
Problem j13-I-1/j13-I-15. Let d(k) be the number of all natural divisors of a number
k ∈ N. Prove that for any n0 ∈ N the sequence

(
d(n2 + 1)

)∞
n=n0

is not strictly monotone.

(Vilnius University)

Solution. Note that d(n2 + 1) < n for all even n. Indeed, the number n2 + 1 is not
square and so it is possible to split the set of all its divisors into pairs { d, (n2 +1)/d } where
d < n and d is odd. The number of divisors in all such pairs does not exceed n.

Let us assume that starting from some n0 ∈ N, the sequence is strictly monotone. For
d(n2 + 1) is always even, we get

d
(
(n + 1)2 + 1

)
≥ d
(
n2 + 1

)
+ 2

or, in general,
d
(
(n + k)2 + 1

)
≥ d
(
n2 + 1

)
+ 2k

for any natural numbers n ≥ n0 and k ≥ 1. Let N ≥ n0 (e.g., N = n0). Taking any
s ≥ N − d(N2 + 1) (such that N + s is even), we get

d
(
(N + s)2 + 1

)
≥ d
(
N2 + 1

)
+ 2s ≥ N + s,

which is a contradiction with d
(
(N + s)2 + 1

)
< N + s. �
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Problem j13-I-2/j13-I-19. Let A = [ai,j ] be an m × n real matrix with at least one
non-zero element. For each i ∈ {1, . . . ,m} let Ri :=

∑n
j=1 ai,j (the sum of the i-th row of A)

and for each j ∈ {1, . . . , n} let Cj :=
∑m

i=1 ai,j (the sum of the j-th column of A). Prove
that there exist indices k ∈ {1, . . . ,m} and l ∈ {1, . . . , n} such that

ak,l > 0 , Rk ≥ 0 , Cl ≥ 0 ,
or

ak,l < 0 , Rk ≤ 0 , Cl ≤ 0 .

(University of Zagreb)

Solution. Consider the following sets of indices (some of them may be empty):

I+ :=
{

i ∈ {1, . . . ,m} | Ri ≥ 0
}

,

I− :=
{

i ∈ {1, . . . ,m} | Ri < 0
}

,

J+ :=
{

j ∈ {1, . . . , n} | Cj > 0
}

,

J− :=
{

j ∈ {1, . . . , n} | Cj ≤ 0
}

.

Suppose that the statement of the problem does not hold. Then (but not equivalently) we
have ai,j ≤ 0 for every (i, j) ∈ I+ × J+ and we have ai,j ≥ 0 for every (i, j) ∈ I− × J−. Let
us write the sum

∑
(i,j)∈I−×J+ ai,j in two different ways:

∑
(i,j)∈I−×J+

ai,j =
∑
i∈I−

( n∑
j=1

ai,j −
∑

j∈J−

ai,j

)
=
∑
i∈I−

Ri −
∑

(i,j)∈I−×J−

ai,j ≤ 0 ,

∑
(i,j)∈I−×J+

ai,j =
∑

j∈J+

( m∑
i=1

ai,j −
∑
i∈I+

ai,j

)
=
∑

j∈J+

Cj −
∑

(i,j)∈I+×J+

ai,j ≥ 0 .

Therefore,
∑

(i,j)∈I−×J+ ai,j = 0 and we have only equalities in the two formulae above.
This is only possible if

∑
i∈I− Ri = 0 and

∑
j∈J+ Cj = 0, so I− = ∅ and J+ = ∅,† which

means Ri ≥ 0 for all i = 1, . . . , m and Cj ≤ 0 for all j = 1, . . . , n. Moreover, from

0 ≤
m∑

i=1

Ri =
m∑

i=1

n∑
j=1

ai,j =
n∑

j=1

m∑
i=1

ai,j =
n∑

j=1

Cj ≤ 0,

we conclude Ri = 0 for i = 1, . . . , m and Cj = 0 for j = 1, . . . , n. Since A is a non-zero
matrix, there are indices k and l such that ak,l 6= 0, but Rk = 0 and Cl = 0, which leads to
a contradiction with the assumption that the statement of the problem is false. �

† If I− 6= ∅, then
∑

(i,j)∈I−×J+ ai,j ≤
∑

i∈I− Ri < 0 — a contradiction. We can argue
similarly to show J+ = ∅.
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Problem j13-I-3/j13-I-9. Find the limit

lim
n→∞

√
1 + 2

√
1 + 3

√
· · ·+ (n− 1)

√
1 + n .

(Dr. Moubinool Omarjee, Paris†)

Solution. Let

um,n =

√
1 + m

√
1 + (m + 1)

√
· · ·+ (n− 1)

√
1 + n .

We have
u2

m,n = 1 + mum+1,n ,

u2
m,n − (m + 1)2 = m

(
um+1,n − (m + 2)

)
.

Using the equality |a− b| = |a2 − b2|/|a + b| and inequality um,n + m + 1 ≥ m + 2, we get∣∣um,n −m− 1
∣∣ ≤ m

m + 2

∣∣um+1,n − (m + 2)
∣∣.

We deduce that

|u2,n − 3| ≤ 2
4
· 3
5
· · · · · n− 1

n + 1
· |un−1,n − n|,

|u2,n − 3| ≤ 6
n(n + 1)

(√
1 + (n− 1)

√
1 + n − n

)
= O

(
1
n

)
.

So we get
lim

n→∞
u2,n = 3.

�

† This problem is formally proposed by the University of Ostrava.
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Problem j13-I-4/j13-I-12. Let A and B be complex hermitian 2× 2 matrices with pairs
of eigenvalues (α1, α2) and (β1, β2), respectively. Determine all possible pairs (γ1, γ2) of
eigenvalues of the matrix C = A + B. (A matrix A = [ai,j ] is hermitian if and only if
ai,j = aj,i for all i, j.) (Charles University in Prague)

Solution. Recall that all eigenvalues of a hermitian matrix are real numbers and that
there exists an orthonormal basis consisting of eigenvectors of the matrix. As we can add a
suffitiently large multiple of the identity matrix to both matrices A and B, we can suppose
wlog that α1, α2, β1, β2 > 0 and also γ1, γ2 > 0.

Let us also wlog suppose α1 ≥ α2, β1 ≥ β2, γ1 ≥ γ2 and α1 − α2 ≥ β1 − β2. By easy
arguments, we can see

γ1 + γ2 = Tr C = Tr A + TrB = α1 + α2 + β1 + β2.

Further, it holds that
γ1 ≤ α1 + β1, γ2 ≥ α2 + β2.

(The first inequality can be seen if we rewrite it slightly: γ1 = ‖C‖ ≤ ‖A‖+ ‖B‖ = α1 + β1.
The second inequality follows if we consider the equality above and the first inequality
together. — Alternatively, γ1 = max(Cx, x)/(x, x) ≤ max(Ax, x)/(x, x) + max(Bx, x)/
(x, x) = α1 + β1 and γ2 = min(Cx, x)/(x, x) ≥ min(Ax, x)/(x, x) + min(Bx, x)/(x, x) =
α2 + β2.) Later we will also prove the inequalities

γ1 ≥ α1 + β2, γ2 ≤ β1 + α2

(in fact, it suffices to prove only the first one because the second one follows if we use the
equality given above).

From these inequalities, we can see that γ1 ∈ [α1 + β2, α1 + β1]. (The value of γ2 has
to be “complementary” to obtain the right value of the sum γ1 + γ2. It also worths noting
that even if γ1 = α1 + β2, then still γ1 ≥ γ2 = β1 + α2. This follows from the assumption
α1 − α2 ≥ β1 − β2.) We will show that γ1 can assume any value from the given interval
[α1 + β2, α1 + β1]. Consequently, the set of all possible pairs (γ1, γ2) of eigenvalues of the
matrix C = A + B is{

(γ1, γ2) : α1 + β2 ≤ γ1 ≤ α1 + β1, γ1 + γ2 = α1 + α2 + β1 + β2

}
.

To see this, let us put

A =
(

α1 0
0 α2

)
, B =

(
β1 0
0 β2

)
, P (t) =

(
cos t sin t

− sin t cos t

)
.

The matrix A obviously has eigenvalues (α1, α2). The matrix B(t) = P−1(t)BP (t) obviously
has eigenvalues (β1, β2). If we note that P−1(t) = PT(t) and define the matrix C(t) =
A + B(t), we have

C(0) = A + B =
(

α1 + β1 0
0 α2 + β2

)
, C(π

2 ) =
(

α1 + β2 0
0 α2 + β1

)
.

The matrix C(0) has the eigenvalue γ1(0) = α1 + β1. (Note that γ1(0) ≥ γ2(0) = α2 + β2.)
The matrix C(π/2) has the eigenvalue γ1(π/2) = α1 + β2. (Note that γ1(π/2) ≥ γ2(π/2) =
α2 + β1.) As both eigenvalues (γ1, γ2) of a matrix C depend continuously on the coefficients
of the matrix, we deduce that γ1(t) is a continuous function. Consequently, it assumes every
value from the interval [α1 + β2, α1 + β1], which we wanted to demonstrate.

Now it only remains to prove the inequality γ1 ≥ α1 +β2 for any two complex hermitian
matrices A and B. Let us recall that we still wlog suppose α1 ≥ α2 > 0, β1 ≥ β2 > 0
and γ1 ≥ γ2 > 0. Let v1 and v2 denote the eigenvectors of the matrix A corresponding
to the eigenvalues α1 and α2, respectively, and let w1 and w2 denote the eigenvectors of B
corresponding to the eigenvalues β1 and β2, respectively. We can suppose that the bases
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{v1, v2} and {w1, w2} are orthonormal. So there exists some unitary matrix U =
(

u11
u21

u12
u22

)
such that

v1 = u11w1 + u12w2,
v2 = u21w1 + u22w2,

and
w1 = u11v1 + u21v2,
w2 = u12v1 + u22v2.

We will estimate γ1 in the following way. First,

γ1 = sup
{
‖Cx‖ : ‖x‖ = 1

}
≥ ‖Cv1‖

where ‖·‖ denotes the Euclidean norm. (Let us justify the formula. Recall that γ1 =
max‖x‖=1(Cx, x). Obviously, γ2

1 is the greater eigenvalue of C2. Consequently, it follows
that γ2

1 = max‖x‖=1(C2x, x). As C is hermitian, we have (C2x, x) = x∗CCx = x∗C∗Cx =
(Cx,Cx) = ‖Cx‖2.) Second,

Cv1 = (A + B)v1 = α1v1 + β1u11w1 + β2u12w2 = (α1 + β2)v1 + (β1 − β2)u11w1 =

=
(
α1 + β2 + (β1 − β2)u11u11

)
v1 + (β1 − β2)u11u21v2.

As the vectors v1 and v2 are orthonormal and (β1 − β2)u11u11 ≥ 0, we conclude

γ1 ≥ ‖Cv1‖ =
√∣∣α1 + β2 + (β1 − β2)u11u11

∣∣2 +
∣∣(β1 − β2)u11u21

∣∣2 ≥
≥
√∣∣α1 + β2 + (β1 − β2)u11u11

∣∣2 ≥ α1 + β2.

�
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Problem j13-II-1/j13-II-51. Two real square matrices A and B satisfy the conditions
A2002 = B2003 = I and AB = BA. Prove that A + B + I is invertible. (The symbol I
denotes the identity matrix.) (University of Belgrade)

Solution. Let (A + B + I)x = 0 for some vector x, i.e., (B + I)x = −Ax. Then
we have −A2x = A(B + I)x = (B + I)Ax = −(B + I)2x, and, continuing in this way,
(B + I)kx = (−1)kAkx. As A2002 = I, we get (B + I)2002x = x, i.e.,(

(B + I)2002 − I
)
x =

(
B2003 − I

)
x = 0.

(Recall B2003 = I.) In other words, taking that p(t) = (t + 1)2002 − 1 and q(t) = t2003 − 1
are polynomials, we have just got

p(B)x = q(B)x = 0.

But, since 2003 is a prime, q(t)/(t − 1) is a primitive polynomial for all its roots, and
therefore none of them is a root of the another monic polynomial p(t) of degree 2002; further,
the remained root t = 1 of q(t) is not a root of p(t), which implies that p(t) and q(t) are
coprime.†

Since there exist non-zero polynomials r(t) and s(t) such that r(t)p(t) − s(t)q(t) = 1
(recall the Euclidean algorithm), we can conclude that x = r(B)p(B)x − s(B)q(B)x = 0,
and so A + B + I must be invertible indeed. �

† The polynomials p(t) and q(t) are really coprime (i.e. relatively prime). Here is another
argument: Every polynomial (of degree ≥ 1) can be written as a product of factors of
degree 1. In particular, p(t) = (t + 1)2002 − 1 =

∏2002
k=1 (t − zp,k) and q(t) = t2003 − 1 =∏2003

k=1 (t− zq,k), where zp,1, . . . , zp,2002 and zq,1, . . . , zq,2003 are the roots of the polynomial
p and q, respectively. Obviously, the polynomials p and q are relatively prime iff they have
no root in common.

It is easy to see that the roots of q lie on the unit circle in the complex plane. Similarly,
it is easy to see that all roots of p are on the circle with radius 1 and its centre at the
point −1.

Thus, the intersections of the two circles,

√
2

2 ± i
√

2
2 = cos± 3π

2 + i sin± 3π
2 =

(
−1
)

+
(
cos±π

2 + i sin±π
2

)
,

are the only possible common roots of q and p. But none of these two points is a root of q.
It follows that p and q are coprime.
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Problem j13-II-2/j13-I-17. Let {D1, D2, . . . , Dn} be a set of disks (a disk is a circle with
its interior) in the Euclidean plane and aij = S(Di ∩Dj) be the area of Di ∩Dj . Prove that
for any numbers x1, x2, . . . , xn ∈ R the following inequality holds:

n∑
i=1

n∑
j=1

aijxixj ≥ 0.

(Warsaw University)

Solution. Let χDi
: R2 → {0, 1} be the characteristic function of the set Di:

χDi
(x, y) =

{
1, if (x, y) ∈ Di,
0, if (x, y) /∈ Di.

We have:
χDi∩Dj = χDi

χDj
,

S(Di) =
∫

R2
χDi

(x, y) dxdy =
∫

R2
χ2

Di
(x, y) dxdy,

S(Di ∩Dj) =
∫

R2
χDi∩Dj

(x, y) dxdy =
∫

R2
χDi

(x, y)χDj
(x, y) dxdy.

Thus,

n∑
i=1

n∑
j=1

aijxixj =
∫

R2

n∑
i=1

n∑
j=1

xiχDi
(x, y)xjχDj

(x, y) dxdy =

=
∫

R2

(
x1χD1

(x, y) + · · ·+ xnχDn
(x, y)

)2 dxdy ≥ 0.

�
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Problem j13-II-3/j13-II-70. A sequence (an)∞n=0 of real numbers is defined recursively
by

a0 := 0, a1 := 1, an+2 := an+1 +
an

2n
, n ≥ 0.

Prove that

lim
n→∞

an = 1 +
∞∑

n=1

1

2
n(n−1)

2 ·
∏n

k=1(2k − 1)
.

(University of Zagreb)

Remark. In fact, we will prove the following:
(a) The sequence (an)∞n=0 is convergent.
(b) limn→∞ an = 1 +

∑∞
n=1 1/

(
2n(n−1)/2 ·

∏n
k=1(2

k − 1)
)
.

(c) The limit limn→∞ an is an irrational number.

Solution. (a) Obviously, an ≥ 0 for every n ≥ 0. The sequence (an)∞n=0 is increasing
since an+2 − an+1 = an/2n ≥ 0 for every n ≥ 0. It suffices to show that (an)∞n=0 is bounded
from above. For each n ≥ 0, we have an+2 ≤ an+1 + an+1/2n = an+1(1 + 1/2n). Using the
inequality between geometric and arithmetic mean, for every n ≥ 1 we obtain

an+2 ≤
n∏

k=0

(
1 +

1
2k

)
= 2

n∏
k=1

(
1 +

1
2k

)
≤ 2

(
1
n

(
n +

n∑
k=1

1
2k

))n

≤ 2

(
n + 1

n

)n

≤ 2e.

(b) Consider the power series
∑∞

n=0 anzn. Since lim supn→∞
n
√
|an| ≤ limn→∞

n
√

2e = 1,
its radius of convergence is R ≥ 1. Therefore, on the open unit disc, with center at the
origin, it converges to a holomorphic function f(z) :=

∑∞
n=0 anzn. Inductively, we obtain

an+2 = 1 +
∑n

k=0 ak/2k for any n ≥ 0. So limn→∞ an = 1 +
∑∞

k=0 ak/2k = 1 + f
(

1
2

)
and we

have to find f
(

1
2

)
.

Now we use the recurrent relation for (an)∞n=0 to obtain a functional equation for f . We
multiply an+2 := an+1 + an/2n by zn+2 and sum over all n ≥ 0 to get

∞∑
n=0

an+2z
n+2 = z

∞∑
n=0

an+1z
n+1 + z2

∞∑
n=0

an

(
z
2

)n,

that is
f(z)− z = zf(z) + z2f

(
z
2

)
,

or
(1− z)f(z) = z2f

(
z
2

)
+ z for |z| < 1. (1)

We substitute z = 1/2n for n = 1, . . . , N (where N ≥ 1 is a fixed number) into (1), then
multiply the n-th equality by some constant sn > 0 and finally sum up those N equalities:(

1− 1
2

)
f
(

1
2

)
=
(

1
2

)2
f
(

1
4

)
+ 1

2 , | · s1 ,(
1− 1

4

)
f
(

1
4

)
=
(

1
4

)2
f
(

1
8

)
+ 1

4 , | · s2 ,
...(

1− 1
2n

)
f
(

1
2n

)
=
(

1
2n

)2
f
(

1
2n+1

)
+ 1

2n , | · sn ,(
1− 1

2n+1

)
f
(

1
2n+1

)
=
(

1
2n+1

)2
f
(

1
2n+2

)
+ 1

2n+1 , | · sn+1 ,
...(

1− 1
2N

)
f
(

1
2N

)
=
(

1
2N

)2
f
(

1
2N+1

)
+ 1

2N , | · sN ,

s1

2
f
(

1
2

)
=

sN

22N
f
(

1
2N+1

)
+
∑N

n=1

sn

2n
.

To obtain the given result (namely, to achieve cancelling of the terms with f
(

1
2n

)
for n =

2, . . . , N), we had to choose the numbers sn so that(
1− 1

2n+1

)
sn+1 =

(
1
2n

)2
sn, for n ≥ 0. (2a)
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Let us put
s0 := 1. (2b)

It follows that s1 = 2. Equalities (2b) and (2a) lead to

sn =
n−1∏
k=0

sk+1

sk
=

n−1∏
k=0

(
1
2k

)2
1− 1

2k+1

=
n−1∏
k=0

1
2k−1(2k+1 − 1)

=
1

2
n(n−1)

2 −n
∏n

k=1(2k − 1)

for every n ≥ 1. Finally, we have

f
(

1
2

)
=

sN

22N
f
(

1
2N+1

)
+

N∑
n=1

sn

2n
=

f
(

1
2N+1

)
2

N(N−1)
2 +N

∏N
k=1(2k − 1)

+
N∑

n=1

1

2
n(n−1)

2
∏n

k=1(2k − 1)
.

The first term tends to 0 when N →∞, so

f
(

1
2

)
=

∞∑
n=1

1

2
n(n−1)

2
∏n

k=1(2k − 1)
. (3)

(c) The proof of limn→∞ an ∈ R \Q is based on the fact that the series in (3) converges
“very rapidly”. Suppose that its sum equals p

q for some positive integers p and q. For each
integer N ≥ 1, denote

qN := 2
N(N−1)

2

N∏
k=1

(2k − 1), pN := qN

N∑
n=1

1

2
n(n−1)

2
∏n

k=1(2k − 1)
.

Obviously, pN and qN are positive integers. We manage to estimate pqN − qpN . We have

qN = 2
N(N−1)

2

N∏
k=1

(2k − 1) < 2
N(N−1)

2

N∏
k=1

2k = 2N2

and
p

q
− pN

qN
=

∞∑
n=N+1

1

2
n(n−1)

2
∏n

k=1(2k − 1)
≤

∞∑
n=N+1

1

2
n(n−1)

2
∏n

k=1 2k−1
=

=
∞∑

n=N+1

1
2n(n−1)

≤
∞∑

m=N(N+1)

1
2m

=
1

2N2+N−1
<

1
2N−1qN

.

Thus, 0 < pqN − qpN < q
2N−1 ,† so (pqN − qpN )N≥1 is a sequence of positive integers that

converges to 0. This is a contradiction and we are done. �

† It is easy to see from the definition of the numbers pN that the sequence
(

pN

qN

)
is strictly

increasing to the limit p
q . Hence pN

qN
< p

q , qpn < pqN , and 0 < pqN − qpN . As the difference
is integer, we have even 1 ≤ pqN − qpN .
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Problem j13-II-4/j13-I-18. Let f, g: [0, 1] → (0,+∞) be continuous functions such that
f and g

f are increasing. Prove that∫ 1

0

∫ x

0
f(t) dt∫ x

0
g(t) dt

dx ≤ 2
∫ 1

0

f(t)
g(t)

dt.

(University of Zagreb)

Solution. First, we estimate the expression inside the integral sign on the left side of the
given inequality. By the Chebycheff’s inequality for integrals applied to increasing functions
f and g

f on the segment [0, x] (where x ∈ (0, 1] is fixed), we get(
1
x

∫ x

0

f(t) dt

)(
1
x

∫ x

0

g(t)
f(t)

dt

)
≤ 1

x

∫ x

0

g(t) dt,

that is, ∫ x

0
f(t) dt∫ x

0
g(t) dt

≤ x∫ x

0
g(t)
f(t) dt

(1)

for every x ∈ (0, 1]. From the integral form of the Cauchy-Schwarz inequality on the segment
[0, x], we have (∫ x

0

g(t)
f(t)

dt

)(∫ x

0

t2f(t)
g(t)

dt

)
≥
(∫ x

0

t dt

)2

=
x4

4
,

or
1∫ x

0
g(t)
f(t) dt

≤ 4
x4

∫ x

0

t2f(t)
g(t)

dt. (2)

From (1) and (2) we obtain ∫ x

0
f(t) dt∫ x

0
g(t) dt

≤ 4
x3

∫ x

0

t2f(t)
g(t)

dt. (3)

Finally, it remains to integrate (3) over x ∈ (0, 1] and to reverse the order of integration.∫ 1

0

∫ x

0
f(t) dt∫ x

0
g(t) dt

dx ≤
∫ 1

0

(∫ x

0

4t2f(t)
x3g(t)

dt

)
dx =

∫ 1

0

(∫ 1

t

4t2f(t)
x3g(t)

dx

)
dt =

=
∫ 1

0

4t2f(t)
g(t)

(∫ 1

t

dx

x3

)
dt =

∫ 1

0

4t2f(t)
g(t)

(
1

2t2
− 1

2

)
dt =

= 2
∫ 1

0

f(t)
g(t)

(
1− t2

)
dt ≤ 2

∫ 1

0

f(t)
g(t)

dt.

(Remark. The constant 2 on the right hand side of the given inequality is optimal, i.e.,
the least possible. Consider f(t) := 1 and g(t) := t + ε for some fixed ε > 0. Then∫ 1

0

∫ x

0
f(t) dt∫ x

0
g(t) dt

dx =
∫ 1

0

x
1
2x2 + εx

dx = 2
∫ 1

0

dx

x + 2ε
= 2 ln(1 + 2ε)− 2 ln 2− 2 ln ε

and ∫ 1

0

f(t)
g(t)

dt =
∫ 1

0

dt

t + ε
= ln(1 + ε)− ln ε.

The quotient of these two expressions can be made arbitrarily close to 2 since

lim
ε↘0

2 ln(1 + 2ε)− 2 ln 2− 2 ln ε

ln(1 + ε)− ln ε
= 2 lim

ε↘0

− ln(1+2ε)
ln ε + ln 2

ln ε + 1

− ln(1+ε)
ln ε + 1

= 2.

Therefore, the constant 2 is the best possible one.) �
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