problem 1 Let a and d be two positive integers. Prove that there exists a constant K such that every set of
K consecutive elements of the arithmetic progression {a + nd}∞n=1 contains at least one number which is not
prime.

Solution Let p be a prime number such that p - d. Let for some n all elements an, . . . , an+p are prime numbers.
Clearly for i = 1, . . . , p we have an+i = an+id. Thus an > p, because an+an = an+and it is not a prime number.
Consider now the system of the reminders an mod p, . . . , an+p (mod p). Because all are primes greater than
p, this system does not contain 0. Thus there exist two numbers r1 < r2 such that ar1 ≡ ar2 (mod p). This
yields an + r2d ≡ an + r1d (mod p), and so r2d ≡ r1d (mod p). But (p, d) = 1 therefore r2 ≡ r1 (mod p) which
is a contradiction. �
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Problem 2 Find the limit

lim
n→∞

((
1 + 1

n

)n
e

)n
.

Solution Recall that

lim
n→∞

(
1± 1

n

)n
= e±1 ,

and put

f(x) = (1 + x)
1
x forx > 0 ,

f(0) = lim
x→0+

f(x) = e .

It is easy to verify that f ′+(0) = − e
2 . Hence

f(x) = e(1− 2x) + o(x) and
(1 + 1

n )n

e
= 1− 1

2n
+ o
( 1

n

)
and

lim
n→∞

((
1 + 1

n

)n
e

)n
= lim
n→∞

(
1− 1

2n
+ o
( 1

n

))n
=

1√
e

�
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Problem 3 Give an example of a sequence of continuous functions on R converging pointwise to 0 which is
not uniformly convergent on any nonempty open set.

Solution Define for n ∈ N a continuous function gn by gn(t) = 0 for t ≤ 0 or t ≥ 2
n , gn

(
1
n

)
= 1 and gn is linear

on
[
0, 1

n

]
,
[
1
n ,

1
2n

]
. Put

fn(t) =

∞∑
k=0

2−kgn(t− rk) , (1)

where rk is an enumeration of rationals. By the Weierstrass theorem, the fn are continuous. To prove that fn

tends pointwise to 0, fix t ∈ R and ε > 0. Choose m ∈ N such that
∞∑
k=m

2−k < ε
2 . By (1) and the definition of

gn, we can choose n ∈ N such that for l ≥ n

m−1∑
k=0

2−kgl(t− rk) <
ε

2
,

which proves our claim. Now suppose that there exists an open, nonempty interval I such that fn → 0 uniformly
on I. Choose k0 ∈ N with rk0 ∈ I. Put tn = rk0 + 1

n . Then for n sufficiently large,

sup
t∈I
|fn(t)| ≥ fn(tn) ≥ 2−k0gn(tn − rk0) = 2−k0gn

1

n
= 2−k0 ;

a contradiction. �
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Problem 4-M Prove the inequality

nπ

4
− 1√

8n
≤ 1

2
+

n−1∑
k=1

√
1− k2

n2
≤ nπ

4
(1)

for every integer n ≥ 2.

Solution We obtain the inequalities by approximating the area of the first quarter of the unit circle with the
sum of the areas of inscribed and tangent trapezoids (see the figure).

k−1
n

k
n

Obviously the sum of the area of the inscribed trapezoids with vertices

(k − 1

n
, 0
)
,
(k
n
, 0
)
,
(k
n
,

√
1− k2

n2

)
,
(k − 1

n
,

√
1− (k − 1)2

n2

)
(from k = 1 to k = n) estimates π

4 (the area of the quarter of the unit circle) from below. The areas of such a
trapezoid is

1

n

√
1− (k−1)2

n2 +
√

1− k2

n2

2
,

thus after summation we obtain the inequality

1

2n
+

1

n

n−1∑
k=1

√
1− k2

n2
≤ π

4
, (2)

which immediatelly implies the second inequality in (1).
The set of the points of the unit circle with positive ordinate and with abscissa between 2k−1

2n , and 2k+1
2n is a

subset of the trapezoid determined by the horizontal axis, the vertical lines with abscissas 2k−1
2n and 2k+1

2n , and

the tangent line of the unit circle at the point
(
k
n ,
√

1− k2

n2

)
. The area of this trapezoid is simply 1

n

√
1− k2

n2 .

We still have to cover the points of the first quarter of the unit circle with abscissas less than 1
2n or greater than

2n−1
2n . The former part is simply covered by a rectangle of area 1

2n , while the latter part is again covered by a
tangent trapezoid of area Tn, which satisfies

Tn =
1

2n

√
1−

(4n− 1

4n

)2
=

1

2n

√
8n− 1

16n2
≤ 1

2n

1√
2n

.

The sum of these areas estimates the area of the quarter of the unit circle from above, therefore we have

π

4
≤ 1

2n
+

1

n

n−1∑
k=1

√
1− k2

n2
+

1

2n

1√
2n

. (3)

Obviously inequality (3) is equivalent to the first inequality in (1). �
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Problem 4-I Prove that there exists a program in standard Pascal which prints out its own ascii code. No
disc operations are permitted.

Solution Let g be a computable Gödel numbering over pascal programs. One can assume that every number
is used in this numbering, i.e. every number is g(K) for some program K. Let Kn be the program whose Gödel
number is n and let k(σ) be the following program, σ ∈ N:
Program K ;
const N = ∆σ ;
procedure PrintOut ( P : integer ) ;
var ... end ; { PrintOut }

begin
PrintOut ( N ) ;

end .
where ∆σ is the decimal representation of σ, and PrintOut is the procedure which given a number n prints the
program whose Gödel number is n. We will show that there exists σ satisfying

g(k(σ)). (1)

Indeed, let

Π
Df
= 〈λs : g(k(s))〉

and let
δ
Df
= 〈λs : the output of Ks running with s as the input〉.

Both the functions Π and δ are computable, hence the function Π ◦ δ is computable. Let L be a program

computing the latter and let M be the Gödel number of L. Then σ
Df
= δ(M) satisfies (1). Indeed, we have:

σ = δ(M) = 〈the value of the program KM on data M〉 =

= 〈the value of the program L on data M〉 = (Π ◦ δ)(M) =

= Π(δ(M)) = Π(σ) = g(k(σ)).

So the desired program is k(σ). To see that, let us notice that k(σ) prints Kσ, i.e. it prints Kg(k(σ)) = k(σ).
Hence it prints itself. �
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Problem 1 Let H be a complex Hilbert space. Let T : H → H be a bounded linear operator such that
|(Tx, x)| ≤ ‖x‖2 for each x ∈ H. Assume that µ ∈ C, |µ| = 1, is an eigenvalue with the corresponding eigenspace
E = {φ ∈ H : Tφ = µφ}. Prove that the orthogonal complement E⊥ = {x ∈ H : ∀φ ∈ E : (x, φ) = 0} of E is
T -invariant, i.e., T (E⊥) ⊆ E⊥.

Solution Suppose x ∈ E⊥, ‖x‖ = 1. This means that (x, φ) = 0 for each φ ∈ E. Then for any t ∈ C and
φ ∈ E, ‖φ‖ = 1, we have

1 + |t|2 = ‖φ+ tx‖2 ≥ |T (φ+ tx), φ+ tx|
= |(Tφ, φ) + t(Tx, φ) + t̄(Tφ, x) + |t|2(Tx, x)|
= |µ+ t(Tx, φ) + |t|2(Tx, x)|

because (Tφ, x) = µ(φ, x) = 0. If (Tx, x) 6= 0 we can take

t =
|(Tφ, x)|2

|(Tx, x)|2
(Tx, x)

(Tx, φ)
6= 0

to obtain 1 + |t|2 ≤ |µ+ 0| ≤ 1, a contradiction. In the case (Tx, x) = 0 one can take t = −µ/(Tx, φ) yielding
a contradiction again. This implies that (Tx, φ) = 0 for any φ ∈ E, i.e. Tx ∈ E⊥. �
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Problem 2 Decide, whether there is a member in the arithmetic progression {an}∞n=1 with first member
a1 = 1998 and common difference d = 131 which is a palindrome (a palindrome is a number whose decadic
expression is symmetric, e.g. 7, 33, 43334, 2135312 and so on).

Solution We know that 10131−1 ≡ 1 (mod 131) (because 131 is a prime). We shall construct the following
number which shall be a member of our arithmetic progression:

A = 8991 0 . . . 0︸ ︷︷ ︸
126-times

1 0 . . . 0︸ ︷︷ ︸
130-times

1 0 . . . 0︸ ︷︷ ︸
130-times

1 . . . . . . . . . 1 0 . . . 0︸ ︷︷ ︸
130-times

1 0 . . . 0︸ ︷︷ ︸
126-times

1998

(there is a suitable number of ones inside of the number - we shall show precisely later). We can express the
number in a more precise manner:

A = 8991 · 10126 · 10130·r +

r∑
i=1

10130·i + 1998

Now we can find out for which walues of r is the number a member of our arithmetic progression (A is a
member of the sequence if 131 divides A− 1998):

A− 1998 = 8991 · 10126 · 10130·r +

r∑
i=1

10130·i ≡ t · 1r +

r∑
i=1

1i ≡ t+ r (mod 131),

where t is the remainder on dividing 8991 · 10126 by 131. Now if t + r is a multiple of 131 then A will be a
member of the sequence. But there are infinitely many such values of r which solve the problem. �
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Problem 3 Show that the roots of the real polynomial

P (z) = a0z
n + a1z

n−1 + · · ·+ an−1z + an,

where 0 < a0 < · · · < an, satisfy |z| > 1.

Solution Observe that for any z 6∈ (0, 1] on the unit disc

|(1− z)P (z)| = |
n∑
j=0

aj(z
n−j − zn+1−j)|

> |an| − (

n−1∑
j=0

|aj − aj+1| · |zn−j |)

≥ |an| −
n−1∑
j=0

|aj − aj+1|

= an − (

n−1∑
j=0

(aj+1 − aj) + a0) = 0.

The strict inequality follows from the fact, that if

|
n−1∑
j=0

(aj − aj+1)zn−j − a0zn+1| =
n−1∑
j=0

|(aj − aj+1)zn−j |+ |a0zn+1|

then
|(a0 − a1)zn|+ |(a1 − a2)zn−1| = |(a0 − a1)zn + (a1 − a2)zn−1|

and
|(a0 − a1)z|+ |(a1 − a2)| = |(a0 − a1)z + (a1 − a2)|.

Consequently, z > 0. Since |z| ≤ 1, z ∈ (0, 1]; a contradiction.
Hence for z 6= 1, P (z) 6= 0. Since P (z) > 0 for z ∈ (0, 1], the result is proved. �
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Problem 4-M A function f : R → R has the property that for every x, y ∈ R there exists a real number t
(depending on x and y) such that 0 < t < 1 and

f
(
tx+ (1− t)y

)
= tf(x) + (1− t)f(y) . (1)

Does this imply that

f
(x+ y

2

)
=
f(x) + f(y)

2
(2)

for every x, y ∈ R?

Solution As is justified by the following counterexample, the answer is negative. Since the sets R \ {0} and R2

have the same cardinality, there exists a surjective mapping γ 7→ (aγ , bγ) from R \ {0} onto R2. Let us define

φγ(x) = aγx+ bγ (x ∈ R) for every γ ∈ R \ {0} and φ0(x) = |x| (x ∈ R).

There also exists a family {Aγ : γ ∈ R} of pairvise disjoint sets such that Aγ is a dense subset of R for every
γ ∈ R \ {0} and A0 = {−1, 0, 1}. Now we can define

f(x) =

{
φγ(x) if x ∈ Aγ , γ ∈ R ,
0 if x ∈ R \

⋃
γ∈RAγ .

(3)

For every x, y ∈ R with x 6= y there exists β ∈ R \ {0} such that

f(y)− f(x)

y − x
= aβ and

yf(x)− xf(y)

y − x
= bβ .

Since Aβ is a dense set, there exists w ∈ Aβ strictly between x and y. Then f(u) = φβ(u) for u ∈ {x, y, w},
hence (1) is satisfied with t = y−u

y−x . On the other hand

f
(−1 + 1

2

)
= f(0) = φ0(0) = 0 6= 1 =

φ0(−1) + φ0(1)

2
=
f(−1) + f(1)

2
.

�
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Problem 4-I Let us consider the first order language L with just one 3-ary predicate PLUS; hence (well-
formed) formulas of L contain symbols for variables, logical connectives, quantifiers, brackets, and the predicate
symbol PLUS: (∃x1)(∀x2) : (Plus(x2, x1, x2) ∧ (∀x3) : ¬Plus(x1, x3, x3)) is example of such formula). Recall
that a formula is closed iff each variable symbol occurs within the scope of a quantifier.

Show that there is an algorithm which decides whether or not a given closed formula of L is true for the
set N of natural numbers ({0, 1, 2, . . . }) where Plus(x, y, z) is interpreted as x+ y = z.

Solution We start by showing that there is a finite automaton recognizing the language described in the Hint,
let us denote it L1. But this is obvious when we consider the reverse image (L1)R (the respective automaton
just checks correctness of the binary addition), and recall that the class Reg of languages recognizable by finite
automata is closed under the reverse operation.

The desired algorithm works as follows:
The given formula is transformed into the prenex form

(Q1x1)(Q2x2) . . . (Qnxn)F(x1, x2, . . . , xn)

(where Qi is either ∃ or ∀).
By generalizing the above construction of finite automaton, we construct an automaton An which accepts

exactly those words which represent n-tuples a1, a2, . . . , an s.t. F(a1, a2, . . . , an) is true. This can be done by
using the fact that Reg is closed under union and complement (as well as intersection).

When Qn = ∃ we can, from An, construct An−1 which accepts exactly the words representing (n− 1)-tuples
a1, a2, . . . , an−1 s.t. (∃xn)F(a1, a2, . . . , an−1, xn) is true as follows: An−1 will simulate An by nondeterministi-
cally guessing the appropriate bits of the n-th number; it can also start by a sequence of ε-moves (not reading
input) which capture the possibility that the n-th number has more significant bits than the other numbers. Of
course, An−1 can be made deterministic by a standard construction.

If Qn = ∀ we realize that (∀xn)F(a1, a2, . . . , an−1xn) is equivalent to

¬(∃xn)¬F(a1, a2, . . . , an−1, xn)

and proceed similarly (Reg is closed under complement).
Thus we successively construct automata An, An−1, . . . , A1, A0. In the end, it remains to check if A0 accepts

the empty word. �


