Problem 1 Prove that for an arbitrary prime $p \geq 5$ the number

$$\sum_{0 < k < \frac{2p}{3}} \binom{p}{k}$$

is divisible by p^2 .

Solution The number $\frac{1}{p}\binom{p}{k}$ for $0 < k < \frac{2p}{3}$ is congruent to $(-1)^{k-1}\frac{1}{k}$ modulo p. Hence it is sufficient to show that the element

$$\sum(1) = \sum_{0 < k < 2p/3} (-1)^{k-1} \frac{1}{k}$$

is 0 in a finite field F_p . The sum

$$\sum(2) = \sum_{k < \frac{p}{k}} \left(\frac{1}{k} - \frac{1}{2k} - \frac{1}{2k} \right) + \sum_{\frac{p}{k} < k < \frac{p}{2}} \left(\frac{1}{k} - \frac{1}{2k} + \frac{1}{p - 2k} \right)$$

is 0 in F_p . But $\sum(1) = \sum(2)$. In fact the terms of the shape $\frac{1}{2k+1}$ are evidently the same. As to a term $\frac{1}{2k}$ in the $\sum(2)$ for $2k < \frac{p}{3}$ it appears with the coefficient -1, what is O.K. The term $\frac{1}{2k}$ (for $2k < \frac{p}{3}$) appears in $\sum(2)$ twice with the sign "-" and once with the sign "+". So $\sum(1) = \sum(2)$.

Problem 2 Let $n \geq 2$ be a natural number. Prove that

$$\prod_{k=2}^{n} \ln k < \frac{\sqrt{n!}}{n} \, .$$

Solution Consider $f: [1, \infty) \to \mathbb{R}$ defined by

$$f(t) = 2 \ln t - t + \frac{1}{t}$$
.

We have

$$f'(t) = -\frac{(t-1)^2}{t^2} \,,$$

hence f' is negative on $(1, \infty)$. Therefore f is strictly decreasing. Since f(1) = 0, the function f has negative values on $(1, \infty)$. So

$$(\forall t \in (1, \infty)) \quad \left(2 \ln t - t + \frac{1}{t}\right) \frac{1}{t^2 - 1} < 0.$$

Putting $x = t^2$ in the above inequality we obtain that

$$(\forall t \in (1, \infty))$$
 $\frac{\ln x}{x-1} < \frac{1}{\sqrt{x}}$.

Hence

$$\prod_{k=2}^{n} \frac{\ln k}{k-1} < \prod_{k=2}^{n} \frac{1}{\sqrt{k}} = \frac{1}{\sqrt{n!}}$$

and

$$\prod_{k=2}^{n} \ln k < \frac{(n-1)!}{\sqrt{n!}} = \frac{\sqrt{n!}}{n}.$$

Solution We prove that $\ln k < \sqrt{k} \cdot \frac{k-1}{k}$ for $k \in \mathbb{N}$ and ≥ 2 . Let us consider the functions $f(x) = \ln x$ and $g(x) = \sqrt{x} \cdot \frac{x-1}{x}$. It is

$$f(1) = g(1) = 0 \quad \text{and} \quad f'(x) = \frac{1}{x},$$

$$g'(x) = \frac{1}{2\sqrt{x}} \frac{x-1}{x} + \sqrt{x} \frac{1}{x^2},$$

$$g'(x) - f'(x) = \frac{1}{2\sqrt{x^3}} (x - 1 + 2 - 2\sqrt{x}) = \frac{1}{2\sqrt{x^3}} (\sqrt{x} - 1)^2,$$

which is =0 for x=1 and >0 for x>1. It proves that g(x)>f(x) for x>1, as we needed. Now by multiplying $\ln k < \sqrt{k} \cdot \frac{k-1}{k}$ over $k=2,3,\ldots,n$ we get

$$\prod_{k=2}^{n} \ln k < \left(\prod_{k=2}^{n} \sqrt{k}\right) \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \ldots \cdot \frac{n-1}{n} = \sqrt{n!} \cdot \frac{1}{n},$$

the problem solved.

Problem 3 Let A, B, C be sets in \mathbb{R}^n . Suppose that A is nonempty and bounded, that C is closed and convex, and that $A + B \subseteq A + C$. Show the inclusion $B \subseteq C$.

We remind you that

$$E + F = \{e + f : e \in E, f \in F\}$$

and $D \subseteq \mathbb{R}^n$ is convex when

$$\forall x, y \in D \,\forall t \in [0, 1] : tx + (1 - t)y \in D.$$

Solution We will use the following lemma.

Lemma Let a_1, \ldots, a_m be points of a convex set $D \subseteq \mathbb{R}^n$. Let $\lambda_1, \ldots, \lambda_m \geq 0$ with $\lambda_1 + \cdots + \lambda_m = 1$. Then $\lambda_1 a_1 + \cdots + \lambda_m a_m \in D$.

Proof We argue by induction on m. When m = 1 the assertion is trivial. Suppose that the assertion holds when m is some positive integer k. Let

$$x = \lambda_1 a_1 + \dots + \lambda_{k+1} a_{k+1} ,$$

where $a_1, \ldots, a_{k+1} \in D$ and $\lambda_1, \ldots, \lambda_{k+1} \geq 0$ with $\lambda_1 + \cdots + \lambda_{k+1} = 1$. At least one λ_i must be less than 1, say $\lambda_{k+1} < 1$. Write

$$y = \frac{\lambda_1}{\lambda} a_1 + \dots + \frac{\lambda_k}{\lambda} a_k \,,$$

where

$$\lambda = \lambda_1 + \dots + \lambda_k = 1 - \lambda_{k+1} > 0.$$

By the induction hypothesis, $y \in D$. Since D is convex and contains both y and a_{k+1} the equation $x = \lambda y + \lambda_{k+1} a_{k+1}$ shows that $x \in D$. This completes the proof by induction.

Let $a_0 \in A$. If $b \in B$, then $a_0 + b \in A + B \subseteq A + C$, and so there exists $a_1 \in A$, $c_1 \in C$ such that $a_0 + b = a_1 + c_1$. Similarly, there exist $a_2, \ldots, a_i \in A$ and $c_2, \ldots, c_i \in C$ with

$$a_1 + b = a_2 + c_2, \dots, a_{i-1} + b = a_i + c_i$$
.

We add the i equations above together to deduce that

$$a_0 + ib = a_1 + c_1 + \dots + c_i$$
.

Since C is convex, the point x_i defined by the equation

$$x_i = \frac{1}{i}(c_1 + \dots + c_i)$$

lies in C (Lemma). Now

$$||b - x_i|| = \frac{1}{i} ||a_i - a_0|| \to 0 \text{ as } i \to \infty,$$

since A is bounded. Thus $x_i \to b$ as $i \to \infty$. But C is closed, whence $b \in C$ and $B \subseteq C$.

Solution For contradiction suppose there is $b \in B$ which $\notin C$. Since C is convex and closed, there existS (n-1)-dimensional hyperplane H such that it separates b and C. Denote \vec{n} the normal vector of H orientated in direction of point b. Now every point x of space \mathbb{R}^n can be expressed as $x = h_x + a\vec{n}$, where $h_x \in H$ and $a \in \mathbb{R}$. From this define linear function f(x) = a. It is clear that f(b) > 0 and f(C) < 0. Take now $\sup_{a \in A} f(a)$ (it

is finite since A is bounded) and point a_0 such that $f(a_0) > \sup_{a \in A} f(a) - f(b)$. Then clearly, since function f is linear, it holds

$$f(a_0 + b) = f(a_0) + f(b) > (f(a) - f(b)) + f(b) > f(a) + f(c) = f(a + c),$$

for all $a \in A$ and $c \in C$. But it is contradiction with $f(A+B) \subseteq f(A+C)$ (which follows from $A+B \subseteq A+C$).

Problem 4 Let A be a set of positive integers greater than 0 such that for any $x, y \in A$, x > y,

$$x - y \ge \frac{xy}{25} \,.$$

Find the maximal possible number of elements of the set A.

Solution For $x > y \ge 25$ we have

$$x - y < x \le \frac{xy}{25}.$$

Hence A contains at most one element greater than 24. Let $A = \{x_1, x_2, \dots, x_n\}$ where $x_1 < x_2 < \dots < x_n$, $x_{n-1} < 25$. For the differences $d_j = x_{j+1} - x_j$, $1 \le j \le n-1$, we get

$$d_j \ge \frac{x_{j+1}x_j}{25} = \frac{(x_j + d_j)x_j}{25},$$

which yields

$$d_j \ge \frac{x_j^2}{25 - x_j}.$$

Since the function $g(x) = \frac{x^2}{25-x}$ is increasing in the interval [0, 25), we obtain successively

$$\begin{array}{ll} x_5 \geq 5, & d_5 \geq g(5) > 1, \\ x_6 \geq 7, & d_6 \geq g(7) > 2, \\ x_7 \geq 10, & d_7 \geq g(10) > 6, \\ x_8 \geq 17, & d_8 \geq g(17) > 36, \\ x_9 \geq 54. \end{array}$$

So, we get $n \leq 9$. Simultaneously, we can see that the set with 9 elements

$$A = \{1, 2, 3, 4, 5, 7, 10, 17, 54\}$$

satisfies all the conditions.

The 11th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 4th April 2001 Category II

Problem 1 Let $n \ge 2$ be an integer and let x_1, x_2, \ldots, x_n be real numbers. Consider $N = \binom{n}{2}$ sums $x_i + x_j$, $1 \le i < j \le n$ and denote them by y_1, y_2, \ldots, y_N (in arbitrary order). For which n are the numbers x_1, x_2, \ldots, x_n uniquely determined by the numbers y_1, y_2, \ldots, y_N ?

Solution The answer is $n \neq 2^p$.

Denote the kth symmetric polynomial in x_1, x_2, \ldots, x_n by σ_k . Further denote

$$s_k = \sum_{i=1}^n x_i^k, \quad t_k = \sum_{i=1}^N y_i^k.$$

The numbers x_1, x_2, \ldots, x_n are uniquely determined by the numbers $\sigma_1, \sigma_2, \ldots, \sigma_n$ and these are uniquely determined by the numbers s_1, s_2, \ldots, s_n since we have the following identity:

$$s_k - s_{k-1}\sigma_1 + s_{k-2}\sigma_2 - \dots + (-1)^{k-1}s_1\sigma_{k-1} = (-1)^{k-1}k\sigma_k$$
.

So we will try to show that s_1, s_2, \ldots, s_n are determined by the numbers t_1, t_2, \ldots, t_n . We have

$$2t_k + 2^k s_k = \sum_{i=1}^n \sum_{j=1}^n (x_i + x_j)^k = \sum_{i=1}^n \sum_{j=1}^n \sum_{r=0}^k \binom{k}{r} x_i^r x_j^{k-r} =$$

$$= 2ns_k + \sum_{r=1}^{k-1} \binom{k}{r} s_r s_{k-r}.$$

For $n \neq 2^{k-1}$, we get

$$s_k = \frac{1}{2n - 2^k} \left(2t_k - \sum_{r=1}^{k-1} {k \choose r} s_r s_{k-r} \right).$$

Using induction with respect to k, we can conclude that for $n \neq 2^p$, the numbers t_1, t_2, \ldots, t_n determine uniquely the numbers s_1, s_2, \ldots, s_n .

For n=2 the numbers from the sets $A_2=\{0,3\}$ and $B_2=\{1,2\}$ have the same sums. Suppose that we have two disjoint sets A_n , B_n , every with n elements, which have the same sums of all possible couples. Then the sets $A_{2n}=A_n\cup(c+B_n)$ and $B_{2n}=B_n\cup(c+A_n)$ for c large enought are disjoint with 2n elements and have the same sums of all possible couples.

The 11th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 4th April 2001 Category II

Problem 2 Let $f:[0,1] \to \mathbb{R}$ be a continuous function of function $\{f_n\}$, $f_n:[0,1] \to \mathbb{R}$. Define the sequence in the following way:

$$f_{n+1}(x) = \int_0^x f_t, n = 0, 1, 2, \dots$$

Prove that if $f_n(1) = 0$ for all n, then $f(x) \equiv 0$.

Solution Using induction on k, we prove that for any $n, k \geq 0$ integers

$$\int_{0}^{1} (1-t)^{k} f_{n}(t) = k! \cdot f_{n+k}(1). \tag{1}$$

This is trivial for k = 0. For greater k,

$$\int_0^1 (1-t)^k f_n(t) = [(1-t)^k f_{n+1}(t)]_{t=0}^1 + k \int_0^1 (1-t)^{k-1} f_{n+1}(t) =$$

$$= 0 + k \cdot (k-1)! \cdot f_{(n+1)+(k-1)}(1) = k! \cdot f_{n+k}(1).$$

From (1) it follows for an arbitrary polynomial p, that $\int_0^1 p \cdot f = 0$. By Weierstrass' theorem, for an arbitrary $\varepsilon > 0$ there exists a polynomial p_{ε} such that $|p_{\varepsilon}(t) - f(t)| < \varepsilon$ for all $t \in [0,1]$. This implies

$$\int_{0}^{1} f^{2} = \int_{0}^{1} f^{2} - \int_{0}^{1} p_{\varepsilon} \cdot f = \int_{0}^{1} (f - p_{\varepsilon}) f \leq \varepsilon \int_{0}^{1} |f|.$$

This holds for any ε , thus $\int_0^1 f^2 = 0$. This implies $f \equiv 0$.

The 11th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 4th April 2001 Category II

Problem 3 Let $f:(0,+\infty)\to(0,+\infty)$ be a decreasing function, satisfying

$$\int_0^\infty f(x) < \infty.$$

Prove that $\lim_{x \to \infty} x f(x) = 0$.

Solution As first we prove that $\liminf_{x\to\infty} xf(x)=0$. Let $\liminf_{x\to\infty} xf(x)=c>0$, that implies $\exists x_0 \forall x>x_0:$ xf(x) > c' > 0, or $f(x) > \frac{c'}{x}$, and we get:

$$\int_{0}^{\infty} f(x) > \int_{x_0}^{\infty} f(x) > \int_{x_0}^{\infty} \frac{c'}{x} = \infty,$$

a contradiction.

Now, let us suppose $\limsup x f(x) = c > 0$. It implies $\forall y \exists x > y : x f(x) \ge \frac{c}{2}$. We have also constructed a sequence $\{x_n\}_{n=1}^{\infty}$, satisfying:

$$x_n \to \infty$$
, and $x_n f(x_n) \ge \frac{c}{2} > 0$, which is the same as $f(x_n) \ge \frac{c}{2x_n}$.

Since f is decreasing: $f(x) > f(x_n)$, for $x \in (x_{n-1}, x_n]$ and

$$\infty > \int_0^\infty f(x) > \sum_{n=1}^\infty (x_n - x_{n-1}) f(x_n) \ge$$

$$\ge \frac{c}{2} \sum_{n=1}^\infty \frac{x_n - x_{n-1}}{x_n} = \frac{c}{2} \sum_{n=D1}^\infty \left(1 - \frac{x_{n-1}}{x_n} \right).$$

So we have a sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n \to \infty$ and $\sum_{n=1}^{\infty} \left(1 - \frac{x_{n-1}}{x_n}\right) < \infty$. To make a proof clearer, we will do a substitution $b_n = 1 - \frac{x_{n-1}}{x_n}$. Sequence $\{b_n\}_{n=1}^{\infty}$ satisfies:

$$\sum_{n=1}^{\infty} b_n < \infty \quad \text{and} \quad \prod_{n=1}^{\infty} (1 - b_n) = \lim_{n \to \infty} \frac{x_0}{x_n} = 0.$$

Second condition for a sequence $\{b_n\}_{n=1}^{\infty}$ is the same as $\sum_{n=1}^{\infty} -\ln(1-b_n) = \infty$.

From the ratio criterion for convergence of the infinity sums, if

$$\sum_{n=1}^{\infty} b_n < \infty \quad \text{and} \quad \sum_{n=1}^{\infty} -\ln(1 - b_n) = \infty,$$

$$\lim_{n \to \infty} \frac{-\ln(1 - b_n)}{b_n} = \infty$$

should hold. But above limit is equal to 1, as can be easy checked by many ways. (From $\sum_{n=1}^{\infty} b_n < \infty$, we get $b_n \to 0$, and

$$\lim_{n \to \infty} \frac{-\ln(1 - b_n)}{b_n} = \lim_{b_n \to 0} \frac{-\ln(1 - b_n)}{b_n} \stackrel{\text{L'H}}{=} \lim_{b_n \to 0} \frac{\frac{1}{1 - b_n}}{1} = 1.$$

This yields to contradiction.

As a conclusion we have
$$\liminf_{x\to\infty} xf(x)=0$$
 and $\limsup_{x\to\infty} xf(x)=0$.

Solution For contradiction assume that $\lim_{x\to\infty} xf(x) = 0$ is not true. Then it must exist increasing sequence $\{x_i\}_{i=1}^{\infty}, \ x_i \to \infty$, such that exists $\varepsilon > 0$ that $x_i f(x_i) > \varepsilon$ for all x_i . Moreover, we can choose subsequence

 $\{y_i\} \subset \{x_i\}$, such that $y_{i+1} \geq 2y_i$. Then following inequalities hold (inequality (*) holds, because f is decreasing function):

$$\int_0^\infty f(x) \stackrel{(*)}{\geq} \sum_{n=2}^\infty (y_n - y_{n-1}) f(y_n) \ge \frac{1}{2} \sum_{n=2}^\infty y_n f(y_n) \ge \frac{1}{2} \sum_{n=2}^\infty \varepsilon = \infty.$$

This contradicts the assumption that $\int\limits_0^\infty f(x) < \infty.$

Problem 4 Let R be an associative non commutative ring and let n > 2 be a fixed natural number. Assume that $x^n = x$, $\forall x \in R$. Prove that $xy^{n-1} = y^{n-1}x$ holds $\forall x, y \in R$.

Solution Let $a = x^{n-1}$, then

$$a^{2} = (x^{n-1})^{2} = x^{2n-2} = x^{n}x^{n-2} = xx^{n-2} = x^{n-1} = a.$$

We show that if $r^2 = 0$ then r = 0. Indeed $r = r^n = r^{n-2}r^2 = 0$. If $e^2 = e$ then for every $x \in R$:

$$(ex - exe)^2 = (ex - exe)(ex - exe) =$$

$$= exex - exexe - exe^2x + exe^2xe = exex - exexe - exex + exexe = 0$$

and similarly

$$(ex - exe)^2 = 0$$

so ex - exe = 0 and xe - exe = 0, so for every $x \in R$ and every $e \in R$, such that $e^2 = e$ we have:

$$ex = xe$$

and since for every $y \in R$, $(y^{n-1}) = y^{n-1}$, we get:

$$xy^{n-1} = y^{n-1}x$$

for every $x, y \in R$.

Solution Since R is an integral domain and

$$y(xy^{n-1} - y^{n-1}x)y = yxy^n - y^nxy = yxy - yxy = 0$$
,

it is either $xy^{n-1} - y^{n-1}x = 0$ or y = 0, but that also implies $xy^{n-1} = y^{n-1}x$. The end.