Problem 1 Let $S_0 = \{z \in \mathbb{C} : |z| = 1, z \neq -1\}$ and $f(z) = \frac{\operatorname{Im} z}{1 + \operatorname{Re} z}$. Prove that f is a bijection between S_0 and \mathbb{R} . Find f^{-1} .

Solution Using $z = e^{it} = \cos(t) + i\sin(t)$, we can interpret our function as

$$f(t) = \frac{\sin(t)}{1 + \cos(t)}, t \in (-\pi, \pi).$$

We can find easily (using L'Hospital or trigonometrical identities) $\lim f(\pi_{-}) = \infty$ and $\lim f(\pi_{+}) = -\infty$, and by the continuity the surjectivity follows. The injectivity can be deduced by

$$f'(t) = \frac{1}{1 + \cos(t)} > 0.$$

Since f(0) = 0, f maps $(0, \pi)$ to \mathbb{R}^+ and $(-\pi, 0)$ to \mathbb{R}^- . For t > 0, $\sin t > 0$ and y = f(t) > 0. Then $0 < y = f(t) = \sqrt{\frac{1-\cos t}{1+\cos t}}$. We get $\cos t = \frac{1-y^2}{1+y^2}$ and finally $t = \arccos(-1 + \frac{2}{1+y^2})$, and similarly for t < 0 and y < 0: $t = -\arccos(-1 + \frac{2}{1+y^2})$.

Problem 2 Let $f: A^3 \to A$, where A is a nonempty set and f satisfies:

- 1. for all $x, y \in A$, f(x, y, y) = f(y, y, x) = x and
- 2. for all $x_1, x_2, x_3, y_1, y_2, y_3, z_1, z_2, z_3 \in A$,

$$f(f(x_1, x_2, x_3), f(y_1, y_2, y_3), f(z_1, z_2, z_3)) =$$

$$= f(f(x_1, y_1, z_1), f(x_2, y_2, z_2), f(x_3, y_3, z_3)).$$

Prove that for an arbitrary, fixed $a \in A$, the operation x + y = f(x, a, y) is an Abelian group addition. Solution Neutral element:

$$a + x = f(a, a, x) = x = f(x, a, a) = x + a.$$

Associativity:

$$(x + y) + z = f(f(x, a, y), a, z) = f(f(x, a, y), f(a, a, a), f(a, a, z)) =$$

= $f(f(x, a, a), f(a, a, a), f(y, a, z)) = f(x, a, f(y, a, z)) = x + (y + z).$

Inverse element: Define -x to be f(a, x, a). Now,

$$\begin{aligned} x + (-x) &= f(x, a, f(a, x, a)) = f(f(x, a, a), f(a, a, a), f(a, x, a)) = \\ &= f(f(x, a, a), f(a, a, x), f(a, a, a)) = f(x, x, a) = a. \end{aligned}$$

Commutativity:

$$x + y = f(x, a, y) = f(f(a, a, x), f(a, a, a), f(y, a, a)) =$$

$$= f(f(a, a, y), f(a, a, a), f(a, a, x)) = f(y, a, x) = y + x.$$

Problem 3 Find all reals λ for which there exists a non-zero polynomial P with real coefficients such that

$$\frac{P(1) + P(3) + P(5) + \dots + P(2n-1)}{n} = \lambda P(n)$$

for all positive integers n. Find all such polynomials for $\lambda = 2$.

Solution Let P be a polynomial satisfying the given equation. Then, for all positive integers n,

$$P(2n+1) = \lambda((n+1)P(n+1) - nP(n))$$

Hence $P(2x+1) - \lambda((x+1)P(x+1) - xP(x))$ is a polynomial with infinitely many zeros; therefore it must be the zero polynomial. Conversely, if P is a polynomial satisfying

$$P(2x+1) - \lambda((x+1)P(x+1) - xP(x)) = 0, (1)$$

we get (by putting x = 0) $P(1) = \lambda P(1)$ and then by induction

$$P(1) + P(3) + \cdots + P(2n-1) = \lambda n P(n)$$

for all positive integers n. We can therefore equally well consider (1).

The set of all real λ for which there is a non-trivial solution of (1) is given by the set

$$\left\{\frac{2^k}{k+1}\right\}_k = \left\{1, \frac{4}{3}, 2, \dots\right\}$$

where k runs through all non-negative integers. To prove this, let the pair (P,λ) be a solution for (1), and write $P(x) = ax^k + Q(x)$ where $a \neq 0$ and Q is a polynomial of degree less than k. Then the polynomial S(x) = (x+1)Q(x+1) - xQ(x) is of degree less than k as well, and hence

$$(x+1)P(x+1) - xP(x) = a((x+1)^{k+1} - x^{k+1}) + S(x)$$
$$= a(k+1)x^k + T(x)$$

for some polynomial T of degree less than k. On the other hand, the degree-k-coefficient of P(2x+1) is $2^k a$, and therefore we conclude from (1)

$$2^k a = \lambda a(k+1)$$

which is the same as $\lambda = \frac{2^k}{k+1}$. Conversely, let λ be of the form $\frac{2^k}{k+1}$ for some non-negative integer k, and write P_n for the (n+1)-dimensional vector space of all real polynomials of degree at most n. By the computations above, we have a linear map

$$P_k \longrightarrow P_{k-1}$$

 $P \mapsto P(2x+1) - \lambda ((x+1)P(x+1) - xP(x))$

Since the dimension of P_{k-1} is less than the dimension of P_k , this map must have non-trivial kernel. Hence there is some non-zero polynomial P satisfying (1).

Now let $\lambda = 2$. If k is the degree of P, we have seen that $\frac{2^k}{k+1} = \lambda = 2$, but this is only possible for k = 3. Putting x = 1 in (1) we get P(1) = 2P(1), so P(1) = 0. For x = -1 we get

$$P(-1) - 2(-P(-1)) = 0,$$

which is P(-1) = 0. Hence P(x) = (x - 1)(x + 1)(ax + b) for some reals a, b. From P(1) + P(3) = 4P(2) we get P(3) = 4P(2), hence

$$2 \cdot 4 \cdot (3a + b) = 4 \cdot 3 \cdot (2a + b),$$

that is, b = 0. Thus we got $P(x) = a(x^3 - x)$. The set of polynomials we are looking for form a non-trivial vector space contained in the one-dimensional vector space spanned by $x^3 - x$. Therefore these are exactly the solutions of (1) for $\lambda = 2$, and we are done.

Problem 4 Let $(x_n)_{n\geq 2}$ be a sequence of real numbers such that $x_2>0$ and $x_{n+1}=-1+\sqrt[n]{1+nx_n}$ for $n\geq 2$. Find

- 1. $\lim_{n\to\infty} x_n$;
- $2. \lim_{n \to \infty} nx_n.$

Solution

1. It follows by induction that the sequence $(x_n)_{n\geq 2}$ is correctly defined and that $x_n>0$ for $n\geq 2$. From the Bernoulli inequality follows

$$1 + nx_n = (1 + x_{n+1})^n > 1 + nx_{n+1}$$

i.e. this sequence decrease (i.e. it is convergent). If $\lim_{n\to\infty} x_n = x \geq 0$, then

$$1 + nx_n = (1 + x_{n+1})^n \ge (1 + x)^n \ge 1 + nx + \frac{n(n-1)}{2} \cdot x^2,$$

i.e. $0 \le x^2 \le \frac{2(x_n - x)}{n - 1}$. Because $\lim_{n \to \infty} (x_n - x) = 0$ and $\lim_{n \to \infty} (n - 1) = \infty$, we get x = 0, i.e. $\lim_{n \to \infty} x_n = 0$.

2. From the Stolz theorem, because $\left(\frac{1}{x_n}\right)_{n\geq 2}$ increase and $\lim_{n\to\infty}\frac{1}{x_n}=\infty$ (after 1), we get

$$\limsup_{n\to\infty} nx_n \leq \limsup_{n\to\infty} \frac{1}{\frac{1}{x_n} - \frac{1}{x_{n+1}}} = \limsup_{n\to\infty} \frac{x_nx_{n+1}}{x_n - x_{n+1}}.$$

It follows

$$1 + nx_n = (1 + x_{n+1})^n \ge 1 + nx_{n+1} + \frac{n(n-1)}{2} \cdot x_{n+1}^2,$$

i.e. $x_n - x_{n+1} \ge \frac{n-1}{2} \cdot x_{n+1}^2$ and $\limsup_{n \to \infty} nx_n \le \limsup_{n \to \infty} \frac{nx_n}{\frac{n(n-1)}{2} \cdot x_{n+1}}$. From the equality $\ln(1 + x_{n+1}) = \frac{\ln(1+nx_n)}{n}$ for $n \ge 2$ and inequality $x \le (1+x)\ln(1+x)$ for $x \ge 0$ follows

$$0 \le \limsup_{n \to \infty} nx_n \le \limsup_{n \to \infty} \frac{(1 + nx_n) \ln(1 + nx_n)}{\frac{n(n-1)}{2} \cdot x_{n+1}} =$$

$$= 2 \cdot \limsup_{n \to \infty} \left(\frac{1 + nx_n}{n-1} \cdot \frac{\ln(1 + x_{n+1})}{x_{n+1}} \right) = 0.$$

It follows $0 \le \limsup_{n \to \infty} nx_n \le \limsup_{n \to \infty} nx_n \le 0$, i.e. $\lim_{n \to \infty} nx_n = 0$.

3. From 1 and 2 and $\lim_{t\to 0} \frac{\ln t}{t} = 1$ follows

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{x_{n+1}}{\ln(1 + x_{n+1})} \cdot \frac{\ln(1 + nx_n)}{nx_n} = 1.$$

Problem 1 For an arbitrary square matrix M, define

$$\exp(M) = I + \frac{M}{1!} + \frac{M^2}{2!} + \frac{M^3}{3!} + \dots$$

Construct 2×2 matrices A and B such that $\exp(A+B) \neq \exp(A) \exp(B)$.

Solution Note that if A and B commute then obviously $\exp(A+B)=\exp(A)\exp(B)$. So A and B should not commute.

Let
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Then $A^2 = B^2 = 0$,

$$\exp(A) = I + A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \exp(B) = I + B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix},$$
$$\exp(A) \exp(B) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$$

On the other hand,

$$(A+B)^k = \begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & k & \text{is even} \\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & k & \text{is odd} \end{cases}$$

so

$$\exp(A+B) = \begin{pmatrix} \sum_{k=0}^{\infty} \frac{1}{(2k)!} & \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \\ \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} & \sum_{k=0}^{\infty} \frac{1}{(2k)!} \end{pmatrix} = \begin{pmatrix} \cosh 1 & \sinh 1 \\ \sinh 1 & \cosh 1 \end{pmatrix}.$$

Problem 2 Let $(a_{i,j})_{i,j=1}^n$ be a real matrix such that $a_{i,i} = 0$ for i = 1, 2, ..., n. Prove that there exists a set $\mathcal{J} \subset \{1, 2, ..., n\}$ of indices such that

$$\sum_{\substack{i \in \mathcal{J} \\ j \notin \mathcal{I}}} a_{i,j} + \sum_{\substack{i \notin \mathcal{J} \\ j \in \mathcal{J}}} a_{i,j} \ge \frac{1}{2} \sum_{i,j=1}^{n} a_{i,j}.$$

Solution For every $\mathcal{I} \subset \{1, 2, ..., n\}$ let $F(\mathcal{I})$ be defined as follows:

$$F(\mathcal{I}) = \sum_{i \in \mathcal{I}, j \notin \mathcal{I}} a_{i,j} + \sum_{i \notin \mathcal{I}, j \in \mathcal{I}} a_{i,j}.$$

Let $\mathcal{J} \subset \{1, 2, ..., n\}$ satisfy the condition $F(\mathcal{J}) = \max\{F(\mathcal{I}) : \mathcal{I} \subset \{1, 2, ..., n\}\}$. We aim to prove, that $F(\mathcal{J}) \geq \frac{1}{2} \sum_{i,j=1}^{n} a_{i,j}$. For $k \in \mathcal{J}$ we have

$$0 \le F(\mathcal{J}) - F(\mathcal{J} \setminus \{k\}) = \sum_{j \notin \mathcal{J}} a_{k,j} + \sum_{i \notin \mathcal{J}} a_{i,k} - \sum_{j \in \mathcal{J}} a_{k,j} - \sum_{i \in \mathcal{J}} a_{i,k}.$$

Summing the above inequalities with $k \in \mathcal{J}$ we obtain

$$0 \le F(\mathcal{J}) - 2 \sum_{\substack{i \in \mathcal{J} \\ j \in \mathcal{J}}} a_{i,j}$$
 hence $\sum_{\substack{i \in \mathcal{J} \\ j \in \mathcal{J}}} a_{i,j} \le \frac{1}{2} F(\mathcal{J}).$

Similarly, for $k \notin \mathcal{J}$ we have

$$0 \le F(\mathcal{J}) - F(\mathcal{J} \cup \{k\}) = \sum_{j \in \mathcal{J}} a_{k,j} + \sum_{i \in \mathcal{J}} a_{i,k} - \sum_{j \notin \mathcal{J}} a_{k,j} - \sum_{i \notin \mathcal{J}} a_{i,k}.$$

Summing the above inequalities with $k \notin \mathcal{J}$ we obtain

$$0 \le F(\mathcal{J}) - 2 \sum_{\substack{i \notin \mathcal{J} \\ j \notin \mathcal{J}}} a_{i,j} \quad \text{hence} \quad \sum_{\substack{i \notin \mathcal{J} \\ j \notin \mathcal{J}}} a_{i,j} \le \frac{1}{2} F(\mathcal{J}).$$

Finally, we have:

$$\frac{1}{2} \sum_{i,j=1}^{n} a_{i,j} = \frac{1}{2} \left(\sum_{\substack{i \in \mathcal{J} \\ j \in \mathcal{J}}} a_{i,j} + \sum_{\substack{i \notin \mathcal{J} \\ j \notin \mathcal{J}}} a_{i,j} + F(\mathcal{J}) \right) \le
\le \frac{1}{2} \left(\frac{1}{2} F(\mathcal{J}) + \frac{1}{2} F(\mathcal{J}) + F(\mathcal{J}) \right) = F(\mathcal{J}).$$

The $15^{\rm th}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $6^{\rm th}$ April 2005 Category II

Problem 3 Let $f: [0,1] \times [0,1] \to \mathbb{R}$ be a continuous function. Find the limit

$$\lim_{n \to \infty} \left(\frac{(2n+1)!}{(n!)^2} \right)^2 \int_0^1 \int_0^1 (xy(1-x)(1-y))^n f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Solution Answer: $f(\frac{1}{2}, \frac{1}{2})$.

Proof: Set

$$L_n(f) = \left(\frac{(2n+1)!}{(n!)^2}\right)^2 \iint_O (xy(1-x)(1-y))^n f(x,y) \, dx \, dy.$$

Step 1. $\lim_{n\to\infty} L_n(x^ky^l) = \frac{1}{2^{k+l}} = \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^l$. This is a straightforward calculation:

$$\iint_{Q} (xy(1-x)(1-y))^{n} x^{k} y^{l} dx dy = \int_{0}^{1} x^{n+k} (1-x)^{n} dx \int_{0}^{1} y^{n+l} (1-y)^{n} dy =$$
(integrate by parts)
$$= \frac{(n+k)! n!}{(2n+k+1)!} \cdot \frac{(n+l)! n!}{(2n+l+1)!}.$$

Thus

$$\lim_{n \to \infty} L_n(x^k y^l) = \lim_{n \to \infty} \frac{(n+1)(n+2)\dots(n+k)}{(2n+2)(2n+3)\dots(2n+k+1)} \cdot \frac{(n+1)(n+2)\dots(n+l)}{(2n+2)(2n+3)\dots(2n+l+1)} = \frac{1}{2^{k+l}}.$$

Step 2. The desired result is satisfied for every polynomial P(x,y). Indeed, the limit and L_n are linear operators.

Step 3. Fix an arbitrary $\varepsilon > 0$. A polynomial P(x,y) can be chosen such that $|f(x,y) - P(x,y)| < \varepsilon$ for every $(x,y) \in Q$. Then

$$|L_n(f) - L_n(P)| \le L_n(|f - P|) < L_n(\varepsilon \cdot \mathbb{I}) = \varepsilon,$$

where $\mathbb{I}(x,y) = 1$, for every $(x,y) \in Q$.

According to step 2 there exists n_0 such that $|L_n(P) - P(\frac{1}{2}, \frac{1}{2})| < \varepsilon$ for $n \ge n_0$. For these integers

$$\left| L_n(f) - f\left(\frac{1}{2}, \frac{1}{2}\right) \right| \le |L_n(f) - L_n(P)| + \left| L_n(P) - P\left(\frac{1}{2}, \frac{1}{2}\right) \right| + \left| f\left(\frac{1}{2}, \frac{1}{2}\right) - P\left(\frac{1}{2}, \frac{1}{2}\right) \right| < 3\varepsilon,$$

which concludes the proof.

Problem 4 Let R be a finite ring with the following property: for any $a, b \in R$, there exists an element $c \in R$ (depending on a and b) such that $a^2 + b^2 = c^2$. Prove that for any $a, b, c \in R$, there exists an element $d \in R$ such that $2abc = d^2$.

(Here 2abc denotes abc + abc. The ring R is assumed to be associative, but not necessarily commutative and not necessarily containing a unit.)

Solution Let us denote $S = \{x^2 : x \in R\}$. The property of R can be rewritten as $S + S \subseteq S$. For each $y \in S$ the function $S \to S$, $x \mapsto x + y$ is injective, but since S is finite it is indeed bijective. Therefore, S is also closed under subtraction, so S is an additive subgoup of R.

Now for any $x, y \in R$ we have $xy + yx = (x + y)^2 - x^2 - y^2$, so

$$xy + yx \in S$$
.

We take arbitrary $a,b,c\in R$ and substitute:

$$x = a, y = bc \Rightarrow abc + bca \in S \tag{1}$$

$$x = c, y = ab \Rightarrow cab + abc \in S \tag{2}$$

$$x = ca, y = b \Rightarrow cab + bca \in S \tag{3}$$

If we add (1), (2) and subtract (3), we shall obtain $2abc \in S$.