The 10th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 5th April 2000 Category I

Problem 1 Is there a countable set Y and an uncountable family \mathcal{F} of its subsets, such that for every two distinct $A, B \in \mathcal{F}$ their intersection $A \cap B$ is finite?

Solution The answer is yes.

Put all natural numbers \mathbb{N} in a coordinate system like in the picture.

For each ray p we put in the set A_p all numbers, which p intersects (intersects its square), and we place all such sets A_p into \mathcal{F} . For each ray p we assign the angle α_p , which is between p and x. Since all α_p form the interval $(0, \frac{\pi}{2})$, the set of rays p is uncountable. Furthermore, for different rays p_1 and p_2 , the intersection $A_{p_1} \cap A_{p_2}$ is finite, because there exists distance $d_{p_1p_2}$ from the origin of the coordinate system where rays are far enough, so they will not pass through the same square any more. The problem is solved.

Solution Yes. Let $Y = \mathbb{N}$ and denote S set of all infinite sequences $\{a_n\}$ of 0 and 1. To each sequence $\{a_n\}$ assign the set $C_{\{a_n\}} \in \mathcal{F}$ in the following way:

$$C_{\{a_n\}} = \left\{ 2^k + \sum_{n=1}^k a_n \cdot 2^{n-1}, \text{ for } k = 1, 2, \dots \right\}.$$

Suppose we have two distinct sets $C_{\{a_n\}}$, $C_{\{b_n\}}$ for some distinct $\{a_n\}$, $\{b_n\} \in \mathcal{F}$. Suppose now

$$2^{k_1} + \sum_{n=1}^{k_1} a_n \cdot 2^{n-1} = 2^{k_2} + \sum_{n=1}^{k_2} b_n \cdot 2^{n-1} \text{ for some } k_1, k_2 \in \mathbb{N},$$
 where $\left(2^{k_1} + \sum_{n=1}^{k_1} a_n \cdot 2^{n-1}\right) \in C_{\{a_n\}}$ and $\left(2^{k_2} + \sum_{n=1}^{k_2} b_n \cdot 2^{n-1}\right) \in C_{\{b_n\}}$.

This is like equality of two numbers written in binary system. For the number

$$2^{k_1} + \sum_{n=1}^{k_1} a_n \cdot 2^{n-1}$$

is the first digit regarding to the 2^{k_1} th digit 1, and the next digits are $a_{k_1-1}, a_{k_1-2}, \ldots, a_1$. Analogous are the digits for the other number. So these numbers are equal if and only if $k_1 = k_2$ and $a_i = b_i$ for all $i < k_1$. So if the sets $C_{\{a_n\}}$, $C_{\{b_n\}}$ contain infinitely many of the same numbers then $a_i = b_i$ for all $i \in \mathbb{N}$ and $C_{\{a_n\}} = C_{\{b_n\}}$, a contradiction.

The $10^{\rm th}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $5^{\rm th}$ April 2000 Category I

Problem 2 Let $f: \mathbb{N} \to \mathbb{R}$ be given by

$$f(n) = n^{\frac{\tau(n)}{2}},$$

 $n \in \mathbb{N} = \{1, 2, \dots\}, \tau(n)$ - the number of divisors of n. Show that f is injective into \mathbb{N} .

Solution Recall that every natural number n greater than 1 can be written uniquely (up to order) as a product

$$n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$$

where the p_i are different primes and the a_i are natural numbers. Then

$$\tau(n) = (1 + a_1)(1 + a_2) \dots (1 + a_k).$$

Now we show that for every natural number n, f(n) is also a natural number:

- f(1) = 1 is natural,
- if n > 1 and $\tau(n)$ is even, then $\frac{\tau(n)}{2}$ is natural and so is f(n),
- if n > 1 and $\tau(n)$ is odd, then all a_i are even so n is a square of a natural number and f(n) is natural too.

Now it is easy to see that prime number p divides the natural number n if and only if it divides f(n). We use this fact to prove injectivity of f.

Let f(m) = f(n). Then m and n are divisible by the same primes and we can write $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$, $m = p_1^{b_1} p_2^{b_2} \dots p_k^{b_k}$. As f(n) = f(m), it is true that $a_i \tau(n) = b_i \tau(m)$, i = 1, 2, ...k. We can assume that $\tau(n) \leq \tau(m)$ (if not we change m and n). Using this we get $a_i \geq b_i$ and $\tau(n) \geq \tau(m)$. From this follows that $\tau(n) = \tau(m)$, $a_i = b_i$ and n = m.

Solution Let us write n in the form $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, where p_1, p_2, \dots, p_k are prime divisors (this representation is unique), and let $1 = d_1 < d_2 < \dots < d_{\tau(n)} = n$ be all its divisors. Then

$$d_1d_2\dots d_{\tau(n)} = \sqrt{(d_1d_{\tau(n)})\cdot (d_2d_{\tau(n)-1})\dots (d_{\tau(n)}d_1)} = \sqrt{n^{\tau(n)}} = n^{\frac{\tau(n)}{2}} = f(n),$$

since $d_k d_{\tau(n)-k+1} = n$. So f(n) is natural, because it can be expressed as multiple of natural numbers $d_1, \ldots, d_{\tau(n)}$. Suppose now f(n) = f(m) for distinct natural numbers m, n. From $m^{\frac{\tau(m)}{2}} = f(m) = f(n) = n^{\frac{\tau(n)}{2}}$ it follows that $m = n^{\frac{\tau(n)}{\tau(m)}}$. This implies that m and n have the same set of prime divisors, so m can be writen as $m = p_1^{\beta_1} p_2^{\beta_2} \ldots p_k^{\beta_k}$. The obtained relation $m = n^{\frac{\tau(n)}{\tau(m)}}$ implies $\frac{\alpha_1}{\beta_1} = \frac{\alpha_2}{\beta_2} = \cdots = \frac{\alpha_k}{\beta_k} = c$. Without loss of generality we can suppose that m > n. Then c > 1, and, since all α_i and β_i are positive integers, m is divisible by n. So the set of all divisors of n is a subset of the set of all divisors of m, and $\tau(m) \geq \tau(n)$. From m > n we can conclude that $m^{\frac{\tau(m)}{2}} > n^{\frac{\tau(n)}{2}}$, a contradiction.

The 10th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 5th April 2000 Category I

Problem 3 Let a_1, a_2, \ldots be a bounded sequence of reals. Is it true that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} a_n = b \quad \text{and} \quad \lim_{N \to \infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{a_n}{n} = c$$

imply b = c?

Solution We prove that if $\frac{1}{N} \sum_{n=1}^{N} a_n \to b$ for any (not even necessarily bounded) sequence of reals then

$$\frac{1}{\log N} \sum_{n=1}^{N} \frac{a_n}{n} \to b.$$

Assume that

$$\frac{1}{N} \sum_{n=1}^{N} a_n \to b.$$

Define

$$h_N = \sum_{n=1}^N a_n .$$

(We have $h_0 = 0$.)

Then by our assumption we have $h_N \to b$ and by definition we get

$$a_N = Nh_N - (N-1)h_{N-1} = N(h_N - h_{N-1}) + h_{N-1}$$

Thus

$$\sum_{n=1}^{N} \frac{a_n}{n} = \sum_{n=1}^{N} h_n - h_{n+1} + \frac{h_{n-1}}{n} = h_N + \sum_{n=1}^{N} \frac{h_{n-1}}{n}.$$

Therefore

$$\frac{1}{\log N} \sum_{n=1}^{N} \frac{a_n}{n} = \frac{h_N}{\log N} + \sum_{n=1}^{N} \frac{h_n}{n} .$$

Since h_N converges the first term goes to 0. As $\frac{1}{\log N}\sum_{n=1}^N\frac{1}{n}\to 1$ and $h_N\to b$ we get that $\frac{1}{\log N}\sum_{n=1}^N\frac{a_n}{n}\to b$. \square

Solution Denote $\frac{1}{n}\sum_{i=1}^n a_i = b_n$, $n \ge 1$, $b_0 = 0$ and $\frac{1}{\log n}\sum_{i=1}^n \frac{a_i}{i} = c_n$, $n \ge 1$. The sequence $\{b_n\}_{n \in \infty}$ converges to b

Since $a_n = nb_n - (n-1)b_{n-1}$, we obtain

$$c_n = \frac{1}{\log n} \sum_{i=1}^n \frac{a_i}{i} = \frac{1}{\log n} \sum_{i=1}^n \frac{ib_i - (i-1)b_{i-1}}{i}$$
$$= \frac{1}{\log n} \sum_{i=1}^n \left(b_i - \frac{i-1}{i}b_{i-1}\right) = \frac{1}{\log n} \left(b_n - \sum_{i=1}^{n-1} \frac{b_i}{i+1}\right).$$

Let us write $b_n = b + \varepsilon_n$, where $\varepsilon \to 0$. Then

$$c_n = \frac{1}{\log n} \left(\left(\sum_{i=1}^n \frac{1}{i} \right) b + \sum_{i=1}^{n-1} \frac{\varepsilon_i}{i+1} + \varepsilon_n \right) = \frac{\sum_{i=1}^n b + \frac{\sum_{i=1}^{n-1} \frac{\varepsilon_i}{i+1}}{\log n} + \frac{\varepsilon_n}{\log n}}{\log n}.$$

Easily we see $\frac{\sum_{i=1}^{n}\frac{1}{i}}{\log n} \to 1$, $\frac{\varepsilon_n}{\log n} \to 0$. For the rest we have

$$\frac{\sum_{i=1}^{n-1} \frac{\varepsilon_i}{i+1}}{\log n} = \frac{\sum_{i=1}^k \frac{\varepsilon_i}{i+1}}{\log n} + \frac{\sum_{i=k+1}^{n-1} \frac{\varepsilon_i}{i+1}}{\log n}$$

and it follows that

$$\frac{\sum_{i=1}^k \frac{\varepsilon_i}{i+1}}{\log n} \to 0 \quad \text{ for } n \to \infty,$$

$$\left|\frac{\sum_{i=k+1}^{n-1} \frac{\varepsilon_i}{i+1}}{\log n}\right| \leq \sup_{j \geq k} \{|\varepsilon_j|\} \cdot \frac{\sum_{i=k+1}^{n-1} \frac{1}{i}}{\log n} \leq \sup_{j \geq k} \{|\varepsilon_j|\} \quad \text{ for all } n \geq k.$$

Since $\sup_{j\geq k}\{|\varepsilon_j|\}\to 0$ for $k\to\infty$ and our choice of k can be arbitrary large, we got $c_n\to b$, and the problem is solved.

The $10^{\rm th}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $5^{\rm th}$ April 2000 Category I

Problem 4 Let us choose arbitrarily n vertices of a regular 2n-gon and colour them red. Remaining vertices are coloured blue. We arrange all red-red distances into a nondecreasing sequence and do the same with blue-blue distances. Prove that the sequences are equal.

Solution Let $1 \geq m \geq n$ be the combinatorial distance (i.e. the Euclidean distance d_m between the first and (m+1)-st vertices corresponds to m). For a given m denote by k the gcd of 2n and m. The original 2n-gon can be decomposed into k disjoint $\frac{2n}{k}$ -gons of edge lenght d_m . Assume that there are r_i red and b_i blue vertices on the i-th $\frac{2n}{k}$ -gon, and denote c_i to be the number of oriented red \rightarrow blue changes between the neighboring vertices. The number of neighboring blue pairs equals $r_i - c_i$, while the number of neighboring blue pairs equals $b_i - c_i$. The total number of neighboring red pairs will be $\sum_i (r_i - c_i) = n - \sum_i c_i$ which is the same as the total number $\sum_i (b_i - c_i) = n - \sum_i c_i$ of neighboring blue pairs.

Solution It is enough to show, that the number of each particular distance is same among both red-red and blue-blue pairs. Choose one of the used distances, let us say d. Denote d_{rr} to be the number of red-red pairs with distance d and analogously d_{bb} number of blue-blue pairs and d_{rb} number of red-blue pairs with distance d. Clearly $2d_{rr} + d_{rb} = 2n$, since $2 \times$ number of red-red pairs plus $1 \times$ red-blue pairs gives $2 \times$ number of red vertices. Analogously $2d_{bb} + d_{rb} = 2n$. By subtracting one relation from the other we get $2d_{bb} = 2d_{rr}$, which is

the end.

The $10^{\rm th}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $5^{\rm th}$ April 2000 Category II

Problem 1 Let p be a prime of the form p = 4n - 1 where n is a positive integer. Prove that

$$\prod_{k=1}^{p} (k^2 + 1) \equiv 4 \pmod{p}.$$

Solution Consider the polynomials $P(x) = \prod_{k=1}^{p} (k^2 - x^2)$ and $p(x) = \prod_{k=1}^{p-1} (k - x)$. Easily we see that $P(x) = p(x) \cdot p(-x) \cdot (p^2 - x^2)$.

Since p(x) is of degree p-1 and has roots $1, 2, \ldots, p-1, p(x)$ is congruent modulo p to the polynomial $q(x) = x^{p-1} - 1$, which has also roots $1, 2, \ldots, p-1$. Therefore

$$P(x) = p(x)p(-x)(p^2 - x^2) \equiv q(x)q(-x)(p^2 - x^2) \equiv q(x)q(-x)(-x^2) \pmod{p}$$

and it follows that

$$\prod_{k=1}^{p} (k^2 + 1) = P(i) \equiv q(i) \cdot q(-i) \cdot (-i^2) = (i^{p-1} - 1) \cdot ((-i)^{p-1} - 1)$$
$$= (i^{4n-2} - 1) \cdot ((-i)^{4n-2} - 1) = (-2) \cdot (-2) = 4 \pmod{p}.$$

The $10^{\rm th}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $5^{\rm th}$ April 2000 Category II

Problem 2 If we write the sequence AAABABBB along the perimeter of a circle, then every word of the length 3 consisting of letters A and B (i.e. AAA, AAB, ABA, BAB, BBB, BBA, BAA) occurs exactly once on the perimeter. Decide whether it is possible to write a sequence of letters from a k-element alphabet along the perimeter of a circle in such a way that every word of the length l (i.e. an ordered l-tuple of letters) occurs exactly once on the perimeter.

Solution Let us denote the alphabet by P. Let us form the directed graph G = (V, E), where $V = \{[a_1, \ldots, a_{l-1}]; a_i \in P\}$ and $E = \{[[a_1, \ldots, a_{l-1}], [b_1, \ldots, b_{l-1}]]; a_2 = b_1, a_3 = b_2, \ldots, a_{l-1} = b_{l-2}\}$. First, considering any two vertices $[a_1, \ldots, a_{l-1}]$ and $[b_1, \ldots, b_{l-1}]$, we find that there must be at least one oriented path between them:

$$[a_1, \dots, a_{l-1}] \to [a_2, \dots, a_{l-1}, b_1] \to [a_3, \dots, a_{l-1}, b_1, b_2] \to \dots \to [b_1, \dots, b_{l-1}]$$

(some vertices and arcs can repeat in the sequence). This implies that the graph is strongly connected. Second, we realize that every vertex $[a_1, \ldots, a_{l-1}]$ has exactly k outgoing and k ingoing arcs: the outgoing arcs are directed to the vertices $[a_2, \ldots, a_{l-1}, o]$, where o goes through the whole alphabet P, and the ingoing come from vertices $[i, a_1, \ldots, a_{l-2}]$, where i also goes through the whole alphabet. That means that the inner and outer degrees of every vertex are identical and the graph is an Euler (directed) graph. As a consequence, there exists an Eulerian cycle in it, i.e. a cycle containing all arcs going through every arc exactly once. We

Let us start with an arbitrary vertex and write down its sequence a_1, \ldots, a_{l-1} .

Let us follow the Eulerian cycle and add the last letter of every vertex to the sequence until we reach the starting vertex again. Now we delete the last l-1 letters (which are necessarily the same as the starting ones). Since there is a bijection between the set of all l-letter words and the set of arcs V:

$$[a_1,\ldots,a_l]\longleftrightarrow [[a_1,\ldots,a_{l-1}],[a_2,\ldots,a_l]],$$

it is clear that the sequence has the demanded properties.

can now form the searched for cyclic sequence as follows:

The $10^{\rm th}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $5^{\rm th}$ April 2000 Category II

Problem 3 Let m, n be positive integers and let $x \in [0, 1]$. Prove that

$$(1-x^n)^m + (1-(1-x)^m)^n \ge 1$$
.

Solution We will prove that $(1-x^n)^m \ge 1 - (1-(1-x)^m)^n$.

Take an $m \times n$ chessboard. The probability, that one particular square is black, is $x \in [0, 1]$, the probability of being white is x - 1. Assume this for all squares. Then

- $(1-x)^m$ is the probability that the whole row is white
- $1-(1-x)^m$ is the probability that there is at least one black in the row
- $(1-(1-x)^m)^n$ is the probability that in each row there is at least one black
- $1-(1-(1-x)^m)^n$ is the probability that at least one row does not contain a black.

Denote by A the last event, in which some row does not a contain black (it is all white). We continue:

- $1-x^n$ is the probability that the column contains at least one white
- $(1-x^n)^m$ is the probability that each column contains at least one white.

Denote by B the event in which each column contains at least one white. It is clear that $A \subset B$, because if one row is white then each column contains some white. Therefore is $P(b) \geq P(A)$, written in the other form: $(1-x^n)^m \geq 1 - (1-(1-x)^m)^n$.

The 10th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 5th April 2000 Category II

Problem 4 Let \mathcal{B} be a family of open balls in \mathbb{R}^n and $c < \lambda(\bigcup \mathcal{B})$ where λ is the n-dimensional Lebesgue measure. Show that there exists a finite family of pairwise disjoint balls $\{U_i\}_{i=1}^k \subseteq \mathcal{B}$ such that

$$\sum_{j=1}^{k} \lambda(U_j) > \frac{c}{3^n} .$$

Solution Suppose first $\sup_{U \in \mathcal{B}} \lambda(U) < \infty$ for $U \in \mathcal{B}$. In other case we just take a large enough ball U_0 for which $\lambda(U_0) > \frac{c}{3^n}$.

Take $\varepsilon > 0$. We first construct the infinite sequence $\{U_k\}_{k=1}^{\infty}$ of disjoint balls for which $\lambda\left(\bigcup U_k\right) \geq \frac{\lambda\left(\bigcup \mathcal{B}\right)}{(3+\varepsilon)^n}$. The procedure is the following. In the k-th step count $\sup \lambda(U)$ through all the rest of the balls in \mathcal{B} , then choose U_k such that $\lambda(U_k) \geq \sup \lambda(U) \cdot \left(\frac{3}{3+\varepsilon}\right)^n$ and remove from \mathcal{B} all balls U which intersect ball U_k . Continue to infinity by the (k+1)-th step. It is clear, that the balls in the constructed sequence $\{U_n\}$ are disjoint. Further, if we increase each ball U_k from $\{U_k\}_{k=1}^{\infty}$ $(3+\varepsilon)$ -times, than they will contain all of the set \mathcal{B} . This holds, because ball U_i increased $(3+\varepsilon)$ -times covers all balls intersecting U_i removed from \mathcal{B} in i-th step. It follows that $\lambda\left(\bigcup U_k\right) \geq \frac{\lambda\left(\bigcup \mathcal{B}\right)}{(3+\varepsilon)^n}$. If $\lambda\left(\bigcup \mathcal{B}\right) < \infty$, then there is $k_0 \in \mathbb{N}$ for which

$$\lambda\left(\bigcup_{k=1}^{k_0} U_k\right) \ge \frac{\lambda\left(\bigcup \mathcal{B}\right)}{(3+2\varepsilon)^n}$$
.

By choosing ε so that $\frac{\lambda(\bigcup \mathcal{B})}{(3+2\varepsilon)^n} > \frac{c}{3^n}$ (this is always possible) we solve the problem. In case $\lambda(\bigcup \mathcal{B}) = \infty$ we just choose k_0 big enough to exceed the finite constant c in the desired inequality.