
Problem j18-II-1. Find all functions f : Z → Z such that

19f(x)− 17f(f(x)) = 2x (1)

for all x ∈ Z.

Solution. Suppose that there exists a function f : Z → Z satisfying the above equation.
Then define a function g: Z → Z by

g(x) = x− f(x) . (2)

Taking into account (1) and (2), we get

17g(f(x)) = 2g(x) . (3)

Let us fix y ∈ Z and let a := g(y). Define a sequence (xn)n≥0 as follows

x0 := y , x1 := f(x0) , . . . , xn := f(xn−1) , . . .

for any n ∈ N. Now substituting xn into (3) in turn, we get

a = g(x0) =
17
2

g(x1) = . . . =
17n

2n
g(xn)

for any n > 0. Consequently, we infer that

2na = 17ng(xn)

for any n > 0. Since 2 and 17 are relatively prime, we deduce that 17n | a for any n > 0
and therefore a = 0. Moreover, since y was arbitrary, it follows that g(y) = 0 for any y ∈ Z.
Thus y − f(y) = 0 for any y ∈ Z and hence f(y) = y for any y ∈ Z. This implies that only
one function satisfies the equation (1). So, this completes the solution. �
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Problem j18-II-2. Find all continuously differentiable functions f : [0, 1] → (0,∞) such

that f(1)
f(0) = e and ∫ 1

0

dx

f(x)2
+

∫ 1

0

f ′(x)2 dx ≤ 2 .

Solution. First, we note that if f is such function, then

0 ≤
∫ 1

0

(
f ′(x)− 1

f(x)

)2

dx =
∫ 1

0

f ′(x)2 dx− 2
∫ 1

0

f ′(x)
f(x)

dx +
∫ 1

0

dx

f(x)2

=
∫ 1

0

f ′(x)2 dx− 2
∫ 1

0

(ln f(x))′ dx +
∫ 1

0

dx

f(x)2

=
∫ 1

0

f ′(x)2 dx− 2 ln
f(1)
f(0)

+
∫ 1

0

dx

f(x)2
dx ≤ 0 ,

since f(1)
f(0) = e and

∫ 1

0
dx

f(x)2 +
∫ 1

0
f ′(x)2 dx ≤ 2. Therefore

∫ 1

0

(
f ′(x)− 1

f(x)

)2

dx = 0 . (1)

Since f is continuously differentiable function on [0, 1], the equality (1) is equivalent to

f ′(x)f(x) = 1 ∀x ∈ [0, 1] . (2)

All positive solutions of the differential equation (2) are in the form f(x) =
√

2x + C for
some C > 0. Since f(1)

f(0) = e, we have C = 2
e2−1 , and thus

f(x) =

√
2x +

2
e2 − 1

is the unique function satisfying the conditions from the statement. �
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Problem j18-II-3. Find all pairs of natural numbers (n, m) with 1 < n < m such that the
numbers 1, n

√
n and m

√
m are linearly dependent over the field of rational numbers Q.

Solution. The answer is n = 2,m = 4.
We begin with the following

Lemma. The minimal (over Q) polynomial f(X) for n
√

n equals Xk− (n
√

n)k, where k is the
minimal satisfying (n

√
n)k ∈ N.

Proof. n
√

n is a root of Xn−n = 0. So there is some nonempty subset A of {0, 1, ..., n−1}
such that

f(X) =
∏
l∈A

(X − ζl) ,

where ζ = cos
(

2π
n

)
+ i sin

(
2π
n

)
.

The free term of f(X) has an absolute value equal to (n
√

n)|A|. Hence (n
√

n)deg f(X) is
integer, and deg f(X) ≥ k follows (k is as in the lemma). But, clearly n

√
n is a root of

Xk − (n
√

n)k, which has integer coefficients.
Let us assume that 1, n

√
n, m

√
m are linearly dependent over Q, i.e. there are rational

a, b, c not all equal 0 such that a + b n
√

n + c m
√

m = 0.
Case a 6= 0. Then, as n

√
n is irrational, we have b, c 6= 0. But a + b n

√
n = −c m

√
m has

the same degree of a minimal polynomial as n
√

n, and as m
√

m. Let k be the degree of the
minimal polynomial for m

√
m. Then y = n

√
n satisfies

(a + by)k = (m
√

m)k ,

but yk and (m
√

m)k are rational, and as a, b 6= 0 we obtain that there is a nonzero polynomial
with rational coefficients vanishing n

√
n of degree smaller than k, a contradiction.

Case a = 0. Hence
n
√

n
m
√

m
is rational, and this is equivalent to nm

mn is a mn-th power of
a rational. Let p be any prime, and pa ‖ n, pb ‖ m. So we must have mn | am − bn. But
am−bn ≤ am < mn, in view of a ≤ log2 n < n. In a similar way one obtains am−bn > −mn.
So we must have am = bn, the relation independent of the choice of prime p. Thus

n = mm/n,

and n
√

n = m
√

m follows. As the function x
√

x has maximum at x = e, we see that n
√

n = m
√

m
holds only for n = 2,m = 4. �

2-Apr-2008 j18-II-3 1 � 13:39



Problem j18-II-4. We consider the following game for one person. The aim of the player
is to reach a fixed capital C > 2. The player begins with capital 0 < x0 < C. In each turn
let x be the player’s current capital. Define s(x) as follows:

s(x) :=

{
x if x < 1
C − x if C − x < 1
1 otherwise.

Then a fair coin is tossed and the player’s capital either increases or decreases by s(x), each
with probability 1

2 . Find the probability that in a finite number of turns the player wins by
reaching the capital C.

Solution. Let us denote by f(x) the probability that player wins with starting capital x.
If x ≤ 1, then he loses if loses the first turn, and if he wins the first turn, he has

capital 2x. Thus f(x) = 1
2f(2x).

If x ≥ C − 1 the player wins if he wins the first turn, and has 2x−C in other case, thus
f(x) = 1

2 + 1
2f(2x− C).

In all other cases there is f(x) = 1
2

(
f(x− 1) + f(x + 1)

)
.

We will prove that this implies f(x) = x
C .

Let us define g(x) = f(x)− x
C . It is bounded on [0, C] (as f(x) ∈ [0, 1]), and we have

g(x) =



1
2f(2x)− x

C = 1
2

(
f(2x)− 2x

C

)
= 1

2g(2x) for x ≤ 1,
1
2

(
f(x− 1) + f(x + 1)

)
− x

C

= 1
2

(
f(x− 1)− x−1

C + f(x + 1)− x+1
C

)
= 1

2

(
g(x− 1) + g(x + 1)

)
for x ∈ (1, C − 1),

1
2 + 1

2f(2x− C)− x
C

= 1
2

(
f(2x− C)− 2x−C

C

)
= 1

2g(2x− C) for x ≥ C − 1.

Obviously g(0) = g(C) = 0. Let K = sup
t∈[0,C]

f(t) ∈ [0,∞). Denote n0 = [C]− 1 ≥ 1.

We will prove for any natural 0 < n ≤ n0 and x ∈ (n− 1, n] there is g(x) ≤ 2n−1
2n K.

If x ∈ (0, 1] there is g(x) = 1
2g(2x) ≤ K

2 .
Assume, that for x ≤ n − 1 and take x̄ ∈ (n − 1, n]. There is g(x̄ − 1) ≤ 2n−1−1

2n−1 K as
x̄− 1 ∈ (n− 2, n− 1], and g(x̄ + 1) ≤ K. Thus

g(x̄) =
1
2
(
g(x̄− 1) + g(x̄ + 1)

)
≤ 1

2

(2n−1 − 1
2n−1

K + K
)

=
2n − 1

2n
K

as required.
g(x) ≤= 1

2g(2x− C) ≤ K
2 for x ≥ C − 1.

Now take x ∈ (n0, C−1) (it is empty set for integer C). We have proved that g(x−1) ≤
2n0−1
2n0 K (as x− 1 ∈ (n0 − 1, n0)) and g(x + 1) ≤ K

2 (x + 1 > C − 1). Thus g(x) ≤ 2n0−1
2n0 K.

Thus we have proved, that g(x) ≤ 2n0−1
2n0 K for every x ∈ [0, C], which means that K = 0.

Similarly one can prove, that inf
t∈[0,C]

f(t) = 0. Thus g(x) ≡ 0, so f(x) = x
C . �
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