Category II

Problem 1. Construct a set $A \subset[0,1] \times[0,1]$ such that A is dense in $[0,1] \times[0,1]$ and every vertical and every horizontal line intersects A in at most one point.

Solution. Take $\alpha, \beta \notin \mathbb{Q}$ such that $\frac{\alpha}{\beta} \notin \mathbb{Q}$. Then

$$
A:=\{(\{n \alpha\},\{n \beta\}): n \in \mathbb{N}\},
$$

where $\{x\}$ denotes the fractional part of x, fulfills the assumptions.

Problem 2. Let A be a real $n \times n$ matrix satisfying

$$
A+A^{t}=I
$$

where A^{t} denotes the transpose of A and I the $n \times n$ identity matrix. Show that $\operatorname{det} A>0$.
Solution. The assumption $A+A^{t}=I$ is equivalent to saying $A=S+\frac{1}{2} I$ where S denotes an arbitrary real skew symmetric matrix. In particular, there exists some orthogonal matrix T that diagonalizes S and for which $D:=T^{t} S T$ contains the eigenvalues of S. They are either zero or purely imaginary and pairwise conjugated, i.e. of the form

$$
r_{1} \mathrm{i},-r_{1} \mathrm{i}, \ldots, r_{s} \mathrm{i},-r_{s} \mathrm{i}, 0, \ldots, 0
$$

with $r_{k} \in \mathbb{R}$ for all $k=1, \ldots, s$. The determinant of A is evaluated as follows:

$$
\operatorname{det} A=\operatorname{det}\left(S+\frac{1}{2} I\right)=\operatorname{det}\left(D+\frac{1}{2} I\right)
$$

since $\operatorname{det}\left(T^{t} T\right)=1$ and with the notations from above this expression is

$$
\left(\frac{1}{2}\right)^{n-2 s} \prod_{i=1}^{s}\left(\frac{1}{2}+r_{k} \mathrm{i}\right)\left(\frac{1}{2}-r_{k} \mathrm{i}\right)=\left(\frac{1}{2}\right)^{n-2 s} \prod_{i=1}^{s}\left(\frac{1}{4}+r_{k}^{2}\right) .
$$

As all factors are strictly positive the result follows.

Problem 3. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f(0)=f(1)=0$. Prove that the set

$$
A:=\{h \in[0,1]: f(x+h)=f(x) \text { for some } x \in[0,1]\}
$$

has Lebesgue measure at least $\frac{1}{2}$.
Solution. Let us observe, that if f is continuous then A is closed, thus A is Lebesgue measurable. Moreover the set

$$
B:=\{h \in[0,1]: 1-h \in A\}
$$

has the same Lebesgue measure as the set A. We show that $A \cup B=[0,1]$.
For any $h \in[0,1]$ we define a function $g:[0,1] \rightarrow \mathbb{R}$ by

$$
g(x)=f(x+h)-f(x) \quad \text { if } x+h \leq 1
$$

and

$$
g(x)=f(x+h-1)-f(x) \quad \text { if } x+h>1
$$

From the assumption we have that g is continuous. If f has its minimum and maximum, respectively, in x_{0} and x_{1}, then $g\left(x_{0}\right) \geq 0$ and $g\left(x_{1}\right) \leq 0$. From Darboux property we have that, there exists x_{2} such that $g\left(x_{2}\right)=0$, therefore $h \in A$ or $h \in B$. This completes the proof.

Problem 4. Let S be a finite set with n elements and \mathcal{F} a family of subsets of S with the following property:

$$
A \in \mathcal{F}, A \subseteq B \subseteq S \Longrightarrow B \in \mathcal{F}
$$

Prove that the function $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(t):=\sum_{A \in \mathcal{F}} t^{|A|}(1-t)^{|S \backslash A|}
$$

is nondecreasing $(|A|$ denotes the number of elements of $A)$.
Solution. Without loss of generality assume $S=\{1,2, \ldots, n\}$. For each subset A and every $t \in[0,1]$ construct a set $I_{t, A}:=\prod_{j=1}^{n} I_{t, A}^{(j)}$ in \mathbb{R}^{n}, where

$$
I_{t, A}^{(j)}:= \begin{cases}{[0, t)} & \text { if } j \in A \\ {[t, 1]} & \text { if } j \notin A\end{cases}
$$

It's clear that for any two different subsets A and B the sets $I_{t, A}$ and $I_{t, B}$ are disjoint. Since the volume of $I_{t, A}$ is equal to $t^{|A|}(1-t)^{\left|A^{c}\right|}$ we have that $f(t)$ is equal to the volume of $\bigcup_{A \in \mathcal{F}} I_{t, A}$. So the claim will be proved if we prove that

$$
\begin{equation*}
\bigcup_{A \in \mathcal{F}} I_{t_{1}, A} \subseteq \bigcup_{A \in \mathcal{F}} I_{t_{2}, A} \quad \text { for all } 0<t_{1}<t_{2}<1 \tag{1}
\end{equation*}
$$

Take an arbitrary $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in I_{t_{1}, A}$ for some $A \in \mathcal{F}$. Construct a set $B \subseteq S$ such that $j \in B$ if and only if $x_{j} \leq t_{2}$. If $j \notin B$ then $x_{j}>t_{2}>t_{1}$ which implies $j \notin A$. So $A \subseteq B$ and thus $B \in \mathcal{F}$. Moreover, from the definition of B, we have $x \in I_{t_{2}, B}$. This proves (1) and the problem is solved.

