Problem j18-II-1. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that

$$19f(x) - 17f(f(x)) = 2x \tag{1}$$

for all $x \in \mathbb{Z}$.

Solution. Suppose that there exists a function $f: \mathbb{Z} \to \mathbb{Z}$ satisfying the above equation. Then define a function $g: \mathbb{Z} \to \mathbb{Z}$ by

$$g(x) = x - f(x). (2)$$

Taking into account (1) and (2), we get

$$17g(f(x)) = 2g(x). (3)$$

Let us fix $y \in \mathbb{Z}$ and let a := g(y). Define a sequence $(x_n)_{n \geq 0}$ as follows

$$x_0 := y$$
, $x_1 := f(x_0)$, ..., $x_n := f(x_{n-1})$, ...

for any $n \in \mathbb{N}$. Now substituting x_n into (3) in turn, we get

$$a = g(x_0) = \frac{17}{2}g(x_1) = \dots = \frac{17^n}{2^n}g(x_n)$$

for any n > 0. Consequently, we infer that

$$2^n a = 17^n g(x_n)$$

for any n>0. Since 2 and 17 are relatively prime, we deduce that $17^n\mid a$ for any n>0 and therefore a=0. Moreover, since y was arbitrary, it follows that g(y)=0 for any $y\in\mathbb{Z}$. Thus y-f(y)=0 for any $y\in\mathbb{Z}$ and hence f(y)=y for any $y\in\mathbb{Z}$. This implies that only one function satisfies the equation (1). So, this completes the solution. \square

Problem j18-II-2. Find all continuously differentiable functions $f:[0,1] \to (0,\infty)$ such that $\frac{f(1)}{f(0)} = e$ and

$$\int_0^1 \frac{\mathrm{d}x}{f(x)^2} + \int_0^1 f'(x)^2 \, \mathrm{d}x \le 2.$$

Solution. First, we note that if f is such function, then

$$0 \le \int_0^1 \left(f'(x) - \frac{1}{f(x)} \right)^2 dx = \int_0^1 f'(x)^2 dx - 2 \int_0^1 \frac{f'(x)}{f(x)} dx + \int_0^1 \frac{dx}{f(x)^2}$$
$$= \int_0^1 f'(x)^2 dx - 2 \int_0^1 (\ln f(x))' dx + \int_0^1 \frac{dx}{f(x)^2}$$
$$= \int_0^1 f'(x)^2 dx - 2 \ln \frac{f(1)}{f(0)} + \int_0^1 \frac{dx}{f(x)^2} dx \le 0,$$

since $\frac{f(1)}{f(0)} = e$ and $\int_0^1 \frac{dx}{f(x)^2} + \int_0^1 f'(x)^2 dx \le 2$. Therefore

$$\int_0^1 \left(f'(x) - \frac{1}{f(x)} \right)^2 dx = 0.$$
 (1)

Since f is continuously differentiable function on [0,1], the equality (1) is equivalent to

$$f'(x)f(x) = 1 \quad \forall x \in [0,1].$$
 (2)

All positive solutions of the differential equation (2) are in the form $f(x) = \sqrt{2x+C}$ for some C > 0. Since $\frac{f(1)}{f(0)} = e$, we have $C = \frac{2}{e^2-1}$, and thus

$$f(x) = \sqrt{2x + \frac{2}{e^2 - 1}}$$

is the unique function satisfying the conditions from the statement. \Box

Problem j18-II-3. Find all pairs of natural numbers (n, m) with 1 < n < m such that the numbers 1, $\sqrt[n]{n}$ and $\sqrt[n]{m}$ are linearly dependent over the field of rational numbers \mathbb{Q} .

Solution. The answer is n = 2, m = 4.

We begin with the following

Lemma. The minimal (over \mathbb{Q}) polynomial f(X) for $\sqrt[n]{n}$ equals $X^k - (\sqrt[n]{n})^k$, where k is the minimal satisfying $(\sqrt[n]{n})^k \in \mathbb{N}$.

Proof. $\sqrt[n]{n}$ is a root of $X^n - n = 0$. So there is some nonempty subset A of $\{0, 1, ..., n-1\}$ such that

$$f(X) = \prod_{l \in A} (X - \zeta^l),$$

where $\zeta = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$.

The free term of f(X) has an absolute value equal to $(\sqrt[n]{n})^{|A|}$. Hence $(\sqrt[n]{n})^{\deg f(X)}$ is integer, and deg $f(X) \geq k$ follows (k is as in the lemma). But, clearly $\sqrt[n]{n}$ is a root of $X^k - (\sqrt[n]{n})^k$, which has integer coefficients. \blacksquare

Let us assume that 1, $\sqrt[n]{n}$, $\sqrt[m]{m}$ are linearly dependent over \mathbb{Q} , i.e. there are rational a, b, c not all equal 0 such that $a + b \sqrt[n]{n} + c \sqrt[m]{m} = 0$.

Case $a \neq 0$. Then, as $\sqrt[n]{n}$ is irrational, we have $b, c \neq 0$. But $a + b \sqrt[n]{n} = -c \sqrt[n]{n}$ has the same degree of a minimal polynomial as $\sqrt[n]{n}$, and as $\sqrt[n]{m}$. Let k be the degree of the minimal polynomial for $\sqrt[n]{m}$. Then $y = \sqrt[n]{n}$ satisfies

$$(a+by)^k = (\sqrt[m]{m})^k,$$

but y^k and $(\sqrt[m]{m})^k$ are rational, and as $a, b \neq 0$ we obtain that there is a nonzero polynomial

with rational coefficients vanishing $\sqrt[n]{n}$ of degree smaller than k, a contradiction. Case a=0. Hence $\frac{\sqrt[n]{n}}{\sqrt[n]{m}}$ is rational, and this is equivalent to $\frac{n^m}{m^n}$ is a mn-th power of a rational. Let p be any prime, and $p^a \parallel n, p^b \parallel m$. So we must have $mn \mid am - bn$. But $am-bn \leq am < mn$, in view of $a \leq \log_2 n < n$. In a similar way one obtains am-bn > -mn. So we must have am = bn, the relation independent of the choice of prime p. Thus

$$n = m^{m/n}$$

and $\sqrt[n]{n} = \sqrt[m]{m}$ follows. As the function $\sqrt[n]{x}$ has maximum at x = e, we see that $\sqrt[n]{n} = \sqrt[m]{m}$ holds only for n=2, m=4. \square

Problem j18-II-4. We consider the following game for one person. The aim of the player is to reach a fixed capital C > 2. The player begins with capital $0 < x_0 < C$. In each turn let x be the player's current capital. Define s(x) as follows:

$$s(x) := \begin{cases} x & \text{if } x < 1 \\ C - x & \text{if } C - x < 1 \\ 1 & \text{otherwise.} \end{cases}$$

Then a fair coin is tossed and the player's capital either increases or decreases by s(x), each with probability $\frac{1}{2}$. Find the probability that in a finite number of turns the player wins by reaching the capital C.

Solution. Let us denote by f(x) the probability that player wins with starting capital x. If $x \leq 1$, then he loses if loses the first turn, and if he wins the first turn, he has capital 2x. Thus $f(x) = \frac{1}{2}f(2x)$.

If $x \ge C-1$ the player wins if he wins the first turn, and has 2x-C in other case, thus $f(x) = \frac{1}{2} + \frac{1}{2}f(2x-C)$.

In all other cases there is $f(x) = \frac{1}{2} (f(x-1) + f(x+1))$. We will prove that this implies $f(x) = \frac{x}{C}$. Let us define $g(x) = f(x) - \frac{x}{C}$. It is bounded on [0, C] (as $f(x) \in [0, 1]$), and we have

$$g(x) = \begin{cases} \frac{1}{2}f(2x) - \frac{x}{C} = \frac{1}{2}\left(f(2x) - \frac{2x}{C}\right) = \frac{1}{2}g(2x) & \text{for } x \le 1, \\ \frac{1}{2}\left(f(x-1) + f(x+1)\right) - \frac{x}{C} \\ = \frac{1}{2}\left(f(x-1) - \frac{x-1}{C} + f(x+1) - \frac{x+1}{C}\right) \\ = \frac{1}{2}\left(g(x-1) + g(x+1)\right) & \text{for } x \in (1, C-1), \\ \frac{1}{2} + \frac{1}{2}f(2x - C) - \frac{x}{C} \\ = \frac{1}{2}\left(f(2x - C) - \frac{2x - C}{C}\right) = \frac{1}{2}g(2x - C) & \text{for } x \ge C - 1. \end{cases}$$

Obviously g(0) = g(C) = 0. Let $K = \sup_{t \in [0,C]} f(t) \in [0,\infty)$. Denote $n_0 = [C] - 1 \ge 1$.

We will prove for any natural $0 < n \le n_0$ and $x \in (n-1,n]$ there is $g(x) \le \frac{2^n-1}{2^n}K$. If $x \in (0,1]$ there is $g(x) = \frac{1}{2}g(2x) \le \frac{K}{2}$.

Assume, that for $x \leq n-1$ and take $\bar{x} \in (n-1,n]$. There is $g(\bar{x}-1) \leq \frac{2^{n-1}-1}{2^{n-1}}K$ as $\bar{x} - 1 \in (n - 2, n - 1], \text{ and } g(\bar{x} + 1) \leq K.$ Thus

$$g(\bar{x}) = \frac{1}{2} \left(g(\bar{x} - 1) + g(\bar{x} + 1) \right) \le \frac{1}{2} \left(\frac{2^{n-1} - 1}{2^{n-1}} K + K \right) = \frac{2^n - 1}{2^n} K$$

as required.

as required. $g(x) \leq = \frac{1}{2}g(2x-C) \leq \frac{K}{2} \text{ for } x \geq C-1.$ Now take $x \in (n_0,C-1)$ (it is empty set for integer C). We have proved that $g(x-1) \leq \frac{2^{n_0}-1}{2^{n_0}}K$ (as $x-1 \in (n_0-1,n_0)$) and $g(x+1) \leq \frac{K}{2}$ (x+1>C-1). Thus $g(x) \leq \frac{2^{n_0}-1}{2^{n_0}}K$. Thus we have proved, that $g(x) \leq \frac{2^{n_0}-1}{2^{n_0}}K$ for every $x \in [0,C]$, which means that K=0. Similarly one can prove, that $\inf_{t \in [0,C]} f(t) = 0$. Thus $g(x) \equiv 0$, so $f(x) = \frac{x}{C}$. \square