Problem 1 Let ABC be a non-degenerate triangle in the euclidean plane. Define a sequence $(C_n)_{n=0}^{\infty}$ of points as follows: $C_0 := C$, and C_{n+1} is the center of the incircle of the triangle ABC_n . Find $\lim_{n \to \infty} C_n$.

[10 points]

Solution If α is the angle at A, β the angle at B, then the limit is the point on the side \overline{AB} dividing it in the ratio $\alpha : \beta$. Let α_i and β_i be the angles at A and B in ABC_i , respectively. Since the center of the incircle is the intersection of the angle bisectors, we have $\alpha_{i+1} = \frac{\alpha_i}{2}$ and $\beta_{i+1} = \frac{\beta_i}{2}$; so the limit point will obviously lie on \overline{AB} ; furthermore, $\frac{\alpha_i}{\beta_i} = \frac{\alpha}{\beta} =: q$ for all i. Thus, if K_i is the circumcircle of ABC_i , $S_{1,i}$ and $S_{2,i}$ the arcs over $\overline{AC_i}$ and $\overline{BC_i}$, respectively, then $\frac{|S_{1,i}|}{|S_{2,i}|} = q$ for all i. Now, as the C_i approache \overline{AB} , the arcs converge to the corresponding sides of the triangle. Hence, the result follows.

Problem 2 Prove that the number

$$2^{2^k} - 1 - 2^k - 1$$

is composite (not prime) for all positive integers k > 2. Solution Denote

$$M = 2^{2^k - 1} - 2^k - 1.$$

If k is even then $3 \mid M$, and M is composite, since M > 3 for k > 2.

Suppose k is odd. Then

$$2M = 2^{2^{k}} - 1 - (2^{k+1} + 1) = (2^{2^{k-1}} + 1) (2^{2^{k-2}} + 1) \dots (2^{2^{1}} + 1) - (2^{k+1} + 1).$$

Let $k + 1 = 2^a q$ with positive odd integer q and $a \ge 1$. Then $(2^{2^a} + 1) \mid 2M$. Indeed, $(2^{2^a} + 1) \mid (2^{k+1} + 1)$ and $(2^{2^a} + 1) \mid (2^{2^{k-1}} + 1) \mid (2^{2^{k-2}} + 1) \mid (2^{2^k} + 1) \mid (2^{k+1} + 1)$

$$(2^{2^{a}}+1) \mid (2^{2^{k-1}}+1) (2^{2^{k-2}}+1) \dots (2^{2^{1}}+1) ,$$

since $a \leq k-1$ for k > 2.

[10 points]

Problem 3 Let k and n be positive integers such that $k \leq n-1$. Let $S := \{1, 2, ..., n\}$ and let $A_1, A_2, ..., A_k$ be nonempty subsets of S. Prove that it is possible to color some elements of S using two colors, red and blue, such that the following conditions are satisfied:

- (i) Each element of S is either left uncolored or is colored red or blue.
- (ii) At least one element of S is colored.
- (iii) Each set A_i (i = 1, 2, ..., k) is either completely uncolored or it contains at least one red and at least one blue element.

[10 points]

Solution Consider the following system of k linear equations in n real variables x_1, x_2, \ldots, x_n :

$$\sum_{j \in A_i} x_j = 0, \quad i = 1, 2, \dots, k.$$

Since k < n, this system has a nontrivial solution $(x_1, x_2, ..., x_n)$, i.e. a solution with at least one nonzero x_j . Now color red all elements of the set $\{j \in S : x_j > 0\}$, color blue all elements of the set $\{j \in S : x_j < 0\}$, and leave uncolored all elements of $\{j \in S : x_j = 0\}$.

Since the solution is nontrivial, at least one element is colored. If A_i contains some red element $j \in S$ then $x_j > 0$, and from $\sum_{j \in A_i} x_j = 0$ we see that there exists some $j' \in A_i$ such that $x_{j'} < 0$, i.e. j' is colored blue. Thus A_i must have elements of both colors. Analogously we argue when A_i contains a blue element. Therefore we see that the above coloring satisfies all requirements.

Problem 4 Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. We say that the sequence $(a_n)_{n=1}^{\infty}$ covers the set of positive integers if for any positive integer *m* there exists a positive integer *k* such that $\sum_{n=1}^{\infty} a_n^k = m$.

a) Does there exist a sequence of real positive numbers which covers the set of positive integers?

b) Does there exist a sequence of real numbers which covers the set of positive integers?

[10 points]

Solution The answer to the second question is positive.

First we shall prove that for any n there exists a finite sequence $(x_i)_{i=1}^{k_n}$ of real numbers such that

$$\sum_{i=1}^{k_n} x_i^{2m+1} = 0 \quad \text{for } 0 \le m < n$$

and

$$\sum_{i=1}^{k_n} x_i^{2m+1} \neq 0 \quad \text{for } m \ge n \,.$$

For the simplicity of notation we shall write $S_m(x_i)$ for $\sum_{i=1}^{k_n} x_i^{2m+1}$. We shall prove the thesis by induction upon n. For n = 0 the appropriate sequence is $x_1 = 1$.

Assume the thesis for n. For n + 1 consider the sequence

$$(y_i)_{i=1}^{3k_n} = (-x_1, -x_2, \dots, -x_{k_n}, \alpha x_1, \alpha x_2, \dots, \alpha x_{k_n}, \alpha x_1, \alpha x_2, \dots, \alpha x_{k_n}),$$

where $\alpha = 2^{-1/(2n+1)}$. As $S_m(x_i) = 0$ for m < n, we also have $S_m(y_i) = 0$. We also have

 $S_n(y_i) = -S_n(x_i) + 2^{-1}S_n(x_i) + 2^{-1}S_n(x_i) = 0.$

For m > n we have

$$S_m(y_i) = (1 - 2 \cdot 2^{-(2m+1)/(2n+1)}) S_m(x_i) \neq 0.$$

Thus the induction step is finished, and the thesis is proved. Moreover it is easy to notice that $|x_i| \leq 1$ and the length of the sequence is 3^n . Denote by x(n) the sequence of length 3^n with $S_m(x(n)) = 0$ for m < n.

Now to give the required sequence (a_i) . Our sequence will be a concatenation of multiples of the finite sequences x(n) given above. We begin with $a_1 = 1$ (that is we begin by taking x(0)). In the *n*-th step we assume that we have some finite sequence a_i , with $S_m(a_i) = m + 1$ for $m \leq n$. We also assume that the elements added in the *n*-th step will be no larger than $\frac{1}{n}$.

To pass to the (n + 1)-st step let $c = n + 2 - S_{n+1}(a_i)$, and let $d = S_{n+1}(x(n + 1))$. Take an integer $N > \left|\frac{(n+1)c}{d}\right|$, let $\alpha = \frac{c}{dN}$, $|\alpha| < \frac{1}{n+1}$. We add N copies of the sequence $\alpha x(n+1)$ to the end of a_i . This does not change $S_m(a_i)$ for m < n + 1 (as $S_m(x(n + 1)) = 0$, and after the addition we have $S_{n+1}(a_i) = n + 2$. Also all the added elements are of absolute value no larger than $\frac{1}{n+1}$.

Now to prove that for this series we have $G_{2k+1} = k+1$. As $S_m(a_i) = m+1$ after every step, no other limit is possible, we only have to check convergence. Note, however, that after the *n*-th step we only add sequences x(m) for m > n, which in turn are concatenations of sequences x(n), with some coefficients. Thus every 3^n -th partial sum in the series $\sum a_i^{2n+1}$ is going to be exactly equal to n+1. The partial sums "in the middle" cannot differ from this value by more than $\frac{3^n}{2}$ times the value of the maximal element $|a_i|$ in the appropriate interval, and this converges to zero. Thus for any n we do, in fact, have convergence.

For the first question, obviously the same series suffices.

For the last question, the answer is negative. As a_i are positive, we may rearrange them in decreasing order. Take k_0 to be the first k for which G_k is finite. For G_{k_0} to be finite, we have to have a_i convergent to zero, thus only a finite number of terms is larger than 1, assume these are the first n terms. Note that as for i > n we have $a_i \leq 1$, we also have that a_i^k decreases with k, and thus $\sum_{i=n+1}^{\infty} a_i^k$ decreases with k, and thus is bounded by $C := \sum_{i=n+1}^{\infty} a_i^{k_0}$. As G_k are assumed to attain unbounded values, we have to have terms larger than 1, thus n > 0.

Assume the first m terms of a_i are equal, $1 \le m \le n$. Then for $k \ge k_0$ and $l \le k$ we have

$$G_l \le ma_1^k + na_{m+1}^k + C \,.$$

On the other hand $G_l \ge ma_1^{k+1}$ for $l \ge k$. For sufficiently large k, however, we have

$$ma_1^{k+1} > ma_1^k + na_{m+1}^k + C + 2$$
,

which means that there is an integer number between ma_1^{k+1} and $ma_1^k + na_{m+1}^k + C$ which is not the value of G_k for any k.