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Problem 1 Suppose that f : [0, 1]→ R is a continuously differentiable function such that f(0) = f(1) = 0 and
f(a) =

√
3 for some a ∈ (0, 1). Prove that there exist two tangents to the graph of f that form an equilateral

triangle with an appropriate segment of the x-axis.

Solution Let k : [0, 1] → R be defined as k(x) = f ′(x). We know that k is continuous. Let b ∈ (0, 1) be the
point where f reaches its maximum value. Then k(b) = f ′(b) = 0 and f(b) ≥

√
3 > 0 (as f(a) =

√
3). Since

f(0) = 0 and f(b) ≥
√
3, there exists an x0 ∈ [0, b) such that f ′(x0) = k(x0) ≥

√
3/b >

√
3. As k is continuous,

we can find an y1 ∈ (x0, b) such that k(y1) = f ′(y1) =
√
3. Using the same argument, there exists an y2 ∈ (b, 1]

such that k(y2) = f ′(y2) = −
√
3. It is easy to see that the tangents to the graph of f at y1 and y2 with the

appropriate segment of the x-axis form an equilateral triangle. �
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Problem 2 Evaluate the sum
∞∑
n=0

arctan

(
1

1 + n+ n2

)
.

Solution Using the formula for the diference of two arcustangents

arctanu− arctan v = arctan
u− v
1 + uv

,

(this formula is valid whenever uv 6= −1) we obtain

∞∑
n=0

arctan

(
1

1 + n+ n2

)
= arctan(1) +

∞∑
n=1

arctan

(
(n+ 1)− n
1 + n(n+ 1)

)
=

=
π

4
+

∞∑
n=1

arctan

(
(n+ 1)− n
1 + n(n+ 1)

)
=

=
π

4
+
∞∑
n=1

arctan

(
1

n

)
− arctan

(
1

n+ 1

)
=
π

2
.

�
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Problem 3 Denote by B(c, r) the open disc in the plane of center c and radius r. Prove or disprove that there
exists a sequence {zn}∞n=1 in R2 such that the open discs B(zn, 1/n) are pairwise disjoint and the sequence
{zn}∞n=1 is convergent.

Solution Both statemets are true, it is sufficient to prove (b) (in general version, it is obviously not true in R1

due to measure argument, and in Rk, if k ≥ 2, it is sufficient to prove the positive answer for k = 2). We will
prove the crucial Lemma:

Lemma Let a > 0 and let C = (0, a)2. Then there exists an na ∈ N and a sequence {tn}n≥na
⊂ C such that

the open balls B(tn, 1/n) ⊂ C for n ≥ na are mutually disjoint.

Proof Consider the numbers n ∈ N and c > 0 which will be specified concretely later and suppose that n > 4
and n(c − 1) > 1. Let us denote nk = bnckc. We have n0 = n and as n(c − 1) > 1, we also have that the
sequence {nk} is strictly increasing. For every k ≥ 0, we denote

sk =
2

nk
+ · · ·+ 2

nk+1 − 1
.

By easy integral estimate, we have

sk ≤ 2
(
ln(nk+1 − 1)− ln(nk − 1)

)
≤ 2 ln

nck+1

nck − 2
= 2 ln

c

1− 2/n
=: d(c, n) .

Now we easilly see that for every k ≥ 0, we can find mutually disjoint open balls of diameters 1/nk, . . . ,
1/(nk+1 − 1) inside the rectangle of width d(c, n) and height 2/nk. Since

∞∑
k=0

2

nk
= 2

∞∑
k=0

1

bnckc
≤ 4

∞∑
k=0

1

nck
=

4c

n(c− 1)
,

it is clear that we can find mutually disjoint open balls of diameters 1/n, 1/(n+ 1), . . . inside the rectangle of
width d(c, n) and height 4c

/(
n(c− 1)

)
.1 For the given a, now it is sufficient to set c > 1 so that 2 ln c < a2 and

consequently set na = n so that n > 4, n(c− 1) > 1 and

max

{
d(c, n),

4c

n(c− 1)

}
< a .

The lemma is proved. �

Now by means this Lemma, we can construct the sequence zn easilly. Let ai = 2−i and let Ci = (ai, 2ai)
2.

By the lemma, we can find an increasing sequence of the numbers ni = nai such that we can place open balls of
the diameters 1/n0, 1/(n0 + 1), . . . , 1/(n1 − 1) inside C0 in such a way that they are mutually disjoint. Then
we place open balls of the diameters 1/n1, . . . , 1/(n2 − 1) inside C1 so that they are mutually disjoint, etc.
The first n0 − 1 balls can be placed anywhere else. It is clear that the sequence of the centres of thse balls is
convergent (having the limit 0). �

Solution Take squares with lenghts of sides 4, 2, 1, 12 , . . . and make a row of them. Put discs with radii 1, 12 ,
1
3

to first square. It is possible since it can be divided into 4 smaller squares with side 1. Than put disc with radii
1
4 , . . . ,

1
15 to second square. Thanks to dividing to 16 smaller squares it is again possible. Continuing by this

way we put all discs into sequence of convergent squares, therefore also sequence of discs is convergent.

︸ ︷︷ ︸
4

︸ ︷︷ ︸
2

︸ ︷︷ ︸
1

radii 1, 12 ,
1
3

radii 1
4 , . . . ,

1
15

1
16 , . . . ,

1
63

1Recall that n = n0. Place the balls of diameters 1/n0, . . . , 1/(n1 − 1) into a rectangle of width d(c, n) and height 2/n0. Place
the balls of diameters 1/n1, . . . , 1/(n2 − 1) into a rectangle of width d(c, n) and height 2/n1. Etc.
2In order that it is possible to ensure d(c, n) < a by the choice of large n.



�

Solution Take rectangle 4 × 2 and divide it into rectangles 2 × 2, 2 × 1, 1 × 1, 1 × 1
2 , . . . . To first rectangle

put disc with radius 1, to second rectangle discs with radii 1
2 and 1

3 , to third one discs with radii 1
4 , . . . ,

1
7 , and

so on. Sequence of rectangles is again convergent and therefore also sequence of discs.

. . .

. . .

�

Solution Let zn = (xn, yn), where xn =
b
√
nc∑

i=1

6
i2 and yn =

n∑
i=b
√
nc2

3
i . From real analysis we know lim

n→∞
xn = π2

and by small counting lim
n→∞

yn = 0, so {zn}∞n=1 converges to (π2, 0).

Let’s prove that Bn(zn, 1
n ) and Bm(zm,

1
m ) are disjont for all m 6= n. The discs are grouped in columns. In

each column are discs from Bn2 to Bn2+2n, so each column of discs is included in one of zones

An =

{
(x, y) : x ∈

(( n∑
i=1

6

i2

)
− 1

n2
,
( n∑
i=1

6

i2

)
+

1

n2

)}
.

These An are pairwise disjont, because

( n∑
i=1

6

i2

)
+

1

n2
<
(n+1∑
i=1

6

i2

)
− 1

(n+ 1)2

so all of the columns are pairwise disjoint. Discs in each column are pairwise disjoint (if Bn and Bn+1 are in
the same column, then |yn+1 − yn| ≥ 3

n+1 ≥
1
n + 1

n+1 ). Result follows: there exists desired sequence. �
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Problem 4 Find all pairs (m,n) of positive integers such that m+ n and mn+ 1 are both powers of 2.

Solution The set of such pairs is

L =
{
(2t − 1, 2t + 1), (2t + 1, 2t − 1), (2t − 1, 1), (1, 2t − 1)

}
where t runs through the set of all positive integers.

For the proof, let m, n, k, l be integers such that m,n ≥ 1 and

mn+ 1 = 2l ,

m+ n = 2k .

From m,n ≥ 1 we get 2l = mn + 1 ≥ 2, so l ≥ 1 and 2l is even. Hence m and n are both odd. Assume
m = n. Then m = n = 2k−1 must be odd, hence k = 1, which implies m = n = 1, and (1, 1) ∈ L. From now
on, we assume m < n, so y = 1

2 (n−m) is a positive integer.
If y = 1, then we get n−m = 2, m+ n = 2k, so n = 2k−1 + 1 and m = 2k−1 − 1, which yields a pair in the

set L (if k > 1 as m is not positive otherwise).
Let y > 1. Then

0 < y2 − 1 =
(n+m

2

)2
−mn− 1 = 22k−2 − 2l .

This implies 2k − 2 > l, and hence y2 − 1 = (y − 1)(y + 1) is divisible by 2l. The greatest common divisor of
y−1 and y+1 is 2, so one of these positive factors must be divisible by 2l−1. In both cases, we get y+1 ≥ 2l−1.
Hence

22k−2 − 2l = (y + 1)(y − 1) ≥ 2l−1(2l−1 − 2) = 22l−2 − 2l ,

so 2k − 2 ≥ 2l − 2, which implies k ≥ l. But then

0 ≤ (m− 1)(n− 1) = (mn+ 1)− (m+ n) = 2l − 2k ≤ 0 ,

so we must have equality. Thus l = k and (since m < n) m = 1. From this we get n = 2k−1, so (m,n) ∈ L. �

Solution Let us writem+n = 2a andmn+1 = 2b. Of course a, b ≥ 1 and b ≥ a since 2b−2a = (m−1)(n−1) ≥ 0.
If b = a, then (m− 1)(n− 1) = 0, so

m = 1 and n = 2a − 1 or m = 2a − 1 and n = 1.

So, suppose b > a. If a = 1, then m = n = 1. If a = 2, then {m,n} = {1, 3}. So, let also a ≥ 3. It is obvious,
that m and n are odd (since mn + 1 is even). If m ≡ n ≡ 3 (mod 4), then 0 ≡ 2a ≡ m + n ≡ 2 (mod 4),
contradiction. So thanks to symetry we can assume that m ≡ 1 (mod 4). Since m + n ≡ 0 (mod 4) we must
have n ≡ 3 (mod 4). So, let m = 4c+ 1 and n = 4d+ 3, where c, d ∈ {0, 1, . . . }. We have

(m+ 1)(n+ 1) = 2a + 2b = 2a(2b−a + 1)

thus
8(2c+ 1)(d+ 1) = 2a(2b−a + 1) .

Since 2c+ 1 is odd, we have 2a−3 | d+ 1. So let d+ 1 = x · 2a−3, with x ∈ {1, 2, . . . }. Thus, n = 4(d+ 1)− 1 =
x2a−1 − 1 and so m + x2a−1 − 1 = 2a. Since m ≥ 1, we have x ≤ 2a

2a−1 = 1 and so x = 1 or x = 2. If x = 1,
then m = 2a−1 + 1 and n = 2a−1 − 1. If x = 2, then m = 1 and n = 2a − 1. So, we have proved that it is

either {m,n} = {1, 2a − 1} or {m,n} = {2a + 1, 2a − 1} , where a ∈ N.

�
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Problem 1 Are the groups (Q,+) and (Q+, ·) isomorphic? (The symbol Q+ denotes the set of all positive
rational numbers.)

Solution Assume they are, and name the isomorphism ϕ. Then there exists an a ∈ Q such that ϕ(a) = 2. Let
ϕ
(
a
2

)
= b. Then

2 = ϕ(a) = ϕ
(a
2
+
a

2

)
= ϕ

(a
2

)
· ϕ
(a
2

)
.

Therefore, b = ϕ
(
a
2

)
=
√
2, a contradiction. �

Solution Suppose (for contradiction) that there exists an isomorfism f : (Q,+) → (Q+, ·). Then f(0) = 1,
because 0 and 1 are corresponding neutral elements of groups (Q,+) and (Q+, ·). Let f(1) = a

b , a, b ∈ N,
(a, b) = 1. Similarly, let for every n ∈ N, n ≥ 2, f

(
1
n

)
= an

bn
, where an, bn ∈ N, (an, bn) = 1. Then it is

f(1) = f
( 1
n
+

1

n
+ · · ·+ 1

n

)
=
(
f
( 1
n

))n
=
(an
bn

)n
=
a

b
.

It is still
(
(an)

n, (bn)
n
)
= 1, so consequently a = (an)

n and b = (bn)
n. If there is m ∈ N such that am ≥ 2,

then a ≥ 2 and an ≥ 2 for all n. That follows a ≥ 2n for all n, contradiction. Thus for every n ∈ N it holds
an = 1, specially a = 1. Same argument gives b = 1. But then f(1) = a

b = 1 = f(0), f is not injective,
contradiction. �

Solution Suppose there exists an isomorphism σ : (Q,+) → (Q+, ·). Consider homomorphism τ : (Q,+) →
(Q,+) given by equation τ(q) = 2q for q ∈ Q, and corresponding homomorphism τ ′ : (Q+, ·)→ (Q+, ·) given by
equation τ ′(q) = q2 for q ∈ Q+. It follows that

σ ◦ τ(q) = σ(2q) =
(
σ(q)

)2
τ ′◦ σ(q) = τ ′

(
σ(q)

)
=
(
σ(q)

)2
for all q ∈ Q. It is clear that homomorphism τ is isomorphism, so also τ ◦ σ = τ ′ ◦ σ is isomorphism, but this
contradicts the fact, that τ ′ is not injective (that is obvious) and therefore τ ′ ◦ σ cannot be isomorphism. �
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Problem 2 Find all functions f : R+
0 × R+

0 → R+
0 such that

1. f(x, 0) = f(0, x) = x for all x ∈ R+
0 ,

2. f(f(x, y), z) = f(x, f(y, z)) for all x, y, z ∈ R+
0 and

3. there exists a real k such that f(x+ y, x+ z) = kx+ f(y, z) for all x, y, z ∈ R+
0 .

(The symbol R+
0 denotes the set of all non-negative real numbers.)

Solution Take x ≤ y. Then

f(x, y) = f(x+ 0, x+ (y − x)) = kx+ f(0, y − x) = kx+ (y − x) = (k − 1)x+ y =

= f(x+ (y − x), x+ 0) = f(y, x) . (1)

Let x ≤ y. If z ≥ y + (k − 1)x, then

f(f(x, y), z) = f(y + (k − 1)x, z) = (k − 1)(y + (k − 1)x) + z .

Further, if z ≥ y and z + (k − 1)y ≥ x, then

f(x, f(y, z)) = f(x, (k − 1)y + z) = (k − 1)x+ (k − 1)y + z .

If we take z so large that all the above inequalities are satisfied, then we have

(k − 1)(y + (k − 1)x) + z = (k − 1)x+ (k − 1)y + z ,

or (k− 1)2x = (k− 1)x, and the only possibilities are k = 1, 2. Substituting into (1), we obtain f(x, y) = x+ y
for k = 2, and f(x, y) = max{x, y} for k = 1 (we may use (1) only if y ≥ x, whence the maximum). It is easy
to check, that both functions satisfy all conditions. �

Solution Consider two cases x ≤ y and x ≥ y:

x ≤ y : f(x, y) = f
(
x, x+ (y − x)

)
= kx+ f(0, y − x)

= kx+ y − x = (k − 1)x+ y

x ≥ y : f(x, y) = f
(
y + (x− y), y

)
= ky + f(x− y, 0)

= ky + x− y = (k − 1)y + x

So it is
f(x, y) = (k − 1)min{x, y}+max{x, y}.

Because f(x, x) = kx ≥ 0, we have k ≥ 0. Consider now the second equality from the problem: f
(
f(x, y), z

)
=

f
(
x, f(y, z)

)
.

f
(
f(1, 1), k

)
= f(k, k) = k2

f
(
1, f(1, k)

)
=


f(1, 2k − 1) = (k − 1)min{1, 2k − 1}+max{1, 2k − 1}

= (k − 1) + (2k − 1) for k ≥ 1

f(1, k2 − k + 1) = (k − 1)min{1, k2 − k + 1}+max {1, k2 − k + 1}
= (k − 1)(k2 − k + 1) + 1 for k ≤ 1

Consider cases k ≥ 1 and k ≤ 1 separatelly.

k ≥ 1: k2 = (k − 1) + (2k − 1)

k2 − 3k + 2 = 0

(k − 2)(k − 1) = 0

k = 1, 2 or some of them

k ≤ 1: k2 = (k − 1)(k2 − k + 1) + 1

k3 − 3k2 + 2k = 0

k(k − 2)(k − 1) = 0

k = 0, 1, 2 or some of them



For k = 0, 1, 2 the functions have the following form.

k = 2: f(x, y) = (k − 1)min{x, y}+max{x, y} = x+ y

k = 1: f(x, y) = max{x, y}
k = 0: f(x, y) = |x− y|

First two functions satisfy to all three conditions of the problem (easy to check), the last one does not fulfil the
second condition for triple (x, y, z) = (1, 2, 3). �
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Problem 3 Let
∞∑
n=1

an be a divergent series with positive nonincreasing terms. Prove that the series

∞∑
n=1

an
1 + nan

diverges.

Solution Let (dn) be a sequence defined as follows:

1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, . . .

(a block of 2n ones is followed by a block of 2n zeros, and that block of 2n zeros is followed by a block of 2n+1

ones and so forth).
Define sets

D = {n ∈ N : dn = 1 } ,
C = 2D ,

E = 2N \ C ,
B = C ∪ (E + 1) ,

A = C ∪B1 = 2N

and define sequences xn = χA(n) and yn = χB(n) where χS denotes the indicator function of a set S.
Then

lim
n→∞

x0 + x1 + · · ·+ xn
n+ 1

=
1

2
and lim

n→∞

y0 + y1 + · · ·+ yn
n+ 1

=
1

2

and the sequence

lim
n→∞

x0y0 + x1y1 + · · ·+ xnyn
n+ 1

oscillates between 1
4 and 3

8 . �
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Problem 4 Let f : R → R be an infinitely differentiable function. Assume that for every x ∈ R there is an
n ∈ N (depending on x) such that

f (n)(x) = 0 .

Prove that f is a polynomial.

Solution Denote
En :=

{
x ∈ R ; f (n)(x) = 0

}
.

Note that each of the sets En is closed due to continuity of f (n). The assumption implies

R =
⋃
n∈N

En .

By Baire’s theorem, there is an interval I such that some En is dense in I.3 Since f (n) is a continuous function,
we obtain

f (n)(x) = 0 for all x ∈ I.

Therefore, the function f is a polynomial on the interval I. Now, we denote {Iλ}λ∈Λ the set of all maximal
open intervals Iλ such that f is a polynomial on Iλ. (Here, Λ is an index set.) We have already proved at least
one such interval Iλ exists. Moreover, all the sets Iλ are clearly mutually disjoint and their union is dense in R
(otherwise, we can repeat the previous argument using Baire’s theorem in the interval J ⊆ R \

⋃
λ∈Λ Iλ).

Now, let us consider the set
H := R \

⋃
λ∈Λ

Iλ .

First, we prove that this set has no isolated points. If there were some isolated point x ∈ H, then there would
be two intervals I1, I2 ∈ {Iλ}λ∈Λ, one of them having x as the right end-point and the other one having x as the
left end-point. There would also be some n ∈ N such that the n-th derivate vanishes on the union I1 ∪ I2. This
would mean that the function f is a polynomial on I1 ∪ {x} ∪ I2 and the intervals I1 and I2 are not maximal.

The set H is a closed subset of the complete space R. Therefore, if it is not empty, it is of second category.
Using Baire’s theorem again,4 we prove that there exists an interval J containing at least one point from H
and an index n ∈ N such that

f (n)(x) = 0 for all x ∈ J ∩H.

Since every x ∈ J ∩ H is an accumulation point of H (and is an accumulation point of J ∩ H therefore, and
since f (n+1)(x), i.e. the limit lim

h→0

(
f (n)(x + h) − f (n)(x)

)
/h does exist at every point x), we can calculate the

(n+ 1)-st derivative of f on J ∩H using just the points from the intersection J ∩H. We obtain

f (n+1)(x) = 0 for all x ∈ J ∩H

and, repeating this argument,

f (m)(x) = 0 for all x ∈ J ∩H and m ≥ n.

Now, take any interval I ∈ {Iλ}λ∈Λ such that I ⊆ J .5 There is some index m ∈ N such that f (m)(x) = 0
for x ∈ I. Let us assume m > n. There are two cases: either f (m−1) vanishes (is zero) on the interval I or
f (m−1) is a linear function on I. Since the end-points of I belong to H, if follows that f (m−1) is null at these
end-points. Therefore, f (m−1) vanishes on the interval I. By induction (repeating this argument), we prove
that f (n) vanishes on the interval I in fact. This conclusion (i.e., f (n) ≡ 0 on I) is true for every interval
I ∈ {Iλ}λ∈Λ.

Choose an x ∈ J ∩ H. As we already know that J ∩ H cannot contain an interval, there must exist two
intervals Iλ1 , Iλ2 ∈ {Iλ}λ∈Λ such that x is the right end-point of Iλ1 and the left end-point of Iλ2 . Since

3As the sets En are closed and
⋃
n En = R, one of the sets must have non-empty interior. Equivalently, there must exist an

index n and an interval I such that I ⊆ En.
4We just repeat the above argument: As the sets En are closed and

⋃
n En ⊇ H, one of the sets En must have non-empty

interior in H. That is, there exists an interval J whose intersection with H is non-empty such that J ∩H ⊆ En.
5If there were no such an interval I, it would mean that the set J ∩H (hence the set H itself) contains a (closed) interval. But

we have already inferred f (n+1)(x) = 0 for x ∈ J ∩ H. Hence, f is a polynomial on that (closed) interval. That interval should
have been included in the collection {Iλ}λ∈Λ therefore.



f (n) is continuous and is zero on Iλ1 ∪ Iλ2 , it is zero at x as well. Hence, f is a polynomial on the interval
Iλ1
∪{x}∪ Iλ2

∈ {Iλ}λ∈Λ, which is a contradiction (all intervals from {Iλ}λ∈Λ must be mutually disjoint). This
contradiction can be inferred if H 6= ∅. Consequently, the set H is empty and f is a polynomial on the whole
real line. �


