Problem j18-II-1. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
\begin{equation*}
19 f(x)-17 f(f(x))=2 x \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{Z}$.
Solution. Suppose that there exists a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying the above equation. Then define a function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$
\begin{equation*}
g(x)=x-f(x) . \tag{2}
\end{equation*}
$$

Taking into account (1) and (2), we get

$$
\begin{equation*}
17 g(f(x))=2 g(x) \tag{3}
\end{equation*}
$$

Let us fix $y \in \mathbb{Z}$ and let $a:=g(y)$. Define a sequence $\left(x_{n}\right)_{n \geq 0}$ as follows

$$
x_{0}:=y, \quad x_{1}:=f\left(x_{0}\right), \quad \ldots, \quad x_{n}:=f\left(x_{n-1}\right), \quad \ldots
$$

for any $n \in \mathbb{N}$. Now substituting x_{n} into (3) in turn, we get

$$
a=g\left(x_{0}\right)=\frac{17}{2} g\left(x_{1}\right)=\ldots=\frac{17^{n}}{2^{n}} g\left(x_{n}\right)
$$

for any $n>0$. Consequently, we infer that

$$
2^{n} a=17^{n} g\left(x_{n}\right)
$$

for any $n>0$. Since 2 and 17 are relatively prime, we deduce that $17^{n} \mid a$ for any $n>0$ and therefore $a=0$. Moreover, since y was arbitrary, it follows that $g(y)=0$ for any $y \in \mathbb{Z}$. Thus $y-f(y)=0$ for any $y \in \mathbb{Z}$ and hence $f(y)=y$ for any $y \in \mathbb{Z}$. This implies that only one function satisfies the equation (1). So, this completes the solution.

Problem j18-II-2. Find all continuously differentiable functions $f:[0,1] \rightarrow(0, \infty)$ such that $\frac{f(1)}{f(0)}=\mathrm{e}$ and

$$
\int_{0}^{1} \frac{\mathrm{~d} x}{f(x)^{2}}+\int_{0}^{1} f^{\prime}(x)^{2} \mathrm{~d} x \leq 2
$$

Solution. First, we note that if f is such function, then

$$
\begin{aligned}
0 & \leq \int_{0}^{1}\left(f^{\prime}(x)-\frac{1}{f(x)}\right)^{2} \mathrm{~d} x=\int_{0}^{1} f^{\prime}(x)^{2} \mathrm{~d} x-2 \int_{0}^{1} \frac{f^{\prime}(x)}{f(x)} \mathrm{d} x+\int_{0}^{1} \frac{\mathrm{~d} x}{f(x)^{2}} \\
& =\int_{0}^{1} f^{\prime}(x)^{2} \mathrm{~d} x-2 \int_{0}^{1}(\ln f(x))^{\prime} \mathrm{d} x+\int_{0}^{1} \frac{\mathrm{~d} x}{f(x)^{2}} \\
& =\int_{0}^{1} f^{\prime}(x)^{2} \mathrm{~d} x-2 \ln \frac{f(1)}{f(0)}+\int_{0}^{1} \frac{\mathrm{~d} x}{f(x)^{2}} \mathrm{~d} x \leq 0
\end{aligned}
$$

since $\frac{f(1)}{f(0)}=\mathrm{e}$ and $\int_{0}^{1} \frac{\mathrm{~d} x}{f(x)^{2}}+\int_{0}^{1} f^{\prime}(x)^{2} \mathrm{~d} x \leq 2$. Therefore

$$
\begin{equation*}
\int_{0}^{1}\left(f^{\prime}(x)-\frac{1}{f(x)}\right)^{2} \mathrm{~d} x=0 \tag{1}
\end{equation*}
$$

Since f is continuously differentiable function on $[0,1]$, the equality (1) is equivalent to

$$
\begin{equation*}
f^{\prime}(x) f(x)=1 \quad \forall x \in[0,1] \tag{2}
\end{equation*}
$$

All positive solutions of the differential equation (2) are in the form $f(x)=\sqrt{2 x+C}$ for some $C>0$. Since $\frac{f(1)}{f(0)}=\mathrm{e}$, we have $C=\frac{2}{\mathrm{e}^{2}-1}$, and thus

$$
f(x)=\sqrt{2 x+\frac{2}{\mathrm{e}^{2}-1}}
$$

is the unique function satisfying the conditions from the statement.

Problem j18-II-3. Find all pairs of natural numbers (n, m) with $1<n<m$ such that the numbers 1, $\sqrt[n]{n}$ and $\sqrt[m]{m}$ are linearly dependent over the field of rational numbers \mathbb{Q}.

Solution. The answer is $n=2, m=4$.
We begin with the following
Lemma. The minimal (over \mathbb{Q}) polynomial $f(X)$ for $\sqrt[n]{n}$ equals $X^{k}-(\sqrt[n]{n})^{k}$, where k is the minimal satisfying $(\sqrt[n]{n})^{k} \in \mathbb{N}$.

Proof. $\sqrt[n]{n}$ is a root of $X^{n}-n=0$. So there is some nonempty subset A of $\{0,1, \ldots, n-1\}$ such that

$$
f(X)=\prod_{l \in A}\left(X-\zeta^{l}\right)
$$

where $\zeta=\cos \left(\frac{2 \pi}{n}\right)+\mathrm{i} \sin \left(\frac{2 \pi}{n}\right)$.
The free term of $f(X)$ has an absolute value equal to $(\sqrt[n]{n})^{|A|}$. Hence $(\sqrt[n]{n})^{\operatorname{deg} f(X)}$ is integer, and $\operatorname{deg} f(X) \geq k$ follows (k is as in the lemma). But, clearly $\sqrt[n]{n}$ is a root of $X^{k}-(\sqrt[n]{n})^{k}$, which has integer coefficients.

Let us assume that $1, \sqrt[n]{n}, \sqrt[m]{m}$ are linearly dependent over \mathbb{Q}, i.e. there are rational a, b, c not all equal 0 such that $a+b \sqrt[n]{n}+c \sqrt[m]{m}=0$.

Case $a \neq 0$. Then, as $\sqrt[n]{n}$ is irrational, we have $b, c \neq 0$. But $a+b \sqrt[n]{n}=-c \sqrt[m]{m}$ has the same degree of a minimal polynomial as $\sqrt[n]{n}$, and as $\sqrt[m]{m}$. Let k be the degree of the minimal polynomial for $\sqrt[m]{m}$. Then $y=\sqrt[n]{n}$ satisfies

$$
(a+b y)^{k}=(\sqrt[m]{m})^{k}
$$

but y^{k} and $(\sqrt[m]{m})^{k}$ are rational, and as $a, b \neq 0$ we obtain that there is a nonzero polynomial with rational coefficients vanishing $\sqrt[n]{n}$ of degree smaller than k, a contradiction.

Case $a=0$. Hence $\frac{\sqrt[n]{n}}{\sqrt[m]{m}}$ is rational, and this is equivalent to $\frac{n^{m}}{m^{n}}$ is a $m n$-th power of a rational. Let p be any prime, and $p^{a}\left\|n, p^{b}\right\| m$. So we must have $m n \mid a m-b n$. But $a m-b n \leq a m<m n$, in view of $a \leq \log _{2} n<n$. In a similar way one obtains $a m-b n>-m n$. So we must have $a m=b n$, the relation independent of the choice of prime p. Thus

$$
n=m^{m / n}
$$

and $\sqrt[n]{n}=\sqrt[m]{m}$ follows. As the function $\sqrt[x]{x}$ has maximum at $x=\mathrm{e}$, we see that $\sqrt[n]{n}=\sqrt[m]{m}$ holds only for $n=2, m=4$.

Problem j18-II-4. We consider the following game for one person. The aim of the player is to reach a fixed capital $C>2$. The player begins with capital $0<x_{0}<C$. In each turn let x be the player's current capital. Define $s(x)$ as follows:

$$
s(x):= \begin{cases}x & \text { if } x<1 \\ C-x & \text { if } C-x<1 \\ 1 & \text { otherwise }\end{cases}
$$

Then a fair coin is tossed and the player's capital either increases or decreases by $s(x)$, each with probability $\frac{1}{2}$. Find the probability that in a finite number of turns the player wins by reaching the capital C.

Solution. Let us denote by $f(x)$ the probability that player wins with starting capital x. If $x \leq 1$, then he loses if loses the first turn, and if he wins the first turn, he has capital $2 x$. Thus $f(x)=\frac{1}{2} f(2 x)$.

If $x \geq C-1$ the player wins if he wins the first turn, and has $2 x-C$ in other case, thus $f(x)=\frac{1}{2}+\frac{1}{2} f(2 x-C)$.

In all other cases there is $f(x)=\frac{1}{2}(f(x-1)+f(x+1))$.
We will prove that this implies $f(x)=\frac{x}{C}$.
Let us define $g(x)=f(x)-\frac{x}{C}$. It is bounded on $[0, C]$ (as $f(x) \in[0,1]$), and we have

$$
g(x)= \begin{cases}\frac{1}{2} f(2 x)-\frac{x}{C}=\frac{1}{2}\left(f(2 x)-\frac{2 x}{C}\right)=\frac{1}{2} g(2 x) & \text { for } x \leq 1 \\ \frac{1}{2}(f(x-1)+f(x+1))-\frac{x}{C} & \\ =\frac{1}{2}\left(f(x-1)-\frac{x-1}{C}+f(x+1)-\frac{x+1}{C}\right) & \\ =\frac{1}{2}(g(x-1)+g(x+1)) & \text { for } x \in(1, C-1) \\ \frac{1}{2}+\frac{1}{2} f(2 x-C)-\frac{x}{C} & \\ =\frac{1}{2}\left(f(2 x-C)-\frac{2 x-C}{C}\right)=\frac{1}{2} g(2 x-C) & \text { for } x \geq C-1\end{cases}
$$

Obviously $g(0)=g(C)=0$. Let $K=\sup _{t \in[0, C]} f(t) \in[0, \infty)$. Denote $n_{0}=[C]-1 \geq 1$.
We will prove for any natural $0<n \leq n_{0}$ and $x \in(n-1, n]$ there is $g(x) \leq \frac{2^{n}-1}{2^{n}} K$.
If $x \in(0,1]$ there is $g(x)=\frac{1}{2} g(2 x) \leq \frac{K}{2}$.
Assume, that for $x \leq n-1$ and take $\bar{x} \in(n-1, n]$. There is $g(\bar{x}-1) \leq \frac{2^{n-1}-1}{2^{n-1}} K$ as $\bar{x}-1 \in(n-2, n-1]$, and $g(\bar{x}+1) \leq K$. Thus

$$
g(\bar{x})=\frac{1}{2}(g(\bar{x}-1)+g(\bar{x}+1)) \leq \frac{1}{2}\left(\frac{2^{n-1}-1}{2^{n-1}} K+K\right)=\frac{2^{n}-1}{2^{n}} K
$$

as required.

$$
g(x) \leq=\frac{1}{2} g(2 x-C) \leq \frac{K}{2} \text { for } x \geq C-1
$$

Now take $x \in\left(n_{0}, C-1\right)$ (it is empty set for integer C). We have proved that $g(x-1) \leq$ $\frac{2^{n_{0}}-1}{2^{n_{0}}} K\left(\right.$ as $\left.x-1 \in\left(n_{0}-1, n_{0}\right)\right)$ and $g(x+1) \leq \frac{K}{2}(x+1>C-1)$. Thus $g(x) \leq \frac{2^{n_{0}}-1}{2^{n_{0}}} K$.

Thus we have proved, that $g(x) \leq \frac{2^{n_{0}}-1}{2^{n_{0}}} K$ for every $x \in[0, C]$, which means that $K=0$. Similarly one can prove, that $\inf _{t \in[0, C]} f(t)^{2^{n}}=0$. Thus $g(x) \equiv 0$, so $f(x)=\frac{x}{C}$.

