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Problem 1 Let ABC be a non-degenerate triangle in the euclidean plane. Define a sequence (Cn)∞n=0 of points
as follows: C0 := C, and Cn+1 is the center of the incircle of the triangle ABCn. Find lim

n→∞
Cn.

[10 points]
Solution If α is the angle at A, β the angle at B, then the limit is the point on the side AB dividing it in the
ratio α : β. Let αi and βi be the angles at A and B in ABCi, respectively. Since the center of the incircle is
the intersection of the angle bisectors, we have αi+1 = αi

2 and βi+1 = βi

2 ; so the limit point will obviously lie
on AB; furthermore, αi

βi
= α

β =: q for all i. Thus, if Ki is the circumcircle of ABCi, S1,i and S2,i the arcs over

ACi and BCi, respectively, then |S1,i|
|S2,i| = q for all i. Now, as the Ci approache AB, the arcs converge to the

corresponding sides of the triangle. Hence, the result follows. �
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Problem 2 Prove that the number

22k − 1 − 2k − 1

is composite (not prime) for all positive integers k > 2. [10 points]
Solution Denote

M = 22k−1 − 2k − 1 .

If k is even then 3 |M , and M is composite, since M > 3 for k > 2.
Suppose k is odd. Then

2M = 22k

− 1−
(
2k+1 + 1

)
=
(

22k−1
+ 1
)(

22k−2
+ 1
)
. . .
(

221
+ 1
)
−
(
2k+1 + 1

)
.

Let k + 1 = 2aq with positive odd integer q and a ≥ 1. Then
(
22a

+ 1
) ∣∣ 2M . Indeed,

(
22a

+ 1
) ∣∣ (2k+1 + 1

)
and (

22a

+ 1
) ∣∣∣ (22k−1

+ 1
)(

22k−2
+ 1
)
. . .
(

221
+ 1
)
,

since a ≤ k − 1 for k > 2. �
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Problem 3 Let k and n be positive integers such that k ≤ n− 1. Let S := {1, 2, . . . , n} and let A1, A2, . . . , Ak
be nonempty subsets of S. Prove that it is possible to color some elements of S using two colors, red and blue,
such that the following conditions are satisfied:

(i) Each element of S is either left uncolored or is colored red or blue.

(ii) At least one element of S is colored.

(iii) Each set Ai (i = 1, 2, . . . , k) is either completely uncolored or it contains at least one red and at least one
blue element.

[10 points]
Solution Consider the following system of k linear equations in n real variables x1, x2, . . . , xn:∑

j∈Ai

xj = 0 , i = 1, 2, . . . , k .

Since k < n, this system has a nontrivial solution (x1, x2, . . . , xn), i.e. a solution with at least one nonzero xj .
Now color red all elements of the set {j ∈ S : xj > 0}, color blue all elements of the set {j ∈ S : xj < 0}, and
leave uncolored all elements of {j ∈ S : xj = 0}.

Since the solution is nontrivial, at least one element is colored. If Ai contains some red element j ∈ S then
xj > 0, and from

∑
j∈Ai

xj = 0 we see that there exists some j′ ∈ Ai such that xj′ < 0, i.e. j′ is colored blue.
Thus Ai must have elements of both colors. Analogously we argue when Ai contains a blue element. Therefore
we see that the above coloring satisfies all requirements. �
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Problem 4 Let (an)∞n=1 be a sequence of real numbers. We say that the sequence (an)∞n=1 covers the set of

positive integers if for any positive integer m there exists a positive integer k such that
∞∑
n=1

akn = m.

a) Does there exist a sequence of real positive numbers which covers the set of positive integers?

b) Does there exist a sequence of real numbers which covers the set of positive integers?
[10 points]

Solution The answer to the second question is positive.
First we shall prove that for any n there exists a finite sequence (xi)kn

i=1 of real numbers such that

kn∑
i=1

x2m+1
i = 0 for 0 ≤ m < n

and
kn∑
i=1

x2m+1
i 6= 0 for m ≥ n .

For the simplicity of notation we shall write Sm(xi) for
∑kn

i=1 x
2m+1
i . We shall prove the thesis by induction

upon n. For n = 0 the appropriate sequence is x1 = 1.
Assume the thesis for n. For n+ 1 consider the sequence

(yi)3kn
i=1 = (−x1,−x2, . . . ,−xkn

, αx1, αx2, . . . , αxkn
, αx1, αx2, . . . , αxkn

) ,

where α = 2−1/(2n+1). As Sm(xi) = 0 for m < n, we also have Sm(yi) = 0. We also have

Sn(yi) = −Sn(xi) + 2−1Sn(xi) + 2−1Sn(xi) = 0 .

For m > n we have
Sm(yi) = (1− 2 · 2−(2m+1)/(2n+1))Sm(xi) 6= 0 .

Thus the induction step is finished, and the thesis is proved. Moreover it is easy to notice that |xi| ≤ 1 and the
length of the sequence is 3n. Denote by x(n) the sequence of length 3n with Sm(x(n)) = 0 for m < n.

Now to give the required sequence (ai). Our sequence will be a concatenation of multiples of the finite
sequences x(n) given above. We begin with a1 = 1 (that is we begin by taking x(0)). In the n-th step we
assume that we have some finite sequence ai, with Sm(ai) = m + 1 for m ≤ n. We also assume that the
elements added in the n-th step will be no larger than 1

n .
To pass to the (n + 1)-st step let c = n + 2 − Sn+1(ai), and let d = Sn+1(x(n + 1)). Take an integer

N >
∣∣ (n+1)c

d

∣∣, let α = c
dN , |α| < 1

n+1 . We add N copies of the sequence αx(n+ 1) to the end of ai. This does
not change Sm(ai) for m < n+ 1 (as Sm(x(n+ 1)) = 0, and after the addition we have Sn+1(ai) = n+ 2. Also
all the added elements are of absolute value no larger than 1

n+1 .
Now to prove that for this series we have G2k+1 = k+ 1. As Sm(ai) = m+ 1 after every step, no other limit

is possible, we only have to check convergence. Note, however, that after the n–th step we only add sequences
x(m) for m > n, which in turn are concatenations of sequences x(n), with some coefficients. Thus every 3n–th
partial sum in the series

∑
a2n+1
i is going to be exactly equal to n+1. The partial sums “in the middle” cannot

differ from this value by more than 3n

2 times the value of the maximal element |ai| in the appropriate interval,
and this converges to zero. Thus for any n we do, in fact, have convergence.

For the first question, obviously the same series suffices.
For the last question, the answer is negative. As ai are positive, we may rearrange them in decreasing order.

Take k0 to be the first k for which Gk is finite. For Gk0 to be finite, we have to have ai convergent to zero, thus
only a finite number of terms is larger than 1, assume these are the first n terms. Note that as for i > n we
have ai ≤ 1, we also have that aki decreases with k, and thus

∑∞
i=n+1 a

k
i decreases with k, and thus is bounded

by C :=
∑∞
i=n+1 a

k0
i . As Gk are assumed to attain unbounded values, we have to have terms larger than 1,

thus n > 0.
Assume the first m terms of ai are equal, 1 ≤ m ≤ n. Then for k ≥ k0 and l ≤ k we have

Gl ≤ mak1 + nakm+1 + C .



On the other hand Gl ≥ mak+1
1 for l ≥ k. For sufficiently large k, however, we have

mak+1
1 > mak1 + nakm+1 + C + 2 ,

which means that there is an integer number between mak+1
1 and mak1 + nakm+1 + C which is not the value of

Gk for any k. �


