
Category I

Problem 1. Can the set of positive rationals be split into two nonempty disjoint subsets
Q1 and Q2, such that both are closed under addition, i.e. p + q ∈ Qk for every p, q ∈ Qk,
k = 1, 2? Can it be done when addition is exchanged for multiplication, i.e. p · q ∈ Qk for every
p, q ∈ Qk, k = 1, 2?

Solution. (a) No. If p
q , r

s ∈ Qk then of course ps+qr
qs ∈ Qk. Adding n times p

q and m times r
s

gives nps+mqr
qs ∈ Qk for all positive integers n, m, hence ñp+m̃r ∈ Qk for all positive integers ñ, m̃.

So if pk
qk

, rk
sk
∈ Qk we get that p1p2 + r1r2 ∈ Q1 ∩Q2.

(b) Yes, for instance

Q1 =
{m

n
∈ Q+ : (m,n) = 1 and 2 | n

}
and Q2 = Q+ \Q1 .
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Problem 2. Alice has got a circular key ring with n keys, n ≥ 3. When she takes it out
of her pocket, she does not know whether it got rotated and/or flipped. The only way she
can distinguish the keys is by colouring them (a colour is assigned to each key). What is the
minimum number of colors needed?

Solution. Clearly at least two colors are needed in any case to distinguish between at least
two keys. For three, four or five keys on the ring, we will show that three colors are necessary.
For six or more keys on the ring, we will show that two colors suffice. Choose one key and
denote it with k1. Order all other keys in natural order as they follow each other going from k1

around the ring in one direction. For 1 ≤ i ≤ n denote with c(ki) color of the key ki. Without
loss of generality let c(k1) = 1.

Suppose that two colors suffice for n = 3. Then there are two similar possibilities for coloring
the keys. Either c(k2) = c(k3) = 2 or c(k2) = 1. In the first case one can not distinguish between
keys k2 and k3. In the second case one can not distinguish between keys k1 and k2. Hence for
n = 3 we need three colors.

Suppose that two colors suffice for n = 4. Then there are four possibilities for coloring the
keys. If c(k2) = c(k3) = c(k4) = 2, then k2 and k4 can not be distinguished (rotation of the key
ring through the line across k1 and k3 interchanges k2 and k4). If c(k2) = 1 and c(k3) = c(k4) = 2
then there is a rotation that interchanges k1 and k2 and also interchanges k3 and k4 (similar is
the case when c(k4) = 1 and c(k2) = c(k3) = 2). If c(k3) = 1 and c(k2) = c(k4) = 2 then there is
a rotation that interchanges k1 and k3 and there is also other rotation that interchanges k2 and
k4. Hence for n = 4 at least three colors are needed. Consider the following coloring: c(k1) = 1,
c(k2) = 2, c(k3) = 3 and c(k4) = 1 (one possibility). Keys k1 and k4 have the same color, but
one can distinguish between them since k1 has a neighbor colored with color 1 and a neighbor
colored with color 2, while k4 has also one neighbor colored with color 1, but the other neighbor
is colored with color 3. Hence three colors suffice for n = 4.

Suppose that two colors suffice for n = 5. Then there are two possibilities for coloring the
keys: all other keys than k1 are colored with color 2 (the similar is the case when one key gets
color 1, only the roles of the colors are interchanged) or one of them gets color 1 and other
three get color 2 (the same is the case when two keys get color 2, only the roles of the colors are
interchanged). In first case one can not distinguish between keys k2 and k5 and also between
keys k3 and k4 (there is a rotation of the key ring where keys in both pairs interchange, while
k1 is fixed). When there is a key other than k1 with color 1 we need to consider two subcases.
If c(k2) = 1 (similar is the case when c(k5) = 1) we can not distinguish between k1 and k2 (also
between k3 and k5). If c(k3) = 1 (similar is the case when c(k4) = 1) we can not distinguish
between k1 and k3 (also between k4 and k5). Hence for n = 5 at least three colors are needed.
Consider the following coloring: c(k1) = 1, c(k2) = 2, c(k3) = 3 and c(k4) = c(k5) = 2 (one
possibility). Keys k2, k4 and k5 have the same color, but one can distinguish between them
since k2 is the only one between them that has a neighbor colored with color 1 and a neighbor
colored with color 3, while only k4 has a neighbor colored with color 3 and a neighbor colored
with color 2. Hence three colors suffice for n = 5.

For n ≥ 6 consider the following coloring: c(k1) = 1, c(kn) = 2, c(kn−1) = c(kn−2) = 1 and
c(ki) = 2 for 2 ≤ i ≤ n− 3. Then k1 is the only key of color 1 with both neighbors colored with
color 2. Keys kn−1 and kn−2 both have neighbors of two different colors, but the distance (the
smallest of the two numbers: number of the keys lying between the two keys in one and other
direction) between kn−1 and k1 is one while the distance between kn−2 and k1 is two. Hence
one can distinguish between all three keys colored with color 1. Among keys colored with color
2 only kn has both neighbors colored with color 1. All other keys: ki for 2 ≤ i ≤ n − 3 have
either one or two neighbors colored with color 2. But any ki, where 2 ≤ i ≤ n− 3, has a pair of
distances: distance between ki and k1 and distance between ki and kn−2 that is different from
any other pair of distances of some key kj 6= ki for 2 ≤ j ≤ n − 3 . Hence we can distinguish
also between keys colored with color 2.
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Problem 3. A function f : [0,∞) → R \ {0} is called slowly changing if for any t > 1 the

limit lim
x→∞

f(tx)
f(x) exists and is equal to 1. Is it true that every slowly changing function has for

sufficiently large x a constant sign (that is — it is true that for every slowly changing f there
exists N such that for every x, y > N we have f(x)f(y) > 0?)

Remark. The assumption f(x) 6= 0 is only technical, to avoid explaining what does the limit
mean in the other case, and in reality changes nothing.

Remark. The reader is encouraged to try and solve the problem himself before reading the
solution. The author’s and the proposer’s opinion is that although the solution is simple, it is
not so easy to find it (both tried, both succeeded, but both spent some time on it before getting
the correct idea).

Solution. Take t = 2. Take such a N > 0 that for x > N we have f(2x)
f(x) > 0. This means

f(2x) and f(x) are of the same sign for x > N . Suppose that for any x > N we have that
f(x) and f(N) are of a different sign. Let t = x

N . Then f(tN)
f(N) < 0, and by easy induction

f(t2kN)
f(2kN)

< 0 for any k ∈ N, which contradicts the assumption f(tx)
f(x) → 1 when x tends to ∞. The

contradiction proves the thesis.
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Problem 4. Let f : [0, 1] → [0,∞) be an arbitrary function satisfying

f(x) + f(y)
2

≤ f
(x + y

2

)
+ 1 (1)

for all pairs x, y ∈ [0, 1]. Prove that for all 1 ≤ u < v < w ≤ 1,

w − v

w − u
f(u) +

v − u

w − u
f(w) ≤ f(v) + 2 .

Solution. Let

M(u, w) = sup
v∈(u,w)

(
w − v

w − u
f(u) +

v − u

w − u
f(w)− f(v)

)
;

we have to prove M(u, w) ≤ 2. Note that M(u, w) is finite, because

w − v

w − u
f(u) +

v − u

w − u
f(w)− f(v) ≤ 1 · f(u) + 1 · f(w)− 0 = f(u) + f(w) .

Let ε > 0 be an arbitrary positive real number. Choose v such that

w − v

w − u
f(u) +

v − u

w − u
f(w)− f(v) > M(u, w)− ε .

If v ≤ u+w
2 , then apply (1) for x = u and y = u + 2(v − u) = 2v − u:

f(u) + f(2v − u)
2

≤ f(v) + 1 ;

M(u, w)− ε <
w − v

w − u
f(u) +

v − u

w − u
f(w)− f(v)

≤ w − v

w − u
f(u) +

v − u

w − u
f(w)− f(u) + f(2v − u)

2
+ 1

=
1
2

(
w − (2v − u)

w − u
f(u) +

(2v − u)− u

w − u
f(w)− f(2v − u)

)
+ 1

≤ 1
2
M(u, w) + 1 ;

M(u, w) ≤ 2 + 2ε .

Otherwise, if u+w
2 < v, apply x = w − 2(w − v) = 2v − w and y = v in (1):

f(2v − w) + f(w)
2

≤ f(v) + 1 ;

M(u, w)− ε <
w − v

w − u
f(u) +

v − u

w − u
f(w)− f(v)

≤ w − v

w − u
f(u) +

v − u

w − u
f(w)− f(2v − w) + f(w)

2
+ 1

=
1
2

(
w − (2v − w)

w − u
f(u) +

(2v − w)− u

w − u
f(w)− f(2v − w)

)
+ 1

≤ 1
2
M(u, w) + 1 ;

M(u, w) ≤ 2 + 2ε .

In both cases we obtained M(u, w) ≤ 2 + 2ε. This holds for all ε, therefore M(u, w) ≤ 2.
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