The 15** Annual Vojtéch Jarnik
International Mathematical Competition
Ostrava, 6 April 2005
Category 1

Problem 1 Let So={z€C:|z| =1,z # —1} and f(z) = 1}:%@. Prove that f is a bijection between Sy and
R. Find f~'.

Solution Using z = ei* = cos(t) + isin(t), we can interpret our function as

sin(t)
t) = —-"+,1 - .
ug 1+ cos(t)’ € (=mm)
We can find easily (using L’Hospital or trigonometrical identities) lim f(7_) = oo and lim f(7}) = —o0, and by

the continuity the surjectivity follows. The injectivity can be deduced by

1
)= ——" >0
7' 1+ cos(t) ~
Since f(0) = 0, f maps (0,7) to RT and (—7,0) to R~. For ¢t > 0, sint > 0 and y = f(¢) > 0. Then

0<y=f(t) =/ %I_zgﬁ We get cost = };zi and finally ¢ = arccos(—1 + #), and similarly for ¢ < 0 and

y < 0: t = —arccos(—1 + 1+2y2)- =
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Problem 2 Let f: A®> — A, where A is a nonempty set and f satisfies:
1. forallw,y € A, f(z,y,y) = f(y,y,2) = = and
2. for all x1,x9,x3, Y1,Y2,Y3, 21,22, 23 € A,

F(f(21, 22, 23), f(y1,y2,y3), f (21, 22, 23)) =
= f(f(xhy1,21)7f(932,y2722)a f(xs,y3,23))~

Prove that for an arbitrary, fixed a € A, the operation x +y = f(x,a,y) is an Abelian group addition.

Solution Neutral element:
a+z = fla,a,z) =z = f(x,a,a) =z +a.

Associativity:

(at—&—y)—i—z:f(f(x,a,y),a,z) :f(f(x,a,y),f(a,a,a),f(a,a,z)) =
= f(f(z,a,a), fa,a,a), f(y,a,2)) = f(z,a, f(y,a,2)) = 2+ (y + 2).

Inverse element: Define —z to be f(a,x,a). Now,
x + (_m) = f(x,a,f(a,x,a)) = f(f(x,a,a), f(a,a,a),f(a,x,a)) =
= f(f(x7 a’ a)7f(a7a7 'T>7f(a7 a7 a)) = f('r7$7a) = a.

Commutativity:

x+y=f(3:,a,y) :f(f(a,a,x),f(a,a,a),f(y,a,a)) =
:f(f(a,aay)af(ava’a)>f(a’a’$)) :f(y,a,a?) =yt
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Problem 3 Find all reals \ for which there exists a non-zero polynomial P with real coefficients such that

P(1)+P@3)+P(5)+ -+ P2n—1)

= \P(n)

for all positive integers n. Find all such polynomials for \ = 2.

Solution Let P be a polynomial satisfying the given equation. Then, for all positive integers n,
P@2n+1) =A((n+1)P(n+1) —nP(n))

Hence P(2z + 1) — A((z + 1)P(z + 1) — 2P(z)) is a polynomial with infinitely many zeros; therefore it must be
the zero polynomial. Conversely, if P is a polynomial satisfying

P2z +1) = A(z 4+ 1)P(z + 1) —zP(z)) =0, (1)
we get (by putting z = 0) P(1) = AP(1) and then by induction
P(1)+ P(3) + -+ P(2n — 1) = AnP(n)

for all positive integers n. We can therefore equally well consider (1).
The set of all real A for which there is a non-trivial solution of (1) is given by the set

k
(el - {ra2)

where k runs through all non-negative integers. To prove this, let the pair (P,\) be a solution for (1), and
write P(x) = az® + Q(z) where a # 0 and @ is a polynomial of degree less than k. Then the polynomial
S(z) =(x+1)Q(z+ 1) —zQ(x) is of degree less than k as well, and hence

(z+1)P(z+1)—2P(x) = a((z+1)"" —2") 4+ S(z)
= a(k+1)z* +T(z)

for some polynomial T of degree less than k. On the other hand, the degree-k-coefficient of P(2x + 1) is 2¥a,
and therefore we conclude from (1)
2k = ha(k +1)

which is the same as A = ,f—il Conversely, let A be of the form kQ—_:l for some non-negative integer k, and write P,
for the (n+ 1)-dimensional vector space of all real polynomials of degree at most n. By the computations above,

we have a linear map

P, — P
P — PR2z+1)-A(z+1)P(x+1) —2P(z))

Since the dimension of Pj_; is less than the dimension of Py, this map must have non-trivial kernel. Hence
there is some non-zero polynomial P satisfying (1).

Now let A = 2. If k is the degree of P, we have seen that ,f—f:l = A = 2, but this is only possible for k = 3.

Putting = 1 in (1) we get P(1) = 2P(1), so P(1) = 0. For x = —1 we get
P(=1) =2(=P(-1)) =0,

which is P(—1) = 0. Hence P(z) = (z — 1)(z + 1)(axz + b) for some reals a,b. From P(1) + P(3) = 4P(2) we
get P(3) = 4P(2), hence

2-4-3a+b)=4-3-(2a+Db),
that is, b = 0. Thus we got P(x) = a(z® — x). The set of polynomials we are looking for form a non-trivial

vector space contained in the one-dimensional vector space spanned by 22 — 2. Therefore these are exactly the
solutions of (1) for A = 2, and we are done. O
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Problem 4 Let (z,,),>2 be a sequence of real numbers such that xo > 0 and 41 = —1+ {/1 + nx,, forn > 2.
Find

1. lim z,;
n—oo

2. lim nx,.
n— o0

Solution

1. It follows by induction that the sequence (x,),>2 is correctly defined and that z, > 0 for n > 2. From
the Bernoulli inequality follows

l+nz, =14z,41)" > 1+ nzyy1,

i.e. this sequence decrease (i.e. it is convergent). If lim z,, =z > 0, then
n—oo

-1
1+nzn:(1+xn+1)”2(1+x)”21+nw+%~x2,

ie. 0 <22 < % Because lim (z, —x) =0 and lim (n —1) = oo, we get x =0, i.e. lim z, = 0.
n—00 n—00 n—r00

2. From the Stolz theorem, because (%) N increase and lim - = oo (after 1), we get
"/ n>2 n— oo

n

TnIn+1

lim sup nz,, < limsup — — = limsup .
n—oo n—oo Tn Tt n—soo ITp — Tn4l
It follows ( 0
n(n —
14+ nz, =04 2p41)" > 1+ na,1 + — '$i+17
ie. m, — Tpy1 > ”T_l . :z:fl+1 and limsup nz, < limsup =5 . From the equality In(1 + 2,41) =
n— oo n—oo 2 Tnitl

% for n > 2 and inequality x < (1 + ) In(1 + z) for = > 0 follows

1 n) In(1 "
0 < limsup nx, < limsup ( +Zﬁ—)1)n( + nxy,) _

n— 00 n— 00 5 C Tyl
1 In(1
:211msup( + nTy . Il( +xn+1)> —-0.
n—o00 n—1 Tn+1

It follows 0 < lim sup nx, < limsupnz, <0, i.e. lim nx, = 0.
n—o0o n—00 n—oo

3. From 1 and 2 and lim lnTt = 1 follows
t—0

RS N PO 155 W | e 1) Y
n—oo T, n—oo In(1 4 xp41) nT,
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Problem 1 For an arbitrary square matrix M, define

M M? M3
EXP(M):I—’_H—FT—F?—’_""
Construct 2 x 2 matrices A and B such that exp(A + B) # exp(A) exp(B).
Solution Note that if A and B commute then obviously exp(A + B) = exp(A) exp(B). So A and B should not

commute.
Let A= (84) and B=(99). Then 4% = B? =0,

exp(A) =T+ A= ((1) 1) exp(B) =1+ B = G ?)
esp(a)en(s) = (7 1)

On the other hand,

—_
o

) k is even

jan}
—

7~ N~ N
o
—

) k is odd
1 0

SO N N
1 1
exp(A + B) = k§o (2F)! kgo (EFDN\ - (cosh1 sinh1l
- 1 X1 sinhl coshl)/’
Z (2k+1)! Z (2k)!
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Problem 2 Let (aid)?,j:l

J C {1,2,...,n} of indices such that

D aij+ Z Gij = Z ij-
i€ 4,5=1
i¢T JEJ

Solution For every Z C {1,2,...,n} let F(Z) be defined as follows:

Z a;j + Z Qg j.

i€L,j¢T gL, jEL

Let J C {1,2,...,n} satisfy the condition F(J) = max{F(Z) : Z C {1,2,...,

F(j) Z % ZZ]:l aivj'
For k € J we have

0< P(T) = FIN\ARY) = D any + D aik— p_ arg -

€T igJ JjeT

Summing the above inequalities with k € J we obtain

be a real matrix such that a;,; =0 fori=1,2, ...,

n. Prove that there exists a set

n}}. We aim to prove, that

E i k-

i€eJ

OSF(j)—2Zai}j hence Zai’j < %F(J)

i€J ieJ
j€eT jeT

Similarily, for k ¢ J we have

0<F(T) ~FTURD =Y an;+ > aik— D aj -

JjeT i€J Jig€T

Summing the above inequalities with k ¢ J we obtain

1
0<F(J)-2 Z a;; hence Z a;; < §F(..7

[Ny (“Ng
JjeT JjE€T

Finally, we have:
1 < 1
3 > aij= §(Zam‘+ > ai +F(«7)) <
i,j=1 ieJ (“Ng

jeJ J¢T

—2\2 2

E Q; k-

(Vg

< 2 (3PW) + 5P+ F(W)) = F(D).
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Problem 3 Let f: [0,1] x [0,1] — R be a continuous function. Find the limit

1Lm<2n+1 ) // zy(l —z)(1 — ))nf(x,y)dmdy.

Solution Answer: f(%, %)

Proof: Set 2 1
Ln(f)— n—I— // xy(1 — x)( 1—y))nf(ac,y)dxdy.

Step 1. lim Ln(zFy!) = 57 = (%)k(%)l . This is a straightforward calculation:

é/(wy(l —2)(1—y)) oty dedy = /01 2" (1 - a)" 0196/01 y" (1 —y)tdy =

(n+k)In! (n+0)n!
2n+k+1)! @Cn4+l+1)°

(integrate by parts) =

Thus

. L (n+1)(n+2)...(n+k)

Jim Ly (a*y') = lim 2n+2)(2n+3)...2n+k+1)
. n+1)(n+2)...(n+1) 1
@n+2)2n+3)...2n+1+1) 2k1°

Step 2. The desired result is satisfied for every polynomial P(x,y). Indeed, the limit and L, are linear
operators.

Step 3. Fix an arbitrary € > 0. A polynomial P(z,y) can be chosen such that |f(z,y) — P(x,y)| < € for
every (z,y) € Q. Then

where I(z,y) = 1, for every (z,y) € Q.
According to step 2 there exists no such that |L,(P) — P(3,3)| <& for n > ny. For these integers

313)| < 1) = LalPI+ [20(P) = P(5:5) + 11(5:5) ~ P(5:5) | <2

which concludes the proof. O

Za(h) = £ (
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Problem 4 Let R be a finite ring with the folowing property: for any a,b € R, there exists an element c € R
(depending on a and b) such that a® + b* = ¢?. Prove that for any a,b,c € R, there exists an element d € R
such that 2abc = d>.

(Here 2abc denotes abc+ abe. The ring R is assumed to be associative, but not necessarily commutative and
not necessarily containing a unit.)
Solution Let us denote S = {22 : x € R}. The property of R can be rewritten as S +S C S. For each y € S
the function S — S, z — x +y is injective, but since S is finite it is indeed bijective. Therefore, .S is also closed
under subtraction, so S is an additive subgoup of R.

Now for any z,y € R we have zy + yr = (v + y)? — 22 — 2, so

xy+yxr €S.

We take arbitrary a,b,c € R and substitute:

—~
—_
~—

T =a,y =bc= abc+ bca € S
r=c,y=ab= cab+abce S (
x=ca,y="b= cab+bca € S

—
o &8

If we add (1), (2) and subtract (3), we shall obtain 2abc € S.



