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Problem 2 Find all natural numbers n ≥ 1 such that the following implication holds

(a, b - natural, 11 | an + bn)⇒ (11 | a and 11 | b) .

Solution Observe that for odd natural number n we have 11 | 101 + 11 and

102k+1 + 1 = 9 · 11 · 102k−1 + 102k−1 + 1

for any natural number k. Hence our assertion follows easily by an induction argument. Consequently, the
required implication is false odd natural numbers.

We prove it for all even neutral numbers. If n = 2m, then an = (am)2 and bn = (bm)2 are squares
of natural numbers. Hence am = 11e + f and bm = 11g + h for some natural numbers e, g and f, h ∈
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Therefore standard computation gives

an = 11A+ C and bn = 11B +D,

for some natural numbers A,B and C,D ∈ {0, 1, 3, 4, 5, 9}. By simple calculation one can check that 11 | C+D
if and only if C = D = 0. This implies that 11 | an and 11 | bn. This yields the assertion. �
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Problem 3 Suppose that we have countable set A of balls and a unit cube in R3. Let us also assume that
for every finite set B, which is a subset of A, it is possible to put all the balls from B into the cube in such a
way that they have disjoint interiors. Show that it is possible to arrange all the balls in the cube that all have
pairwise disjoint interiors.

Solution
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Problem 4 Show that for complex numbers x, y the following implication folows:
x+ y, x2 + y3, x3 + y3, x4 + y4 are integers, then for all natural n the numbers xn + yn are also integers.

Solution Notice that (x+ y)2 − (x2 + y2) = 2xy ∈ Z, moreover −(x4 + y4) + (x2 + y2)2 = 2x2y2 ∈ Z.
So it follows that xy is of the shape n

2 for n an integer. From the second relation mentioned above we infer

that n2

2 is integer. Hence n is even and xy is integer.
So we arrive at x + y, xy ∈ Z. The rest of the solution is by induction. Namely for the n < 5 the validity

is granted. So, assume that for some natural k > 4 the numbers xm + ym are integers for all m < k. Now we
consider xk + yk. If k is even then xk + yk = (x

k
2 + y

k
2 )2 − 2(xy)

k
2 is integer. Otherwise it k is odd then it is

divisible by a prime p, and

xk + yk = (x
k
p )p + (y

k
p )p = (x

k
p + y

k
p )(xkp(p−1) − xkp(p−2)y

k
p + . . . ) = . . .

This ends the proof. �
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Problem 1 Find the minimal k such that every set of k different lines in R3 contains either 3 mutually parallel
lines or 3 mutually intersecting lines or 3 mutually skew lines.

Solution

1. Let us show that k > 8:
Let ABCDA′B′C ′D′ be a cube and let K,L,M,N be the centres of the edges A′B′, B′C ′, C ′D′, D′A′,
respectively. The lines AB,BC,CD,DA,KL,LM,MN and NK form an 8-tuple which does not contain
any triple either of parallel or intersecting or skew lines.

2. Let us show that k ≤ 9:

Lemma If we have 5 different lines among which no 2 are parallel then choosing any other line causes
that we will get 3 intersecting lines or 3 skew lines.

Proof Let us consider the graph G = (V,E) and its colouring f : E → {1, 2, 3} having the following
properties:
V = {the chosen lines}, E = {[p1, p2]; pi ∈ V } and

f(p1, p2) = 1 if p1 is parallel to p2

f(p1, p2) = 2 if p1 is intersecting to p2

f(p1, p2) = 3 if p1 is skew to p2

If we have the 5-vertex complete graph coloured by two colours (2 and 3) then either it already contains
a single-colour triangle (and we have 3 intersecting or 3 skew lines) or our graph is isomorphic to the
following one:

In this case, adding of a 6-th vertex causes that a triangle of colour 2 and 3 will appear. �

Parallelness is a transitive property, i.e. if f(p1, p2) = f(p1, p3) = 1 then 3 parallel lines exist. Let us
now consider a 9-vertex graph with the above mentioned colouring. Then it is clear that there is at least
one edge of colour 1 in each 5-tuple. Since the maximal number of edges of colour 1 is four, the proof is
finished.
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Problem 2 Let a, b ∈ R, a ≤ b. Assume that f : [a, b]→ [a, b] satisfies

|f(x)− f(y)| ≤ |x− y|

for every x, y ∈ [a, b]. Choose an x1 ∈ [a, b] and define

xn+1 =
xn + f(xn)

2
, n = 1, 2, 3, . . . .

Show that {xn}∞n=1 converges to some fixed point of f .

Solution Let
W = {w ∈ [a, b] : xnk

→ w for some subsequence {nk}} .

It is clear that W is nonempty, compact subset of [a, b]. Let g : W → R+ be defined by

g(w) = |w − f(w)| .

First we show that e = inf
w∈W

g(w) = 0. If not, let

W1 = {w ∈W : g(w) = e} .

Since W is compact and g is continuous, W1 6= ∅. Set

A = {w ∈W1 : e = w − f(w)}

and B = W1 \A. Suppose A 6= ∅. Let wA = minA. Put w1 = wA+f(wA)
2 . It is clear that w1 ∈W . Observe that

g(w1) ≤ |f(w1)− f(wA)|+ |f(wA)− w1| ≤

≤ |w1 − wA|+
∣∣f(wA)−

wA + f(wA)

2

∣∣ = wA − f(wA) = e .

Consequently, w1 ∈ W and since w1 < wA, w1 ∈ B. But then f(wA) < w1 < wA < f(w1). Since f satisfied
the Lipschitz condition, this leads to a contradiction. If B 6= ∅, taking xB = maxB and reasoning in the same
manner, we get a contradiction.

Consequently e = 0. Take any w ∈W1. Then

|xn+1 − w| = |xn+1 −
w + f(w)

2
| ≤ |xn − w| .

Hence xn → w and w is obviously a fixed point of f . �
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Problem 3 Suppose that we have a countable set A of balls and a unit cube in R3. Assume that for every finite
subset B of A it is possible to put all balls of B into the cube in such a way that they have disjoint interiors.
Show that it is possible to arrange all the balls in the cube so that all of them have pairwise disjoint interiors.

Solution We number the balls (as the set A is countable) as P1, P2, . . . . It is possible for every n to arrange
the balls P1, . . . , Pn in the cube in such a way that they have disjoint interiors. Let the p1,n, . . . , pn,n be the
centres of the balls P1, . . . , Pn in the mentioned arrangement. So we have following sequence:

p1,1p1,2p2,2p1,3p2,3p3,3 . . . . . . . . .

Now as the points p1,n lie in a compact set there is a subsequence p1,n1
, p1,n2

, . . . convergent to some point R1.
Then we choose the subsequence p2,nj1

, p2,nj2
, . . . converging to a point R2, and so forth. In this way we get a

sequence of points R1, R2, . . . . If we put the ball Pi in a position with the centre in Ri then this arrangement
satisfies the requirements concerning the interiors. �
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Problem 4 Let u1, u2, . . . , un ∈ C([0, 1]n) be nonnegative and continuous functions, and let uj do not depend
on the j-th variable for j = 1, . . . , n. Show that(∫
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Both inequalities use the Hölder inequality for p = 2. Then we use Fubini’s theorem (which is elementary for
continuous functions on a compact interval). When passing to the last line, we use the fact that an integral
over the interval [0, 1] with integrand not depending on the integration variable can be omitted. �


