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Problem 1 Prove that for an arbitrary prime p ≥ 5 the number∑
0<k< 2p

3

(
p

k

)

is divisible by p2.

Solution The number 1
p

(
p
k

)
for 0 < k < 2p

3 is congruent to (−1)k−1 1
k modulo p. Hence it is sufficient to show

that the element ∑
(1) =

∑
0<k<2p/3

(−1)k−1 1
k

is 0 in a finite field Fp. The sum∑(
2
)
=
∑
k< p

6

(1
k
− 1

2k
− 1

2k

)
+

∑
p
6<k< p

3

(1
k
− 1

2k
+

1

p− 2k

)
is 0 in Fp. But

∑(
1
)
=
∑(

2
)
. In fact the terms of the shape 1

2k+1 are evidently the same. As to a term 1
2k

in the
∑(

2
)

for 2k < p
3 it appears with the coefficient −1, what is O.K. The term 1

2k

(
for 2k < p

3

)
appears in∑(

2
)

twice with the sign “−” and once with the sign “+”. So
∑(

1
)
=
∑(

2
)
. �
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Problem 2 Let n ≥ 2 be a natural number. Prove that

n∏
k=2

ln k <

√
n!

n
.

Solution Consider f : [1,∞)→ R defined by

f(t) = 2 ln t− t+ 1

t
.

We have

f ′(t) = − (t− 1)2

t2
,

hence f ′ is negative on (1,∞). Therefore f is strictly decreasing. Since f(1) = 0, the function f has negative
values on (1,∞). So

(∀t ∈ (1,∞))
(
2 ln t− t+ 1

t

) 1

t2 − 1
< 0 .

Putting x = t2 in the above inequality we obtain that

(∀t ∈ (1,∞))
lnx

x− 1
<

1√
x
.

Hence
n∏

k=2

ln k

k − 1
<

n∏
k=2

1√
k
=

1√
n!

and
n∏

k=2

ln k <
(n− 1)!√

n!
=

√
n!

n
.

�

Solution We prove that ln k <
√
k · k−1k for k ∈ N and ≥ 2. Let us consider the functions f(x) = lnx and

g(x) =
√
x · x−1x . It is

f(1) = g(1) = 0 and f ′(x) =
1

x
,

g′(x) =
1

2
√
x

x− 1

x
+
√
x
1

x2
,

g′(x)− f ′(x) = 1

2
√
x3

(
x− 1 + 2− 2

√
x
)
=

1

2
√
x3

(√
x− 1

)2
,

which is = 0 for x = 1 and > 0 for x > 1. It proves that g(x) > f(x) for x > 1, as we needed. Now by
multiplying ln k <

√
k · k−1k over k = 2, 3, . . . , n we get

n∏
k=2

ln k <

( n∏
k=2

√
k

)
· 1
2
· 2
3
· . . . · n− 1

n
=
√
n! · 1

n
,

the problem solved. �
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Problem 3 Let A,B,C be sets in Rn. Suppose that A is nonempty and bounded, that C is closed and convex,
and that A+B ⊆ A+ C. Show the inclusion B ⊆ C.

We remind you that
E + F = {e+ f : e ∈ E, f ∈ F}

and D ⊆ Rn is convex when
∀x, y ∈ D ∀t ∈ [0, 1] : tx+ (1− t)y ∈ D .

Solution We will use the following lemma.

Lemma Let a1, . . . , am be points of a convex set D ⊆ Rn. Let λ1, . . . , λm ≥ 0 with λ1 + · · · + λm = 1. Then
λ1a1 + · · ·+ λmam ∈ D.

Proof We argue by induction on m. When m = 1 the assertion is trivial. Suppose that the assertion holds
when m is some positive integer k. Let

x = λ1a1 + · · ·+ λk+1ak+1 ,

where a1, . . . , ak+1 ∈ D and λ1, . . . , λk+1 ≥ 0 with λ1 + · · ·+λk+1 = 1. At least one λi must be less than 1, say
λk+1 < 1. Write

y =
λ1
λ
a1 + · · ·+

λk
λ
ak ,

where
λ = λ1 + · · ·+ λk = 1− λk+1 > 0 .

By the induction hypothesis, y ∈ D. Since D is convex and contains both y and ak+1 the equation x =
λy + λk+1ak+1 shows that x ∈ D. This completes the proof by induction. �

Let a0 ∈ A. If b ∈ B, then a0 + b ∈ A + B ⊆ A + C, and so there exists a1 ∈ A, c1 ∈ C such that
a0 + b = a1 + c1. Similarly, there exist a2, . . . , ai ∈ A and c2, . . . , ci ∈ C with

a1 + b = a2 + c2, . . . , ai−1 + b = ai + ci .

We add the i equations above together to deduce that

a0 + ib = a1 + c1 + · · ·+ ci .

Since C is convex, the point xi defined by the equation

xi =
1

i
(c1 + · · ·+ ci)

lies in C (Lemma). Now

‖b− xi‖ =
1

i
‖ai − a0‖ → 0 as i→∞ ,

since A is bounded. Thus xi → b as i→∞. But C is closed, whence b ∈ C and B ⊆ C. �

Solution For contradiction suppose there is b ∈ B which /∈ C. Since C is convex and closed, there existS
(n− 1)-dimensional hyperplane H such that it separates b and C. Denote ~n the normal vector of H orientated
in direction of point b. Now every point x of space Rn can be expressed as x = hx + a~n, where hx ∈ H and
a ∈ R. From this define linear function f(x) = a. It is clear that f(b) > 0 and f(C) < 0. Take now sup

a∈A
f(a) (it

is finite since A is bounded) and point a0 such that f(a0) > sup
a∈A

f(a) − f(b). Then clearly, since function f is

linear, it holds

f(a0 + b) = f(a0) + f(b) >
(
f(a)− f(b)

)
+ f(b) > f(a) + f(c) = f(a+ c) ,

for all a ∈ A and c ∈ C. But it is contradiction with f(A+B) ⊆ f(A+C) (which follows from A+B ⊆ A+C).
�
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Problem 4 Let A be a set of positive integers greater than 0 such that for any x, y ∈ A, x > y,

x− y ≥ xy

25
.

Find the maximal possible number of elements of the set A.

Solution For x > y ≥ 25 we have

x− y < x ≤ xy

25
.

Hence A contains at most one element greater than 24. Let A = {x1, x2, . . . , xn} where x1 < x2 < · · · < xn,
xn−1 < 25. For the differences dj = xj+1 − xj , 1 ≤ j ≤ n− 1, we get

dj ≥
xj+1xj
25

=
(xj + dj)xj

25
,

which yields

dj ≥
x2j

25− xj
.

Since the function g(x) = x2

25−x is increasing in the interval [0, 25), we obtain succesively

x5 ≥ 5, d5 ≥ g(5) > 1,
x6 ≥ 7, d6 ≥ g(7) > 2,
x7 ≥ 10, d7 ≥ g(10) > 6,
x8 ≥ 17, d8 ≥ g(17) > 36,
x9 ≥ 54.

So, we get n ≤ 9. Simultaneously, we can see that the set with 9 elements

A = {1, 2, 3, 4, 5, 7, 10, 17, 54}

satisfies all the conditions. �



The 11th Annual Vojtěch Jarník
International Mathematical Competition

Ostrava, 4th April 2001
Category II

Problem 1 Let n ≥ 2 be an integer and let x1, x2, . . . , xn be real numbers. Consider N =
(
n
2

)
sums xi + xj ,

1 ≤ i < j ≤ n and denote them by y1, y2, . . . , yN (in arbitrary order). For which n are the numbers x1, x2, . . . , xn
uniquely determined by the numbers y1, y2, . . . , yN?

Solution The answer is n 6= 2p.
Denote the kth symmetric polynomial in x1, x2, . . . , xn by σk. Further denote

sk =

n∑
i=1

xki , tk =

N∑
i=1

yki .

The numbers x1, x2, . . . , xn are uniquely determined by the numbers σ1, σ2, . . . , σn and these are uniquely
determined by the numbers s1, s2, . . . , sn since we have the following identity:

sk − sk−1σ1 + sk−2σ2 − · · ·+ (−1)k−1s1σk−1 = (−1)k−1kσk .

So we will try to show that s1, s2, . . . , sn are determined by the numbers t1, t2, . . . , tn. We have

2tk + 2ksk =

n∑
i=1

n∑
j=1

(xi + xj)
k =

n∑
i=1

n∑
j=1

k∑
r=0

(
k

r

)
xrix

k−r
j =

= 2nsk +

k−1∑
r=1

(
k

r

)
srsk−r .

For n 6= 2k−1, we get

sk =
1

2n− 2k

(
2tk −

k−1∑
r=1

(
k

r

)
srsk−r

)
.

Using induction with respect to k, we can conclude that for n 6= 2p, the numbers t1, t2, . . . , tn determine
uniquely the numbers s1, s2, . . . , sn.

For n = 2 the numbers from the sets A2 = {0, 3} and B2 = {1, 2} have the same sums. Suppose that we
have two disjoint sets An, Bn, every with n elements, which have the same sums of all possible couples. Then
the sets A2n = An ∪ (c + Bn) and B2n = Bn ∪ (c + An) for c large enought are disjoint with 2n elements and
have the same sums of all possible couples. �
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Problem 2 Let f : [0, 1] → R be a continuous function of function {fn}, fn : [0, 1] → R. Define the sequence
in the following way:

fn+1(x) =

∫ x

0

ft, n = 0, 1, 2, . . . .

Prove that if fn(1) = 0 for all n, then f(x) ≡ 0.

Solution Using induction on k, we prove that for any n, k ≥ 0 integers∫ 1

0

(1− t)kfn(t) = k! · fn+k(1) . (1)

This is trivial for k = 0. For greater k,∫ 1

0

(1− t)kfn(t) = [(1− t)kfn+1(t)]
1
t=0 + k

∫ 1

0

(1− t)k−1fn+1(t) =

= 0 + k · (k − 1)! · f(n+1)+(k−1)(1) = k! · fn+k(1) .

From (1) it follows for an arbitrary polynomial p, that
∫ 1

0
p · f = 0.

By Weierstrass’ theorem, for an arbitrary ε > 0 there exists a polynomial pε such that |pε(t)− f(t)| < ε for
all t ∈ [0, 1]. This implies ∫ 1

0

f2 =

∫ 1

0

f2 −
∫ 1

0

pε · f =

∫ 1

0

(f − pε)f ≤ ε
∫ 1

0

|f | .

This holds for any ε, thus
∫ 1

0
f2 = 0. This implies f ≡ 0. �
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Problem 3 Let f : (0,+∞)→ (0,+∞) be a decreasing function, satisfying∫ ∞
0

f(x) <∞ .

Prove that lim
x→∞

xf(x) = 0.

Solution As first we prove that lim inf
x→∞

xf(x) = 0. Let lim inf
x→∞

xf(x) = c > 0, that implies ∃x0∀x > x0 :

xf(x) > c′ > 0, or f(x) > c′

x , and we get:∫ ∞
0

f(x) >

∫ ∞
x0

f(x) >

∫ ∞
x0

c′

x
=∞,

a contradiction.
Now, let us suppose lim sup

x→∞
xf(x) = c > 0. It implies ∀y∃x > y : xf(x) ≥ c

2 . We have also constructed a

sequence {xn}∞n=1, satisfying:

xn →∞, and xnf(xn) ≥
c

2
> 0, which is the same as f(xn) ≥

c

2xn
.

Since f is decreasing: f(x) > f(xn), for x ∈ (xn−1, xn] and

∞ >

∫ ∞
0

f(x) >

∞∑
n=1

(xn − xn−1)f(xn) ≥

≥ c

2

∞∑
n=1

xn − xn−1
xn

=
c

2

∞∑
n=D1

(
1− xn−1

xn

)
.

So we have a sequence {xn}∞n=1 such that xn →∞ and
∞∑

n=1

(
1− xn−1

xn

)
<∞.

To make a proof clearer, we will do a substitution bn = 1− xn−1

xn
. Sequence {bn}∞n=1 satisfies:

∞∑
n=1

bn <∞ and
∞∏

n=1

(1− bn) = lim
n→∞

x0
xn

= 0 .

Second condition for a sequence {bn}∞n=1 is the same as
∞∑

n=1
− ln(1− bn) =∞.

From the ratio criterion for convergence of the infinity sums, if

∞∑
n=1

bn <∞ and
∞∑

n=1

− ln(1− bn) =∞,

lim
n→∞

− ln(1− bn)
bn

=∞

should hold. But above limit is equal to 1, as can be easy checked by many ways. (From
∞∑

n=1
bn < ∞, we get

bn → 0, and

lim
n→∞

− ln(1− bn)
bn

= lim
bn→0

− ln(1− bn)
bn

L’H
= lim

bn→0

1
1−bn
1

= 1 .)

This yields to contradiction.
As a conclusion we have lim inf

x→∞
xf(x) = 0 and lim sup

x→∞
xf(x) = 0. �

Solution For contradiction assume that lim
x→∞

xf(x) = 0 is not true. Then it must exist increasing sequence

{xi}∞i=1, xi → ∞, such that exists ε > 0 that xif(xi) > ε for all xi. Moreover, we can choose subsequence



{yi} ⊂ {xi}, such that yi+1 ≥ 2yi. Then following inequalities hold (inequality (∗) holds, because f is decreasing
function): ∫ ∞

0

f(x)
(∗)
≥
∞∑

n=2

(yn − yn−1)f(yn) ≥
1

2

∞∑
n=2

ynf(yn) ≥
1

2

∞∑
n=2

ε =∞ .

This contradicts the assumption that
∞∫
0

f(x) <∞. �
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Problem 4 Let R be an associative non commutative ring and let n > 2 be a fixed natural number. Assume
that xn = x, ∀x ∈ R. Prove that xyn−1 = yn−1x holds ∀x, y ∈ R.

Solution Let a = xn−1, then

a2 = (xn−1)2 = x2n−2 = xnxn−2 = xxn−2 = xn−1 = a.

We show that if r2 = 0 then r = 0. Indeed r = rn = rn−2r2 = 0. If e2 = e then for every x ∈ R:

(ex− exe)2 = (ex− exe)(ex− exe) =
= exex− exexe− exe2x+ exe2xe = exex− exexe− exex+ exexe = 0

and similarly
(ex− exe)2 = 0

so ex− exe = 0 and xe− exe = 0, so for every x ∈ R and every e ∈ R, such that e2 = e we have:

ex = xe

and since for every y ∈ R, (yn−1) = yn−1, we get:

xyn−1 = yn−1x

for every x, y ∈ R. �

Solution Since R is an integral domain and

y(xyn−1 − yn−1x)y = yxyn − ynxy = yxy − yxy = 0 ,

it is either xyn−1 − yn−1x = 0 or y = 0, but that also implies xyn−1 = yn−1x. The end. �


