The $10^{\text {th }}$ Annual Vojtěch Jarník
 International Mathematical Competition

Ostrava, $5^{\text {th }}$ April 2000
Category I

Problem 1 Is there a countable set Y and an uncountable family \mathcal{F} of its subsets, such that for every two distinct $A, B \in \mathcal{F}$ their intersection $A \cap B$ is finite?
Solution The answer is yes.
Put all natural numbers \mathbb{N} in a coordinate system like in the picture.

For each ray p we put in the set A_{p} all numbers, which p intersects (intersects its square), and we place all such sets A_{p} into \mathcal{F}. For each ray p we assign the angle α_{p}, which is between p and x. Since all α_{p} form the interval $\left(0, \frac{\pi}{2}\right)$, the set of rays p is uncountable. Furthermore, for different rays p_{1} and p_{2}, the intersection $A_{p_{1}} \cap A_{p_{2}}$ is finite, because there exists distance $d_{p_{1} p_{2}}$ from the origin of the coordinate system where rays are far enough, so they will not pass through the same square any more. The problem is solved.
Solution Yes. Let $Y=\mathbb{N}$ and denote S set of all infinite sequences $\left\{a_{n}\right\}$ of 0 and 1 . To each sequence $\left\{a_{n}\right\}$ assign the set $C_{\left\{a_{n}\right\}} \in \mathcal{F}$ in the following way:

$$
C_{\left\{a_{n}\right\}}=\left\{2^{k}+\sum_{n=1}^{k} a_{n} \cdot 2^{n-1}, \text { for } k=1,2, \ldots\right\}
$$

Suppose we have two distinct sets $C_{\left\{a_{n}\right\}}, C_{\left\{b_{n}\right\}}$ for some distinct $\left\{a_{n}\right\},\left\{b_{n}\right\} \in \mathcal{F}$.
Suppose now

$$
\begin{array}{r}
2^{k_{1}}+\sum_{n=1}^{k_{1}} a_{n} \cdot 2^{n-1}=2^{k_{2}}+\sum_{n=1}^{k_{2}} b_{n} \cdot 2^{n-1} \text { for some } k_{1}, k_{2} \in \mathbb{N}, \\
\text { where }\left(2^{k_{1}}+\sum_{n=1}^{k_{1}} a_{n} \cdot 2^{n-1}\right) \in C_{\left\{a_{n}\right\}} \text { and }\left(2^{k_{2}}+\sum_{n=1}^{k_{2}} b_{n} \cdot 2^{n-1}\right) \in C_{\left\{b_{n}\right\}} .
\end{array}
$$

This is like equality of two numbers written in binary system. For the number

$$
2^{k_{1}}+\sum_{n=1}^{k_{1}} a_{n} \cdot 2^{n-1}
$$

is the first digit regarding to the $2^{k_{1}}$ th digit 1 , and the next digits are $a_{k_{1}-1}, a_{k_{1}-2}, \ldots, a_{1}$. Analogous are the digits for the other number. So these numbers are equal if and only if $k_{1}=k_{2}$ and $a_{i}=b_{i}$ for all $i<k_{1}$. So if the sets $C_{\left\{a_{n}\right\}}, C_{\left\{b_{n}\right\}}$ contain infinitely many of the same numbers then $a_{i}=b_{i}$ for all $i \in \mathbb{N}$ and $C_{\left\{a_{n}\right\}}=C_{\left\{b_{n}\right\}}$, a contradiction.

The $10^{\text {th }}$ Annual Vojtěch Jarník
 International Mathematical Competition

Ostrava, $5^{\text {th }}$ April 2000
Category I

Problem 2 Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be given by

$$
f(n)=n^{\frac{\tau(n)}{2}}
$$

$n \in \mathbb{N}=\{1,2, \ldots\}, \tau(n)-$ the number of divisors of n. Show that f is injective into \mathbb{N}.
Solution Recall that every natural number n greater than 1 can be written uniqely (up to order) as a product

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}
$$

where the p_{i} are different primes and the a_{i} are natural numbers. Then

$$
\tau(n)=\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{k}\right)
$$

Now we show that for every natural number $n, f(n)$ is also a natural number:

- $f(1)=1$ is natural,
- if $n>1$ and $\tau(n)$ is even, then $\frac{\tau(n)}{2}$ is natural and so is $f(n)$,
- if $n>1$ and $\tau(n)$ is odd, then all a_{i} are even so n is a square of a natural number and $f(n)$ is natural too.

Now it is easy to see that prime number p divides the natural number n if and only if it divides $f(n)$. We use this fact to prove injectivity of f.

Let $f(m)=f(n)$. Then m and n are divisible by the same primes and we can write $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$, $m=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{k}^{b_{k}}$. As $f(n)=f(m)$, it is true that $a_{i} \tau(n)=b_{i} \tau(m), i=1,2, \ldots k$. We can assume that $\tau(n) \leq \tau(m)$ (if not we change m and n). Using this we get $a_{i} \geq b_{i}$ and $\tau(n) \geq \tau(m)$. From this follows that $\tau(n)=\tau(m), a_{i}=b_{i}$ and $n=m$.
Solution Let us write n in the form $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are prime divisors (this representation is unique), and let $1=d_{1}<d_{2}<\cdots<d_{\tau(n)}=n$ be all its divisors. Then

$$
d_{1} d_{2} \ldots d_{\tau(n)}=\sqrt{\left(d_{1} d_{\tau(n)}\right) \cdot\left(d_{2} d_{\tau(n)-1}\right) \ldots\left(d_{\tau(n)} d_{1}\right)}=\sqrt{n^{\tau(n)}}=n^{\frac{\tau(n)}{2}}=f(n)
$$

since $d_{k} d_{\tau(n)-k+1}=\mathrm{n}$. So $f(n)$ is natural, because it can be expressed as multiple of natural numbers d_{1}, \ldots, $d_{\tau(n)}$. Suppose now $f(n)=f(m)$ for distinct natural numbers m, n. From $m^{\frac{\tau(m)}{2}}=f(m)=f(n)=n^{\frac{\tau(n)}{2}}$ it follows that $m=n^{\frac{\tau(n)}{\tau(m)}}$. This implies that m and n have the same set of prime divisors, so m can be writen as $m=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{k}^{\beta_{k}}$. The obtained relation $m=n^{\frac{\tau(n)}{\tau(m)}}$ implies $\frac{\alpha_{1}}{\beta_{1}}=\frac{\alpha_{2}}{\beta_{2}}=\cdots=\frac{\alpha_{k}}{\beta_{k}}=c$. Without loss of generality we can suppose that $m>n$. Then $c>1$, and, since all α_{i} and β_{i} are positive integers, m is divisible by n. So the set of all divisors of n is a subset of the set of all divisors of m, and $\tau(m) \geq \tau(n)$. From $m>n$ we can conclude that $m^{\frac{\tau(m)}{2}}>n^{\frac{\tau(n)}{2}}$, a contradiction.

The $10^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $5^{\text {th }}$ April 2000
Category I

Problem 3 Let a_{1}, a_{2}, \ldots be a bounded sequence of reals. Is it true that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} a_{n}=b \quad \text { and } \quad \lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=1}^{N} \frac{a_{n}}{n}=c
$$

imply $b=c$?
Solution We prove that if $\frac{1}{N} \sum_{n=1}^{N} a_{n} \rightarrow b$ for any (not even necessarily bounded) sequence of reals then

$$
\frac{1}{\log N} \sum_{n=1}^{N} \frac{a_{n}}{n} \rightarrow b
$$

Assume that

$$
\frac{1}{N} \sum_{n=1}^{N} a_{n} \rightarrow b
$$

Define

$$
h_{N}=\sum_{n=1}^{N} a_{n} .
$$

(We have $h_{0}=0$.)
Then by our assumption we have $h_{N} \rightarrow b$ and by definition we get

$$
a_{N}=N h_{N}-(N-1) h_{N-1}=N\left(h_{N}-h_{N-1}\right)+h_{N-1} .
$$

Thus

$$
\sum_{n=1}^{N} \frac{a_{n}}{n}=\sum_{n=1}^{N} h_{n}-h_{n+1}+\frac{h_{n-1}}{n}=h_{N}+\sum_{n=1}^{N} \frac{h_{n-1}}{n}
$$

Therefore

$$
\frac{1}{\log N} \sum_{n=1}^{N} \frac{a_{n}}{n}=\frac{h_{N}}{\log N}+\sum_{n=1}^{N} \frac{h_{n}}{n} .
$$

Since h_{N} converges the first term goes to 0 . As $\frac{1}{\log N} \sum_{n=1}^{N} \frac{1}{n} \rightarrow 1$ and $h_{N} \rightarrow b$ we get that $\frac{1}{\log N} \sum_{n=1}^{N} \frac{a_{n}}{n} \rightarrow b$.
Solution Denote $\frac{1}{n} \sum_{i=1}^{n} a_{i}=b_{n}, n \geq 1, b_{0}=0$ and $\frac{1}{\log n} \sum_{i=1}^{n} \frac{a_{i}}{i}=c_{n}, n \geq 1$. The sequence $\left\{b_{n}\right\}_{n \in \infty}$ converges to b.

Since $a_{n}=n b_{n}-(n-1) b_{n-1}$, we obtain

$$
\begin{aligned}
c_{n} & =\frac{1}{\log n} \sum_{i=1}^{n} \frac{a_{i}}{i}=\frac{1}{\log n} \sum_{i=1}^{n} \frac{i b_{i}-(i-1) b_{i-1}}{i} \\
& =\frac{1}{\log n} \sum_{i=1}^{n}\left(b_{i}-\frac{i-1}{i} b_{i-1}\right)=\frac{1}{\log n}\left(b_{n}-\sum_{i=1}^{n-1} \frac{b_{i}}{i+1}\right) .
\end{aligned}
$$

Let us write $b_{n}=b+\varepsilon_{n}$, where $\varepsilon \rightarrow 0$. Then

$$
c_{n}=\frac{1}{\log n}\left(\left(\sum_{i=1}^{n} \frac{1}{i}\right) b+\sum_{i=1}^{n-1} \frac{\varepsilon_{i}}{i+1}+\varepsilon_{n}\right)=\frac{\sum_{i=1}^{n} b+\frac{\sum_{i=1}^{n-1} \frac{\varepsilon_{i}}{i+1}}{\log n}+\frac{\varepsilon_{n}}{\log n} . . . ~ . ~}{\log n} .
$$

Easily we see $\frac{\sum_{i=1}^{n} \frac{1}{i}}{\log n} \rightarrow 1, \frac{\varepsilon_{n}}{\log n} \rightarrow 0$. For the rest we have

$$
\frac{\sum_{i=1}^{n-1} \frac{\varepsilon_{i}}{i+1}}{\log n}=\frac{\sum_{i=1}^{k} \frac{\varepsilon_{i}}{i+1}}{\log n}+\frac{\sum_{i=k+1}^{n-1} \frac{\varepsilon_{i}}{i+1}}{\log n}
$$

and it follows that

$$
\begin{array}{r}
\frac{\sum_{i=1}^{k} \frac{\varepsilon_{i}}{i+1}}{\log n} \rightarrow 0 \quad \text { for } n \rightarrow \infty \\
\left|\frac{\sum_{i=k+1}^{n-1} \frac{\varepsilon_{i}}{i+1}}{\log n}\right| \leq \sup _{j \geq k}\left\{\left|\varepsilon_{j}\right|\right\} \cdot \frac{\sum_{i=k+1}^{n-1} \frac{1}{i}}{\log n} \leq \sup _{j \geq k}\left\{\left|\varepsilon_{j}\right|\right\} \quad \text { for all } n \geq k .
\end{array}
$$

Since $\sup \left\{\left|\varepsilon_{j}\right|\right\} \rightarrow 0$ for $k \rightarrow \infty$ and our choice of k can be arbitrary large, we got $c_{n} \rightarrow b$, and the problem is solved.

The $10^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $5^{\text {th }}$ April 2000
Category I

Problem 4 Let us choose arbitrarily n vertices of a regular $2 n$-gon and colour them red. Remaining vertices are coloured blue. We arrange all red-red distances into a nondecreasing sequence and do the same with blue-blue distances. Prove that the sequences are equal.
Solution Let $1 \geq m \geq n$ be the combinatorial distance (i.e. the Euclidean distance d_{m} between the first and $(m+1)$-st vertices corresponds to m). For a given m denote by k the gcd of $2 n$ and m. The original $2 n$-gon can be decomposed into k disjoint $\frac{2 n}{k}$-gons of edge lenght d_{m}. Assume that there are r_{i} red and b_{i} blue vertices on the i-th $\frac{2 n}{k}$-gon, and denote c_{i} to be the number of oriented red \rightarrow blue changes between the neighboring vertices. The number of neighboring blue pairs equals $r_{i}-c_{i}$, while the number of neighboring blue pairs equals $b_{i}-c_{i}$. The total number of neighoring red pairs will be $\sum_{i}\left(r_{i}-c_{i}\right)=n-\sum_{i} c_{i}$ which is the same as the total number $\sum_{i}\left(b_{i}-c_{i}\right)=n-\sum_{i} c_{i}$ of neighboring blue pairs.
Solution It is enough to show, that the number of each particular distance is same among both red-red and blue-blue pairs. Choose one of the used distances, let us say d. Denote $d_{r r}$ to be the number of red-red pairs with distance d and analogously $d_{b b}$ number of blue-blue pairs and $d_{r b}$ number of red-blue pairs with distance d. Clearly $2 d_{r r}+d_{r b}=2 n$, since $2 \times$ number of red-red pairs plus $1 \times$ red-blue pairs gives $2 \times$ number of red vertices. Analogously $2 d_{b b}+d_{r b}=2 n$. By subtracting one relation from the other we get $2 d_{b b}=2 d_{r r}$, which is the end.

The $10^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $5^{\text {th }}$ April 2000
Category II

Problem 1 Let p be a prime of the form $p=4 n-1$ where n is a positive integer. Prove that

$$
\prod_{k=1}^{p}\left(k^{2}+1\right) \equiv 4 \quad(\bmod p) .
$$

Solution Consider the polynomials $P(x)=\prod_{k=1}^{p}\left(k^{2}-x^{2}\right)$ and $p(x)=\prod_{k=1}^{p-1}(k-x)$. Easily we see that $P(x)=p(x) \cdot p(-x) \cdot\left(p^{2}-x^{2}\right)$.

Since $p(x)$ is of degree $p-1$ and has roots $1,2, \ldots, p-1, p(x)$ is congruent modulo p to the polynomial $q(x)=x^{p-1}-1$, which has also roots $1,2, \ldots, p-1$. Therefore

$$
P(x)=p(x) p(-x)\left(p^{2}-x^{2}\right) \equiv q(x) q(-x)\left(p^{2}-x^{2}\right) \equiv q(x) q(-x)\left(-x^{2}\right) \quad(\bmod p)
$$

and it follows that

$$
\begin{aligned}
\prod_{k=1}^{p}\left(k^{2}+1\right) & =P(i) \equiv q(i) \cdot q(-i) \cdot\left(-i^{2}\right)=\left(i^{p-1}-1\right) \cdot\left((-i)^{p-1}-1\right) \\
& =\left(i^{4 n-2}-1\right) \cdot\left((-i)^{4 n-2}-1\right)=(-2) \cdot(-2)=4 \quad(\bmod p)
\end{aligned}
$$

The $10^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $5^{\text {th }}$ April 2000
Category II

Problem 2 If we write the sequence $A A A B A B B B$ along the perimeter of a circle, then every word of the length 3 consisting of letters A and B (i.e. $A A A, A A B, A B A, B A B, A B B, B B B, B B A, B A A$) occurs exactly once on the perimeter. Decide whether it is possible to write a sequence of letters from a k-element alphabet along the perimeter of a circle in such a way that every word of the length l (i.e. an ordered l-tuple of letters) occurs exactly once on the perimeter.
Solution Let us denote the alphabet by P. Let us form the directed graph $G=(V, E)$, where $V=$ $\left\{\left[a_{1}, \ldots, a_{l-1}\right] ; a_{i} \in P\right\}$ and $E=\left\{\left[\left[a_{1}, \ldots, a_{l-1}\right],\left[b_{1}, \ldots, b_{l-1}\right]\right] ; a_{2}=b_{1}, a_{3}=b_{2}, \ldots, a_{l-1}=b_{l-2}\right\}$.
First, considering any two vertices $\left[a_{1}, \ldots, a_{l-1}\right]$ and $\left[b_{1}, \ldots, b_{l-1}\right]$, we find that there must be at least one oriented path between them:

$$
\left[a_{1}, \ldots, a_{l-1}\right] \rightarrow\left[a_{2}, \ldots, a_{l-1}, b_{1}\right] \rightarrow\left[a_{3}, \ldots, a_{l-1}, b_{1}, b_{2}\right] \rightarrow \cdots \rightarrow\left[b_{1}, \ldots, b_{l-1}\right]
$$

(some vertices and arcs can repeat in the sequence). This implies that the graph is strongly connected. Second, we realize that every vertex $\left[a_{1}, \ldots, a_{l-1}\right]$ has exactly k outgoing and k ingoing arcs: the outgoing arcs are directed to the vertices $\left[a_{2}, \ldots, a_{l-1}, o\right]$, where o goes through the the whole alphabet P, and the ingoing come from vertices $\left[i, a_{1}, \ldots, a_{l-2}\right]$, where i also goes through the whole alphabet. That means that the inner and outer degrees of every vertex are identical and the graph is an Euler (directed) graph. As a consequence, there exists an Eulerian cycle in it, i.e. a cycle containing all arcs going through every arc exactly once. We can now form the searched for cyclic sequence as follows:
Let us start with an arbitrary vertex and write down its sequence a_{1}, \ldots, a_{l-1}.
Let us follow the Eulerian cycle and add the last letter of every vertex to the sequence until we reach the starting vertex again. Now we delete the last $l-1$ letters (which are necessarily the same as the starting ones). Since there is a bijection between the set of all l-letter words and the set of arcs V :

$$
\left[a_{1}, \ldots, a_{l}\right] \longleftrightarrow\left[\left[a_{1}, \ldots, a_{l-1}\right],\left[a_{2}, \ldots, a_{l}\right]\right]
$$

it is clear that the sequence has the demanded properties.

The $10^{\text {th }}$ Annual Vojtěch Jarník International Mathematical Competition
Ostrava, $5^{\text {th }}$ April 2000 Category II

Problem 3 Let m, n be positive integers and let $x \in[0,1]$. Prove that

$$
\left(1-x^{n}\right)^{m}+\left(1-(1-x)^{m}\right)^{n} \geq 1
$$

Solution We will prove that $\left(1-x^{n}\right)^{m} \geq 1-\left(1-(1-x)^{m}\right)^{n}$.
Take an $m \times n$ chessboard. The probability, that one particular square is black, is $x \in[0,1]$, the probability of being white is $x-1$. Assume this for all squares. Then
$(1-x)^{m}$ is the probability that the whole row is white
$1-(1-x)^{m}$ is the probability that there is at least one black in the row
$\left(1-(1-x)^{m}\right)^{n}$ is the probability that in each row there is at least one black
$1-\left(1-(1-x)^{m}\right)^{n}$ is the probability that at least one row does not contain a black.
Denote by A the last event, in which some row does not a contain black (it is all white). We continue:
$1-x^{n}$ is the probability that the column contains at least one white
$\left(1-x^{n}\right)^{m}$ is the probability that each column contains at least one white.
Denote by B the event in which each column contains at least one white. It is clear that $A \subset B$, because if one row is white then each column contains some white. Therefore is $P(b) \geq P(A)$, written in the other form: $\left(1-x^{n}\right)^{m} \geq 1-\left(1-(1-x)^{m}\right)^{n}$.

The $10^{\text {th }}$ Annual Vojtěch Jarník International Mathematical Competition
Ostrava, $5^{\text {th }}$ April 2000
Category II

Problem 4 Let \mathcal{B} be a family of open balls in \mathbb{R}^{n} and $c<\lambda(\bigcup \mathcal{B})$ where λ is the n-dimensional Lebesgue measure. Show that there exists a finite family of pairwise disjoint balls $\left\{U_{i}\right\}_{i=1}^{k} \subseteq \mathcal{B}$ such that

$$
\sum_{j=1}^{k} \lambda\left(U_{j}\right)>\frac{c}{3^{n}}
$$

Solution Suppose first $\sup _{U \in \mathcal{B}} \lambda(U)<\infty$ for $U \in \mathcal{B}$. In other case we just take a large enough ball U_{0} for which $\lambda\left(U_{0}\right)>\frac{c}{3^{n}}$.

Take $\varepsilon>0$. We first construct the infinite sequence $\left\{U_{k}\right\}_{k=1}^{\infty}$ of disjoint balls for which $\lambda\left(\bigcup U_{k}\right) \geq \frac{\lambda(\cup \mathcal{B})}{(3+\varepsilon)^{n}}$. The procedure is the following. In the k-th step count $\sup \lambda(U)$ through all the rest of the balls in \mathcal{B}, then choose U_{k} such that $\lambda\left(U_{k}\right) \geq \sup \lambda(U) \cdot\left(\frac{3}{3+\varepsilon}\right)^{n}$ and remove from \mathcal{B} all balls U which intersect ball U_{k}. Continue to infinity by the $(k+1)$-th step. It is clear, that the balls in the constructed sequence $\left\{U_{n}\right\}$ are disjoint. Further, if we increase each ball U_{k} from $\left\{U_{k}\right\}_{k=1}^{\infty}(3+\varepsilon)$-times, than they will contain all of the set \mathcal{B}. This holds, because ball U_{i} increased $(3+\varepsilon)$-times covers all balls intersecting U_{i} removed from \mathcal{B} in i-th step. It follows that $\lambda\left(\bigcup U_{k}\right) \geq \frac{\lambda(\cup \mathcal{B})}{(3+\varepsilon)^{n}}$. If $\lambda(\bigcup \mathcal{B})<\infty$, then there is $k_{0} \in \mathbb{N}$ for which

$$
\lambda\left(\bigcup_{k=1}^{k_{0}} U_{k}\right) \geq \frac{\lambda(\bigcup \mathcal{B})}{(3+2 \varepsilon)^{n}}
$$

By choosing ε so that $\frac{\lambda(\cup \mathcal{B})}{(3+2 \varepsilon)^{n}}>\frac{c}{3^{n}}$ (this is always possible) we solve the problem. In case $\lambda(\bigcup \mathcal{B})=\infty$ we just choose k_{0} big enough to exceed the finite constant c in the desired inequlity.

