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Problem 1 Let ABC be a non-degenerate triangle in the euclidean plane. Define a sequence (Cy,)%2, of points
as follows: Cy := C, and C,,41 is the center of the incircle of the triangle ABC,,. Find lim C,.

n—oo
[10 points]
Solution If « is the angle at A, 3 the angle at B, then the limit is the point on the side AB dividing it in the
ratio a : 8. Let «; and (; be the angles at A and B in ABC}, respectively. Since the center of the incircle is
the intersection of the angle bisectors, we have a;11 = - and B = %, so the limit point will obviously lie
on AB; furthermore, % = % =: ¢ for all 4. Thus, if K; is the circumcircle of ABC};, S1,; and S3; the arcs over

AC; and BC}, respectively, then Ig;} = ¢ for all i. Now, as the C; approache AB, the arcs converge to the

corresponding sides of the triangle. Hence, the result follows. O
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Problem 2 Prove that the number
92" =1 _ gk _

is composite (not prime) for all positive integers k > 2. [10 points]

Solution Denote
M=29%-1_9k_1,

If k is even then 3 | M, and M is composite, since M > 3 for k > 2.
Suppose k is odd. Then

aM =22 -1 - (2 1) = (227 1) (227 1) (22 ) - (25 ).

Let k + 1 = 2%q with positive odd integer ¢ and a > 1. Then (22a + 1) ’ 2M. Indeed, (22a + 1) ‘ (2’”‘1 + 1)

and a k—1 k—2 1
(22 +1) ’ (22 +1) (22 +1)...(22 +1) ,

since a < k —1 for k > 2. O
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Problem 3 Let k and n be positive integers such that k <n—1. Let S :={1,2,...,n} and let Ay, Aa, ..., Ay
be nonempty subsets of S. Prove that it is possible to color some elements of S using two colors, red and blue,
such that the following conditions are satisfied:

(i) Each element of S is either left uncolored or is colored red or blue.
(ii) At least one element of S is colored.

(iii) Each set A; (i =1,2,...,k) is either completely uncolored or it contains at least one red and at least one
blue element.
[10 points]

Solution Consider the following system of k linear equations in n real variables x1,xo, ..., Ty,:

daj=0, i=12.. k.

JEA;

Since k < n, this system has a nontrivial solution (21,2, ...,,), i.e. a solution with at least one nonzero x;.
Now color red all elements of the set {j € S : x; > 0}, color blue all elements of the set {j € S : z; <0}, and
leave uncolored all elements of {j € S : z; = 0}.

Since the solution is nontrivial, at least one element is colored. If A; contains some red element j € S then
zj >0, and from >, 4 z; = 0 we see that there exists some j’ € A; such that z;; <0, i.e. j* is colored blue.
Thus A; must have elements of both colors. Analogously we argue when A; contains a blue element. Therefore
we see that the above coloring satisfies all requirements. O
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Problem 4 Let (a,)32, be a sequence of real numbers. We say that the sequence (a,)52, covers the set of
(&)

positive integers if for any positive integer m there exists a positive integer k such that > af = m.
n=1

a) Does there exist a sequence of real positive numbers which covers the set of positive integers?
b) Does there exist a sequence of real numbers which covers the set of positive integers?
[10 points]

Solution The answer to the second question is positive.
First we shall prove that for any n there exists a finite sequence (J;i)fgl of real numbers such that

kn
Zm?mﬂ =0 for0<m<n
i=1
and
kn
Zx?mﬂ #0 form>n.
i=1

For the simplicity of notation we shall write S,,(x;) for Zf;l x

upon n. For n = 0 the appropriate sequence is 1 = 1.
Assume the thesis for n. For n + 1 consider the sequence

2m—+1

%

. We shall prove the thesis by induction

(yi)3kn = (=21, —@9, ..., —Tp,, 1, AT, . . ., ATy, , L1, AT, . . ., AL, )
where v = 271/ A S, (2;) = 0 for m < n, we also have S,,(y;) = 0. We also have
Sn(yi) = =Sn(x;) + 2718, (x;) + 2718, (2;) = 0.

For m > n we have
Sm(yz) — (1 9. 2—(2m+1)/(2n+1))Sm(xi) 7& 0.

Thus the induction step is finished, and the thesis is proved. Moreover it is easy to notice that |z;| < 1 and the
length of the sequence is 3™. Denote by z(n) the sequence of length 3™ with S, (z(n)) =0 for m < n.

Now to give the required sequence (a;). Our sequence will be a concatenation of multiples of the finite
sequences x(n) given above. We begin with a; = 1 (that is we begin by taking x(0)). In the n-th step we
assume that we have some finite sequence a;, with S,,(a;) = m + 1 for m < n. We also assume that the
elements added in the n-th step will be no larger than %

To pass to the (n + 1)-st step let ¢ = n 4+ 2 — S, 41(a;), and let d = Sp41(z(n + 1)). Take an integer
N > ‘% et a = S5, ol < ﬁ We add N copies of the sequence ax(n + 1) to the end of a;. This does
not change Sy, (a;) for m <n+1 (as Sy, (z(n+ 1)) =0, and after the addition we have S, 11(a;) =n+ 2. Also
all the added elements are of absolute value no larger than n%_l

Now to prove that for this series we have Gaop11 = k+ 1. As S,,(a;) = m+ 1 after every step, no other limit
is possible, we only have to check convergence. Note, however, that after the n—th step we only add sequences
x(m) for m > n, which in turn are concatenations of sequences x(n), with some coefficients. Thus every 3"—th
partial sum in the series ) a?”“ is going to be exactly equal to n+ 1. The partial sums “in the middle” cannot
differ from this value by more than % times the value of the maximal element |a;| in the appropriate interval,
and this converges to zero. Thus for any n we do, in fact, have convergence.

For the first question, obviously the same series suffices.

For the last question, the answer is negative. As a; are positive, we may rearrange them in decreasing order.
Take ko to be the first k for which Gy, is finite. For Gy, to be finite, we have to have a; convergent to zero, thus
only a finite number of terms is larger than 1, assume these are the first n terms. Note that as for i > n we

have a; < 1, we also have that a¥ decreases with k, and thus Z;’in 41 af decreases with k, and thus is bounded

by C := Zfin 41 afo. As Gy are assumed to attain unbounded values, we have to have terms larger than 1,
thus n > 0.
Assume the first m terms of a; are equal, 1 < m < n. Then for k > ky and | < k we have

Glgma’f—i—naﬁlﬂ—i—(}’.



On the other hand G; > ma'l€+1 for [ > k. For sufficiently large k, however, we have
mai*t > ma¥ +nal, . +C+2,

which means that there is an integer number between moa’fJrl and ma¥ + nak, 11 + C which is not the value of

Gy, for any k. a



