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Problem 1 Is there a countable set Y and an uncountable family F of its subsets, such that for every two
distinct A,B ∈ F their intersection A ∩B is finite?

Solution The answer is yes.
Put all natural numbers N in a coordinate system like in the picture.

2

3

4

5

6

7

8

9

10

11

12

. . .

p

1

x

y

For each ray p we put in the set Ap all numbers, which p intersects (intersects its square), and we place all such
sets Ap into F . For each ray p we assign the angle αp, which is between p and x. Since all αp form the interval
(0, π2 ), the set of rays p is uncountable. Furthermore, for different rays p1 and p2, the intersection Ap1 ∩Ap2 is
finite, because there exists distance dp1p2 from the origin of the coordinate system where rays are far enough,
so they will not pass through the same square any more. The problem is solved. �

Solution Yes. Let Y = N and denote S set of all infinite sequences {an} of 0 and 1. To each sequence {an}
assign the set C{an} ∈ F in the following way:

C{an} =
{
2k +

k∑
n=1

an · 2n−1, for k = 1, 2, . . .
}
.

Suppose we have two distinct sets C{an}, C{bn} for some distinct {an}, {bn} ∈ F .
Suppose now

2k1 +

k1∑
n=1

an · 2n−1 = 2k2 +

k2∑
n=1

bn · 2n−1 for some k1, k2 ∈ N,

where
(
2k1 +

k1∑
n=1

an · 2n−1
)
∈ C{an} and

(
2k2 +

k2∑
n=1

bn · 2n−1
)
∈ C{bn} .

This is like equality of two numbers written in binary system. For the number

2k1 +

k1∑
n=1

an · 2n−1

is the first digit regarding to the 2k1th digit 1, and the next digits are ak1−1, ak1−2, . . . , a1. Analogous are the
digits for the other number. So these numbers are equal if and only if k1 = k2 and ai = bi for all i < k1. So if
the sets C{an}, C{bn} contain infinitely many of the same numbers then ai = bi for all i ∈ N and C{an} = C{bn},
a contradiction. �
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Problem 2 Let f : N→ R be given by

f(n) = n
τ(n)

2 ,

n ∈ N = {1, 2, . . . }, τ(n) - the number of divisors of n. Show that f is injective into N.

Solution Recall that every natural number n greater than 1 can be written uniqely (up to order) as a product

n = pa11 p
a2
2 . . . pakk ,

where the pi are different primes and the ai are natural numbers. Then

τ(n) = (1 + a1)(1 + a2) . . . (1 + ak) .

Now we show that for every natural number n, f(n) is also a natural number:

• f(1) = 1 is natural,

• if n > 1 and τ(n) is even, then τ(n)
2 is natural and so is f(n),

• if n > 1 and τ(n) is odd, then all ai are even so n is a square of a natural number and f(n) is natural too.

Now it is easy to see that prime number p divides the natural number n if and only if it divides f(n). We use
this fact to prove injectivity of f .

Let f(m) = f(n). Then m and n are divisible by the same primes and we can write n = pa11 p
a2
2 . . . pakk ,

m = pb11 p
b2
2 . . . pbkk . As f(n) = f(m), it is true that aiτ(n) = biτ(m), i = 1, 2, . . . k. We can assume that

τ(n) ≤ τ(m) (if not we change m and n). Using this we get ai ≥ bi and τ(n) ≥ τ(m). From this follows that
τ(n) = τ(m), ai = bi and n = m. �

Solution Let us write n in the form n = pα1
1 pα2

2 . . . pαkk , where p1, p2, . . . , pk are prime divisors (this represen-
tation is unique), and let 1 = d1 < d2 < · · · < dτ(n) = n be all its divisors. Then

d1d2 . . . dτ(n) =
√

(d1dτ(n)) · (d2dτ(n)−1) . . . (dτ(n)d1) =
√
nτ(n) = n

τ(n)
2 = f(n),

since dkdτ(n)−k+1=n. So f(n) is natural, because it can be expressed as multiple of natural numbers d1, . . . ,

dτ(n). Suppose now f(n) = f(m) for distinct natural numbers m, n. From m
τ(m)

2 = f(m) = f(n) = n
τ(n)

2 it

follows that m = n
τ(n)
τ(m) . This implies that m and n have the same set of prime divisors, so m can be writen

as m = pβ1

1 p
β2

2 . . . pβkk . The obtained relation m = n
τ(n)
τ(m) implies α1

β1
= α2

β2
= · · · = αk

βk
= c. Without loss of

generality we can suppose that m > n. Then c > 1, and, since all αi and βi are positive integers, m is divisible
by n. So the set of all divisors of n is a subset of the set of all divisors of m, and τ(m) ≥ τ(n). From m > n we

can conclude that m
τ(m)

2 > n
τ(n)

2 , a contradiction. �
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Problem 3 Let a1, a2, . . . be a bounded sequence of reals. Is it true that

lim
N→∞

1

N

N∑
n=1

an = b and lim
N→∞

1

logN

N∑
n=1

an
n

= c

imply b = c?

Solution We prove that if 1
N

N∑
n=1

an → b for any (not even necessarily bounded) sequence of reals then

1

logN

N∑
n=1

an
n
→ b .

Assume that
1

N

N∑
n=1

an → b .

Define

hN =

N∑
n=1

an .

(We have h0 = 0.)
Then by our assumption we have hN → b and by definition we get

aN = NhN − (N − 1)hN−1 = N(hN − hN−1) + hN−1 .

Thus
N∑
n=1

an
n

=

N∑
n=1

hn − hn+1 +
hn−1
n

= hN +

N∑
n=1

hn−1
n

.

Therefore
1

logN

N∑
n=1

an
n

=
hN

logN
+

N∑
n=1

hn
n
.

Since hN converges the first term goes to 0. As 1
logN

N∑
n=1

1
n → 1 and hN → b we get that 1

logN

N∑
n=1

an
n → b. �

Solution Denote 1
n

n∑
i=1

ai = bn, n ≥ 1, b0 = 0 and 1
logn

n∑
i=1

ai
i = cn, n ≥ 1. The sequence {bn}n∈∞ converges to

b.
Since an = nbn − (n− 1)bn−1, we obtain

cn =
1

log n

n∑
i=1

ai
i

=
1

log n

n∑
i=1

ibi − (i− 1)bi−1
i

=
1

log n

n∑
i=1

(
bi −

i− 1

i
bi−1

)
=

1

log n

(
bn −

n−1∑
i=1

bi
i+ 1

)
.

Let us write bn = b+ εn, where ε→ 0. Then

cn =
1

log n

(( n∑
i=1

1

i

)
b+

n−1∑
i=1

εi
i+ 1

+ εn

)
=

∑n
i=1

log n
b+

∑n−1
i=1

εi
i+1

log n
+

εn
log n

.

Easily we see
∑n
i=1

1
i

logn → 1, εn
logn → 0. For the rest we have∑n−1

i=1
εi
i+1

log n
=

∑k
i=1

εi
i+1

log n
+

∑n−1
i=k+1

εi
i+1

log n



and it follows that ∑k
i=1

εi
i+1

log n
→ 0 for n→∞,∣∣∣∣

∑n−1
i=k+1

εi
i+1

log n

∣∣∣∣ ≤ sup
j≥k
{|εj |} ·

∑n−1
i=k+1

1
i

log n
≤ sup

j≥k
{|εj |} for all n ≥ k.

Since sup
j≥k
{|εj |} → 0 for k → ∞ and our choice of k can be arbitrary large, we got cn → b, and the problem is

solved. �
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Problem 4 Let us choose arbitrarily n vertices of a regular 2n-gon and colour them red. Remaining vertices are
coloured blue. We arrange all red-red distances into a nondecreasing sequence and do the same with blue-blue
distances. Prove that the sequences are equal.

Solution Let 1 ≥ m ≥ n be the combinatorial distance (i.e. the Euclidean distance dm between the first and
(m + 1)-st vertices corresponds to m). For a given m denote by k the gcd of 2n and m. The original 2n-gon
can be decomposed into k disjoint 2n

k -gons of edge lenght dm. Assume that there are ri red and bi blue vertices
on the i-th 2n

k -gon, and denote ci to be the number of oriented red → blue changes between the neighboring
vertices. The number of neighboring blue pairs equals ri− ci, while the number of neighboring blue pairs equals
bi − ci. The total number of neighoring red pairs will be

∑
i

(ri − ci) = n−
∑
i

ci which is the same as the total

number
∑
i

(bi − ci) = n−
∑
i

ci of neighboring blue pairs. �

Solution It is enough to show, that the number of each particular distance is same among both red–red and
blue–blue pairs. Choose one of the used distances, let us say d. Denote drr to be the number of red–red pairs
with distance d and analogously dbb number of blue–blue pairs and drb number of red–blue pairs with distance
d. Clearly 2drr + drb = 2n, since 2× number of red–red pairs plus 1× red–blue pairs gives 2× number of red
vertices. Analogously 2dbb + drb = 2n. By subtracting one relation from the other we get 2dbb = 2drr, which is
the end. �



The 10th Annual Vojtěch Jarník
International Mathematical Competition

Ostrava, 5th April 2000
Category II

Problem 1 Let p be a prime of the form p = 4n− 1 where n is a positive integer. Prove that

p∏
k=1

(k2 + 1) ≡ 4 (mod p) .

Solution Consider the polynomials P (x) =
∏p
k=1(k

2 − x2) and p(x) =
∏p−1
k=1(k − x). Easily we see that

P (x) = p(x) · p(−x) · (p2 − x2).
Since p(x) is of degree p − 1 and has roots 1, 2, . . . , p − 1, p(x) is congruent modulo p to the polynomial

q(x) = xp−1 − 1, which has also roots 1, 2, . . . , p− 1. Therefore

P (x) = p(x)p(−x)(p2 − x2) ≡ q(x)q(−x)(p2 − x2) ≡ q(x)q(−x)(−x2) (mod p)

and it follows that

p∏
k=1

(k2 + 1) = P (i) ≡ q(i) · q(−i) · (−i2) = (ip−1 − 1) ·
(
(−i)p−1 − 1

)
= (i4n−2 − 1) ·

(
(−i)4n−2 − 1

)
= (−2) · (−2) = 4 (mod p) .

�
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Problem 2 If we write the sequence AAABABBB along the perimeter of a circle, then every word of the
length 3 consisting of letters A and B (i.e. AAA, AAB, ABA, BAB, ABB, BBB, BBA, BAA) occurs exactly
once on the perimeter. Decide whether it is possible to write a sequence of letters from a k-element alphabet
along the perimeter of a circle in such a way that every word of the length l (i.e. an ordered l-tuple of letters)
occurs exactly once on the perimeter.

Solution Let us denote the alphabet by P . Let us form the directed graph G = (V,E), where V =
{[a1, . . . , al−1]; ai ∈ P} and E = {

[
[a1, . . . , al−1], [b1, . . . , bl−1]

]
; a2 = b1, a3 = b2, . . . , al−1 = bl−2}.

First, considering any two vertices [a1, . . . , al−1] and [b1, . . . , bl−1], we find that there must be at least one
oriented path between them:

[a1, . . . , al−1]→ [a2, . . . , al−1, b1]→ [a3, . . . , al−1, b1, b2]→ · · · → [b1, . . . , bl−1]

(some vertices and arcs can repeat in the sequence). This implies that the graph is strongly connected.
Second, we realize that every vertex [a1, . . . , al−1] has exactly k outgoing and k ingoing arcs: the outgoing arcs
are directed to the vertices [a2, . . . , al−1, o], where o goes through the the whole alphabet P , and the ingoing
come from vertices [i, a1, . . . , al−2], where i also goes through the whole alphabet. That means that the inner
and outer degrees of every vertex are identical and the graph is an Euler (directed) graph. As a consequence,
there exists an Eulerian cycle in it, i.e. a cycle containing all arcs going through every arc exactly once. We
can now form the searched for cyclic sequence as follows:
Let us start with an arbitrary vertex and write down its sequence a1, . . . , al−1.
Let us follow the Eulerian cycle and add the last letter of every vertex to the sequence until we reach the starting
vertex again. Now we delete the last l − 1 letters (which are necessarily the same as the starting ones).
Since there is a bijection between the set of all l-letter words and the set of arcs V :

[a1, . . . , al]←→
[
[a1, . . . , al−1], [a2, . . . , al]

]
,

it is clear that the sequence has the demanded properties. �
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Problem 3 Let m,n be positive integers and let x ∈ [0, 1]. Prove that

(1− xn)m +
(
1− (1− x)m

)n ≥ 1 .

Solution We will prove that (1− xn)m ≥ 1− (1− (1− x)m)n.
Take an m× n chessboard. The probability, that one particular square is black, is x ∈ [0, 1], the probability

of being white is x− 1. Assume this for all squares. Then
(1− x)m is the probability that the whole row is white
1− (1− x)m is the probability that there is at least one black in the row
(1− (1− x)m)n is the probability that in each row there is at least one black
1− (1− (1− x)m)n is the probability that at least one row does not contain a black.

Denote by A the last event, in which some row does not a contain black (it is all white). We continue:
1− xn is the probability that the column contains at least one white
(1− xn)m is the probability that each column contains at least one white.

Denote by B the event in which each column contains at least one white. It is clear that A ⊂ B, because if
one row is white then each column contains some white. Therefore is P (b) ≥ P (A), written in the other form:
(1− xn)m ≥ 1− (1− (1− x)m)n. �
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Problem 4 Let B be a family of open balls in Rn and c < λ
(⋃
B
)

where λ is the n-dimensional Lebesgue
measure. Show that there exists a finite family of pairwise disjoint balls {Ui}ki=1 ⊆ B such that

k∑
j=1

λ(Uj) >
c

3n
.

Solution Suppose first sup
U∈B

λ(U) <∞ for U ∈ B. In other case we just take a large enough ball U0 for which

λ(U0) >
c
3n .

Take ε > 0. We first construct the infinite sequence {Uk}∞k=1 of disjoint balls for which λ
(⋃

Uk

)
≥ λ

(⋃
B
)

(3+ε)n .

The procedure is the following. In the k-th step count supλ(U) through all the rest of the balls in B, then
choose Uk such that λ(Uk) ≥ supλ(U) ·

(
3

3+ε

)n
and remove from B all balls U which intersect ball Uk. Continue

to infinity by the (k + 1)-th step. It is clear, that the balls in the constructed sequence {Un} are disjoint.
Further, if we increase each ball Uk from {Uk}∞k=1 (3 + ε)-times, than they will contain all of the set B. This
holds, because ball Ui increased (3 + ε)-times covers all balls intersecting Ui removed from B in i-th step. It

follows that λ
(⋃

Uk

)
≥ λ

(⋃
B
)

(3+ε)n . If λ
(⋃
B
)
<∞, then there is k0 ∈ N for which

λ

( k0⋃
k=1

Uk

)
≥

λ
(⋃
B
)

(3 + 2ε)n
.

By choosing ε so that
λ
(⋃
B
)

(3+2ε)n >
c
3n (this is always possible) we solve the problem. In case λ

(⋃
B
)
=∞ we just

choose k0 big enough to exceed the finite constant c in the desired inequlity. �


