Problem 1 Prove that for an arbitrary prime $p \geq 5$ the number

$$
\sum_{0<k<\frac{2 y}{3}}\binom{p}{k}
$$

is divisible by p^{2}.
Solution The number $\frac{1}{p}\binom{p}{k}$ for $0<k<\frac{2 p}{3}$ is congruent to $(-1)^{k-1} \frac{1}{k}$ modulo p. Hence it is sufficient to show that the element

$$
\sum(1)=\sum_{0<k<2 p / 3}(-1)^{k-1} \frac{1}{k}
$$

is 0 in a finite field F_{p}. The sum

$$
\sum(2)=\sum_{k<\frac{p}{6}}\left(\frac{1}{k}-\frac{1}{2 k}-\frac{1}{2 k}\right)+\sum_{\frac{p}{6}<k<\frac{p}{3}}\left(\frac{1}{k}-\frac{1}{2 k}+\frac{1}{p-2 k}\right)
$$

is 0 in F_{p}. But $\sum(1)=\sum(2)$. In fact the terms of the shape $\frac{1}{2 k+1}$ are evidently the same. As to a term $\frac{1}{2 k}$ in the $\sum(2)$ for $2 k<\frac{p}{3}$ it appears with the coefficient -1 , what is O.K. The term $\frac{1}{2 k}$ (for $2 k<\frac{p}{3}$) appears in $\sum(2)$ twice with the sign "-" and once with the sign "+". So $\sum(1)=\sum(2)$.

Problem 2 Let $n \geq 2$ be a natural number. Prove that

$$
\prod_{k=2}^{n} \ln k<\frac{\sqrt{n!}}{n}
$$

Solution Consider $f:[1, \infty) \rightarrow \mathbb{R}$ defined by

$$
f(t)=2 \ln t-t+\frac{1}{t}
$$

We have

$$
f^{\prime}(t)=-\frac{(t-1)^{2}}{t^{2}}
$$

hence f^{\prime} is negative on $(1, \infty)$. Therefore f is strictly decreasing. Since $f(1)=0$, the function f has negative values on $(1, \infty)$. So

$$
(\forall t \in(1, \infty)) \quad\left(2 \ln t-t+\frac{1}{t}\right) \frac{1}{t^{2}-1}<0
$$

Putting $x=t^{2}$ in the above inequality we obtain that

$$
(\forall t \in(1, \infty)) \quad \frac{\ln x}{x-1}<\frac{1}{\sqrt{x}}
$$

Hence

$$
\prod_{k=2}^{n} \frac{\ln k}{k-1}<\prod_{k=2}^{n} \frac{1}{\sqrt{k}}=\frac{1}{\sqrt{n!}}
$$

and

$$
\prod_{k=2}^{n} \ln k<\frac{(n-1)!}{\sqrt{n!}}=\frac{\sqrt{n!}}{n}
$$

Solution We prove that $\ln k<\sqrt{k} \cdot \frac{k-1}{k}$ for $k \in \mathbb{N}$ and ≥ 2. Let us consider the functions $f(x)=\ln x$ and $g(x)=\sqrt{x} \cdot \frac{x-1}{x}$. It is

$$
\begin{aligned}
f(1) & =g(1)=0 \quad \text { and } \quad f^{\prime}(x)=\frac{1}{x} \\
g^{\prime}(x) & =\frac{1}{2 \sqrt{x}} \frac{x-1}{x}+\sqrt{x} \frac{1}{x^{2}} \\
g^{\prime}(x)-f^{\prime}(x) & =\frac{1}{2 \sqrt{x^{3}}}(x-1+2-2 \sqrt{x})=\frac{1}{2 \sqrt{x^{3}}}(\sqrt{x}-1)^{2}
\end{aligned}
$$

which is $=0$ for $x=1$ and >0 for $x>1$. It proves that $g(x)>f(x)$ for $x>1$, as we needed. Now by multiplying $\ln k<\sqrt{k} \cdot \frac{k-1}{k}$ over $k=2,3, \ldots, n$ we get

$$
\prod_{k=2}^{n} \ln k<\left(\prod_{k=2}^{n} \sqrt{k}\right) \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \ldots \cdot \frac{n-1}{n}=\sqrt{n!} \cdot \frac{1}{n}
$$

the problem solved.

The $11^{\text {th }}$ Annual Vojtěch Jarník International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2001
Category I

Problem 3 Let A, B, C be sets in \mathbb{R}^{n}. Suppose that A is nonempty and bounded, that C is closed and convex, and that $A+B \subseteq A+C$. Show the inclusion $B \subseteq C$.

We remind you that

$$
E+F=\{e+f: e \in E, f \in F\}
$$

and $D \subseteq \mathbb{R}^{n}$ is convex when

$$
\forall x, y \in D \forall t \in[0,1]: t x+(1-t) y \in D
$$

Solution We will use the following lemma.
Lemma Let a_{1}, \ldots, a_{m} be points of a convex set $D \subseteq \mathbb{R}^{n}$. Let $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ with $\lambda_{1}+\cdots+\lambda_{m}=1$. Then $\lambda_{1} a_{1}+\cdots+\lambda_{m} a_{m} \in D$.
Proof We argue by induction on m. When $m=1$ the assertion is trivial. Suppose that the assertion holds when m is some positive integer k. Let

$$
x=\lambda_{1} a_{1}+\cdots+\lambda_{k+1} a_{k+1},
$$

where $a_{1}, \ldots, a_{k+1} \in D$ and $\lambda_{1}, \ldots, \lambda_{k+1} \geq 0$ with $\lambda_{1}+\cdots+\lambda_{k+1}=1$. At least one λ_{i} must be less than 1 , say $\lambda_{k+1}<1$. Write

$$
y=\frac{\lambda_{1}}{\lambda} a_{1}+\cdots+\frac{\lambda_{k}}{\lambda} a_{k}
$$

where

$$
\lambda=\lambda_{1}+\cdots+\lambda_{k}=1-\lambda_{k+1}>0
$$

By the induction hypothesis, $y \in D$. Since D is convex and contains both y and a_{k+1} the equation $x=$ $\lambda y+\lambda_{k+1} a_{k+1}$ shows that $x \in D$. This completes the proof by induction.

Let $a_{0} \in A$. If $b \in B$, then $a_{0}+b \in A+B \subseteq A+C$, and so there exists $a_{1} \in A, c_{1} \in C$ such that $a_{0}+b=a_{1}+c_{1}$. Similarly, there exist $a_{2}, \ldots, a_{i} \in A$ and $c_{2}, \ldots, c_{i} \in C$ with

$$
a_{1}+b=a_{2}+c_{2}, \ldots, a_{i-1}+b=a_{i}+c_{i} .
$$

We add the i equations above together to deduce that

$$
a_{0}+i b=a_{1}+c_{1}+\cdots+c_{i} .
$$

Since C is convex, the point x_{i} defined by the equation

$$
x_{i}=\frac{1}{i}\left(c_{1}+\cdots+c_{i}\right)
$$

lies in C (Lemma). Now

$$
\left\|b-x_{i}\right\|=\frac{1}{i}\left\|a_{i}-a_{0}\right\| \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty
$$

since A is bounded. Thus $x_{i} \rightarrow b$ as $i \rightarrow \infty$. But C is closed, whence $b \in C$ and $B \subseteq C$.
Solution For contradiction suppose there is $b \in B$ which $\notin C$. Since C is convex and closed, there existS ($n-1$)-dimensional hyperplane H such that it separates b and C. Denote \vec{n} the normal vector of H orientated in direction of point b. Now every point x of space \mathbb{R}^{n} can be expressed as $x=h_{x}+a \vec{n}$, where $h_{x} \in H$ and $a \in \mathbb{R}$. From this define linear function $f(x)=a$. It is clear that $f(b)>0$ and $f(C)<0$. Take now $\sup _{a \in A} f(a)$ (it is finite since A is bounded) and point a_{0} such that $f\left(a_{0}\right)>\sup _{a \in A} f(a)-f(b)$. Then clearly, since function f is linear, it holds

$$
f\left(a_{0}+b\right)=f\left(a_{0}\right)+f(b)>(f(a)-f(b))+f(b)>f(a)+f(c)=f(a+c)
$$

for all $a \in A$ and $c \in C$. But it is contradiction with $f(A+B) \subseteq f(A+C)$ (which follows from $A+B \subseteq A+C$).

The $11^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2001
Category I

Problem 4 Let A be a set of positive integers greater than 0 such that for any $x, y \in A, x>y$,

$$
x-y \geq \frac{x y}{25}
$$

Find the maximal possible number of elements of the set A.
Solution For $x>y \geq 25$ we have

$$
x-y<x \leq \frac{x y}{25}
$$

Hence A contains at most one element greater than 24. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ where $x_{1}<x_{2}<\cdots<x_{n}$, $x_{n-1}<25$. For the differences $d_{j}=x_{j+1}-x_{j}, 1 \leq j \leq n-1$, we get

$$
d_{j} \geq \frac{x_{j+1} x_{j}}{25}=\frac{\left(x_{j}+d_{j}\right) x_{j}}{25}
$$

which yields

$$
d_{j} \geq \frac{x_{j}^{2}}{25-x_{j}}
$$

Since the function $g(x)=\frac{x^{2}}{25-x}$ is increasing in the interval [0,25), we obtain succesively

$$
\begin{array}{ll}
x_{5} \geq 5, & d_{5} \geq g(5)>1, \\
x_{6} \geq 7, & d_{6} \geq g(7)>2, \\
x_{7} \geq 10, & d_{7} \geq g(10)>6, \\
x_{8} \geq 17, & d_{8} \geq g(17)>36, \\
x_{9} \geq 54 . &
\end{array}
$$

So, we get $n \leq 9$. Simultaneously, we can see that the set with 9 elements

$$
A=\{1,2,3,4,5,7,10,17,54\}
$$

satisfies all the conditions.

The $11^{\text {th }}$ Annual Vojtěch Jarník International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2001
Category II

Problem 1 Let $n \geq 2$ be an integer and let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers. Consider $N=\binom{n}{2}$ sums $x_{i}+x_{j}$, $1 \leq i<j \leq n$ and denote them by $y_{1}, y_{2}, \ldots, y_{N}$ (in arbitrary order). For which n are the numbers $x_{1}, x_{2}, \ldots, x_{n}$ uniquely determined by the numbers $y_{1}, y_{2}, \ldots, y_{N}$?
Solution The answer is $n \neq 2^{p}$.
Denote the k th symmetric polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ by σ_{k}. Further denote

$$
s_{k}=\sum_{i=1}^{n} x_{i}^{k}, \quad t_{k}=\sum_{i=1}^{N} y_{i}^{k} .
$$

The numbers $x_{1}, x_{2}, \ldots, x_{n}$ are uniquely determined by the numbers $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ and these are uniquely determined by the numbers $s_{1}, s_{2}, \ldots, s_{n}$ since we have the following identity:

$$
s_{k}-s_{k-1} \sigma_{1}+s_{k-2} \sigma_{2}-\cdots+(-1)^{k-1} s_{1} \sigma_{k-1}=(-1)^{k-1} k \sigma_{k}
$$

So we will try to show that $s_{1}, s_{2}, \ldots, s_{n}$ are determined by the numbers $t_{1}, t_{2}, \ldots, t_{n}$. We have

$$
\begin{aligned}
2 t_{k}+2^{k} s_{k}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}+x_{j}\right)^{k} & =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{r=0}^{k}\binom{k}{r} x_{i}^{r} x_{j}^{k-r}= \\
& =2 n s_{k}+\sum_{r=1}^{k-1}\binom{k}{r} s_{r} s_{k-r} .
\end{aligned}
$$

For $n \neq 2^{k-1}$, we get

$$
s_{k}=\frac{1}{2 n-2^{k}}\left(2 t_{k}-\sum_{r=1}^{k-1}\binom{k}{r} s_{r} s_{k-r}\right) .
$$

Using induction with respect to k, we can conclude that for $n \neq 2^{p}$, the numbers $t_{1}, t_{2}, \ldots, t_{n}$ determine uniquely the numbers $s_{1}, s_{2}, \ldots, s_{n}$.

For $n=2$ the numbers from the sets $A_{2}=\{0,3\}$ and $B_{2}=\{1,2\}$ have the same sums. Suppose that we have two disjoint sets A_{n}, B_{n}, every with n elements, which have the same sums of all possible couples. Then the sets $A_{2 n}=A_{n} \cup\left(c+B_{n}\right)$ and $B_{2 n}=B_{n} \cup\left(c+A_{n}\right)$ for c large enought are disjoint with $2 n$ elements and have the same sums of all possible couples.

The $11^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2001
Category II

Problem 2 Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function of function $\left\{f_{n}\right\}, f_{n}:[0,1] \rightarrow \mathbb{R}$. Define the sequence in the following way:

$$
f_{n+1}(x)=\int_{0}^{x} f_{t}, n=0,1,2, \ldots
$$

Prove that if $f_{n}(1)=0$ for all n, then $f(x) \equiv 0$.
Solution Using induction on k, we prove that for any $n, k \geq 0$ integers

$$
\begin{equation*}
\int_{0}^{1}(1-t)^{k} f_{n}(t)=k!\cdot f_{n+k}(1) . \tag{1}
\end{equation*}
$$

This is trivial for $k=0$. For greater k,

$$
\begin{aligned}
\int_{0}^{1}(1-t)^{k} f_{n}(t) & =\left[(1-t)^{k} f_{n+1}(t)\right]_{t=0}^{1}+k \int_{0}^{1}(1-t)^{k-1} f_{n+1}(t)= \\
& =0+k \cdot(k-1)!\cdot f_{(n+1)+(k-1)}(1)=k!\cdot f_{n+k}(1)
\end{aligned}
$$

From (1) it follows for an arbitrary polynomial p, that $\int_{0}^{1} p \cdot f=0$.
By Weierstrass' theorem, for an arbitrary $\varepsilon>0$ there exists a polynomial p_{ε} such that $\left|p_{\varepsilon}(t)-f(t)\right|<\varepsilon$ for all $t \in[0,1]$. This implies

$$
\int_{0}^{1} f^{2}=\int_{0}^{1} f^{2}-\int_{0}^{1} p_{\varepsilon} \cdot f=\int_{0}^{1}\left(f-p_{\varepsilon}\right) f \leq \varepsilon \int_{0}^{1}|f| .
$$

This holds for any ε, thus $\int_{0}^{1} f^{2}=0$. This implies $f \equiv 0$.

The $11^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2001
Category II

Problem 3 Let $f:(0,+\infty) \rightarrow(0,+\infty)$ be a decreasing function, satisfying

$$
\int_{0}^{\infty} f(x)<\infty
$$

Prove that $\lim _{x \rightarrow \infty} x f(x)=0$.
Solution As first we prove that $\liminf _{x \rightarrow \infty} x f(x)=0$. Let $\liminf _{x \rightarrow \infty} x f(x)=c>0$, that implies $\exists x_{0} \forall x>x_{0}$: $x f(x)>c^{\prime}>0$, or $f(x)>\frac{c^{\prime}}{x}$, and we get:

$$
\int_{0}^{\infty} f(x)>\int_{x_{0}}^{\infty} f(x)>\int_{x_{0}}^{\infty} \frac{c^{\prime}}{x}=\infty
$$

a contradiction.
Now, let us suppose $\limsup _{x \rightarrow \infty} x f(x)=c>0$. It implies $\forall y \exists x>y: x f(x) \geq \frac{c}{2}$. We have also constructed a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$, satisfying:

$$
x_{n} \rightarrow \infty, \text { and } x_{n} f\left(x_{n}\right) \geq \frac{c}{2}>0, \text { which is the same as } f\left(x_{n}\right) \geq \frac{c}{2 x_{n}}
$$

Since f is decreasing: $f(x)>f\left(x_{n}\right)$, for $x \in\left(x_{n-1}, x_{n}\right]$ and

$$
\begin{aligned}
\infty>\int_{0}^{\infty} f(x) & >\sum_{n=1}^{\infty}\left(x_{n}-x_{n-1}\right) f\left(x_{n}\right) \geq \\
& \geq \frac{c}{2} \sum_{n=1}^{\infty} \frac{x_{n}-x_{n-1}}{x_{n}}=\frac{c}{2} \sum_{n=D 1}^{\infty}\left(1-\frac{x_{n-1}}{x_{n}}\right) .
\end{aligned}
$$

So we have a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $x_{n} \rightarrow \infty$ and $\sum_{n=1}^{\infty}\left(1-\frac{x_{n-1}}{x_{n}}\right)<\infty$.
To make a proof clearer, we will do a substitution $b_{n}=1-\frac{x_{n-1}}{x_{n}}$. Sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ satisfies:

$$
\sum_{n=1}^{\infty} b_{n}<\infty \quad \text { and } \quad \prod_{n=1}^{\infty}\left(1-b_{n}\right)=\lim _{n \rightarrow \infty} \frac{x_{0}}{x_{n}}=0
$$

Second condition for a sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ is the same as $\sum_{n=1}^{\infty}-\ln \left(1-b_{n}\right)=\infty$.
From the ratio criterion for convergence of the infinity sums, if

$$
\begin{aligned}
\sum_{n=1}^{\infty} b_{n}<\infty \quad \text { and } & \sum_{n=1}^{\infty}-\ln \left(1-b_{n}\right)=\infty \\
& \lim _{n \rightarrow \infty} \frac{-\ln \left(1-b_{n}\right)}{b_{n}}=\infty
\end{aligned}
$$

should hold. But above limit is equal to 1 , as can be easy checked by many ways. (From $\sum_{n=1}^{\infty} b_{n}<\infty$, we get $b_{n} \rightarrow 0$, and

$$
\left.\lim _{n \rightarrow \infty} \frac{-\ln \left(1-b_{n}\right)}{b_{n}}=\lim _{b_{n} \rightarrow 0} \frac{-\ln \left(1-b_{n}\right)}{b_{n}} \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{b_{n} \rightarrow 0} \frac{\frac{1}{1-b_{n}}}{1}=1 .\right)
$$

This yields to contradiction.
As a conclusion we have $\liminf _{x \rightarrow \infty} x f(x)=0$ and $\limsup _{x \rightarrow \infty} x f(x)=0$.
Solution For contradiction assume that $\lim _{x \rightarrow \infty} x f(x)=0$ is not true. Then it must exist increasing sequence $\left\{x_{i}\right\}_{i=1}^{\infty}, x_{i} \rightarrow \infty$, such that exists $\varepsilon>0$ that $x_{i} f\left(x_{i}\right)>\varepsilon$ for all x_{i}. Moreover, we can choose subsequence
$\left\{y_{i}\right\} \subset\left\{x_{i}\right\}$, such that $y_{i+1} \geq 2 y_{i}$. Then following inequalities hold (inequality $(*)$ holds, because f is decreasing function):

$$
\int_{0}^{\infty} f(x) \stackrel{(*)}{\geq} \sum_{n=2}^{\infty}\left(y_{n}-y_{n-1}\right) f\left(y_{n}\right) \geq \frac{1}{2} \sum_{n=2}^{\infty} y_{n} f\left(y_{n}\right) \geq \frac{1}{2} \sum_{n=2}^{\infty} \varepsilon=\infty
$$

This contradicts the assumption that $\int_{0}^{\infty} f(x)<\infty$.

The $11^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2001
Category II

Problem 4 Let R be an associative non commutative ring and let $n>2$ be a fixed natural number. Assume that $x^{n}=x, \forall x \in R$. Prove that $x y^{n-1}=y^{n-1} x$ holds $\forall x, y \in R$.
Solution Let $a=x^{n-1}$, then

$$
a^{2}=\left(x^{n-1}\right)^{2}=x^{2 n-2}=x^{n} x^{n-2}=x x^{n-2}=x^{n-1}=a .
$$

We show that if $r^{2}=0$ then $r=0$. Indeed $r=r^{n}=r^{n-2} r^{2}=0$. If $e^{2}=e$ then for every $x \in R$:

$$
\begin{aligned}
(e x-e x e)^{2} & =(e x-e x e)(e x-e x e)= \\
& =\text { exex }- \text { exexe }-e x e^{2} x+e x e^{2} x e=\text { exex }- \text { exexe }- \text { exex }+ \text { exexe }=0
\end{aligned}
$$

and similarly

$$
(e x-e x e)^{2}=0
$$

so $e x-e x e=0$ and $x e-e x e=0$, so for every $x \in R$ and every $e \in R$, such that $e^{2}=e$ we have:

$$
e x=x e
$$

and since for every $y \in R,\left(y^{n-1}\right)=y^{n-1}$, we get:

$$
x y^{n-1}=y^{n-1} x
$$

for every $x, y \in R$.
Solution Since R is an integral domain and

$$
y\left(x y^{n-1}-y^{n-1} x\right) y=y x y^{n}-y^{n} x y=y x y-y x y=0,
$$

it is either $x y^{n-1}-y^{n-1} x=0$ or $y=0$, but that also implies $x y^{n-1}=y^{n-1} x$. The end.

