Problem 1 A positive integer m is called self-descriptive in base b, where $b \ge 2$ is an integer, if:

- i) The representation of m in base b is of the form $(a_0a_1 \dots a_{b-1})_b$ (that is $m = a_0b^{b-1} + a_1b^{b-2} + \dots + a_{b-2}b + a_{b-1}$, where $0 \le a_i \le b-1$ are integers).
- ii) a_i is equal to the number of occurrences of the number *i* in the sequence $(a_0a_1 \dots a_{b-1})$.

For example, $(1210)_4$ is self-descriptive in base 4, because it has four digits and contains one 0, two 1s, one 2 and no 3s.

- a) Find all bases $b \ge 2$ such that no number is self-descriptive in base b.
- b) Prove that if x is a self-descriptive number in base b then the last (least significant) digit of x is 0.

[10 points]

Solution

1. For $b \ge 7$ it is easy to verify that the number of the form $(b-4)b^{b-1}+2b^{b-2}+b^{b-3}+b^4$ is a self descriptive number (it contains b-4 instances of digit 0, two instances of digit 1, one instance of digit 2 and one instance of digit b-4), and numbers $21200_{(5)}$ and $2020_{(4)}$ are self-descriptive numbers in bases 5 and 4, respectively.

It remains to show that for bases 2,3 and 6 no self descriptive numbers exist. First note, that a self-descriptive number (in any admissible base) contains at least one instance of the digit 0. If it does not, then the first digit is 0, which is a contradiction.

It is easy to prove the claim for b = 2, 3.

Let us prove it for b = 6. Assume there exists $x = (b_0 b_1 b_2 b_3 b_4 b_5)_{(6)}$, where x is a self-descriptive number. We observe the following about x:

- (a) $\sum_{i=0}^{5} b_i = 6$
- (b) $b_0 \neq 0$
- (c) $\sum_{i=1}^{5} b_i = |\{b_i, b_i \neq 0, i \ge 1\}| + 1$
- (d) Other than the first digit, the set of all other non-zero digits consists of several 1's and one 2.

Observation 1d implies that all but one of the digits b_3, b_4 and b_5 are 0, now it is easy to check, that no such number is self-descriptive, which is a contradiction. Therefore base b = 6 contains no self-descriptive numbers.

- 2. Assume that there is in fact a self-descriptive number x in base b that it is b-digits long but not a multiple of b. The digit at position b-1 must be at least 1, meaning that there is at least one instance of the digit b-1 in x. At whatever position a that digit b-1 falls, there must be at least b-1 instances of digit a in x. Therefore, we have at least one instance of the digit 1, and b-1 instances of a. If a > 1, then x has more than b digits, leading to a contradiction of our initial statement. And if a = 0 or a = 1, that also leads to a contradiction.
- 3. These numbers are: 1210, 2020, 21200, 3211000, 42101000, 521001000, 6210001000. That these are the only such numbers, follows from previous observations.

Problem 2 Let *E* be the set of all continuously differentiable real valued functions f on [0,1] such that f(0) = 0 and f(1) = 1. Define

$$J(f) = \int_0^1 (1+x^2)(f'(x))^2 \, \mathrm{d}x \, .$$

- a) Show that J achieves its minimum value at some element of E.
- b) Calculate $\min_{f \in E} J(f)$.

Solution By the fundamental theorem of Calculus, we have

$$1 = |f'(1) - f'(0)| = \left| \int_0^1 f''(x) \, \mathrm{d}x \right|.$$

Next, by using the Cauchy-Schwartz inequality, we obtain

$$\begin{split} \left| \int_{0}^{1} f''(x) \, \mathrm{d}x \right| &= \left| \int_{0}^{1} \frac{\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}} f''(x) \, \mathrm{d}x \right| \\ &\leq \left(\int_{0}^{1} (1+x^{2}) (f''(x))^{2} \, \mathrm{d}x \right)^{1/2} \left(\int_{0}^{1} \frac{1}{1+x^{2}} \, \mathrm{d}x \right)^{1/2} \\ &= \left(\int_{0}^{1} (1+x^{2}) (f''(x))^{2} \, \mathrm{d}x \right)^{1/2} \left(\arctan x \Big|_{0}^{1} \right)^{1/2} \\ &= \left(\int_{0}^{1} (1+x^{2}) (f''(x))^{2} \, \mathrm{d}x \right)^{1/2} \frac{\sqrt{\pi}}{2} \, . \end{split}$$

Hence

$$\inf_{f \in E} \int_0^1 (1+x^2) (f''(x))^2 \, \mathrm{d}x \ge \frac{4}{\pi} \, .$$

Finally, let

$$f(x) := \frac{4}{\pi} \int_0^x \arctan t \, \mathrm{d}t$$

for $x \in [0,1]$. Then $f'(x) = \frac{4}{\pi} \arctan x$ (by the fundamental theorem of Calculus) and $f''(x) = \frac{4}{\pi} \frac{1}{1+x^2}$, for $x \in [0,1]$. Consequently, we deduce that $f \in E$ and

$$J(f) = \int_0^1 (1+x^2) \left(\frac{4}{\pi} \frac{1}{1+x^2}\right)^2 \mathrm{d}x = \frac{16}{\pi^2} \int_0^1 \frac{1}{1+x^2} \,\mathrm{d}x = \frac{16}{\pi^2} \cdot \frac{\pi}{4} = \frac{4}{\pi} \,,$$

which proves that J attains its minimum on E. This completes the solution.

[10 points]

Problem 3 Let A be an $n \times n$ square matrix with integer entries. Suppose that $p^2 A^{p^2} = q^2 A^{q^2} + r^2 I_n$ for some positive integers p, q, r where r is odd and $p^2 = q^2 + r^2$. Prove that $|\det A| = 1$. (Here I_n means the $n \times n$ identity matrix.) [10 points]

Solution Consider the function $f : \mathbb{R} \to \mathbb{R}$.

$$f(x) = p^2 x^{p^2} - q^2 x^{q^2} - r^2.$$
(1)

Observe that

$$f'(x) = p^4 x^{q^2 - 1} \left(x^{r^2} - \left(\frac{q}{p}\right)^4 \right).$$

The roots of equation f'(x) = 0 are $x_1 = 0$ and $x_2 = \left(\frac{q}{p}\right)^{\frac{4}{r^2}}$ $(r \neq 0 \text{ and } q \neq 1)$. From $f(0) = -r^2 < 0$ and $f\left(\left(\frac{q}{p}\right)^{\frac{4}{r^2}}\right) < 0$ we obtain

$$\operatorname{sgn} f(x) = \begin{cases} -1 & \text{if } x < 1, \\ 0 & \text{if } x = 1, \\ 1 & \text{if } x > 1. \end{cases}$$
(2)

So x = 1 is the only real root of equation f(x) = 0.

Since the matrix A verifies $f(A) = O_n$, some eigenvalue $\lambda \in \sigma_P(A)$ satisfies the equation $f(\lambda) = 0$. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be eigenvalues of the matrix A. We show that $|\lambda_k| \leq 1$ for all k. The fact $f(\lambda) = 0$ can be written as

$$p^2 \lambda^{p^2} = q^2 \lambda^{q^2} + r^2. \tag{3}$$

Passing the relation (3) at modulus we obtain $p^2 |\lambda|^{p^2} \le q^2 |\lambda|^{q^2} + r^2$ or

$$f(|\lambda|) \le 0. \tag{4}$$

From (2) and (4) we obtain $0 \le |\lambda| \le 1$ or $0 \le |\lambda_k| \le 1$ for all k = 1, ..., n. Because $f(0) = -r^2 \ne 0$, it results that $\lambda_k \ne 0$ for all k.

Hence

$$0 < |\lambda_k| \le 1 \quad \text{for all } k = 1, \dots, n \,. \tag{5}$$

From det $A = \lambda_1 \lambda_2 \cdots \lambda_n$ we obtain

$$\left|\det A\right| = \left|\lambda_1 \lambda_2 \cdots \lambda_n\right| = \left|\lambda_1\right| \left|\lambda_2\right| \cdots \left|\lambda_n\right| \le 1.$$
(6)

From (5) and (6) we obtain

$$0 < |\det A| \le 1. \tag{7}$$

Since $A \in M_n(\mathbb{Z})$, it follows that $|\det A| \in \mathbb{N}$. From (7) we obtain the conclusion that $|\det A| = 1$.

Problem 4 Let k, m, n be positive integers such that $1 \le m \le n$ and denote $S = \{1, 2, \ldots, n\}$. Suppose that A_1, A_2, \ldots, A_k are *m*-element subsets of S with the following property: for every $i = 1, 2, \ldots, k$ there exists a partition $S = S_{1,i} \cup S_{2,i} \cup \cdots \cup S_{m,i}$ (into pairwise disjoint subsets) such that

(i) A_i has precisely one element in common with each member of the above partition.

(ii) Every A_i , $j \neq i$ is disjoint from at least one member of the above partition.

Show that $k \leq \binom{n-1}{m-1}$.

[10 points]

Solution Without loss of generality assume that $1 \in S_1^{(i)}$ for all i = 1, 2, ..., k, because otherwise we simply rename members of each partition.

For every $i = 1, 2, \ldots, k$ define the polynomial

$$P_i(x_2, x_3, \dots, x_n) = \prod_{l=2}^m \left(\sum_{s \in S_l^{(i)}} x_s\right)$$

and regard it as a polynomial over \mathbb{R} in variables x_2, x_3, \ldots, x_n .

Observe that P_i is a homogenous polynomial of degree m-1 in n-1 variables. Also observe that all monomials in P_i are products of different x's, i.e. there are no monomials with squares or higher powers. The last statement follows simply from the fact that $S_2^{(i)}, \ldots, S_m^{(i)}$ are mutually disjoint. Such polynomials form a linear space over \mathbb{R} of dimension $\binom{n-1}{m-1}$ and polynomials P_i belong to that space. If we prove that polynomials $P_i, i = 1, 2, \ldots, k$ are linearly independent, the inequality $k \leq \binom{n-1}{m-1}$ will follow from the dimension argument.

For any i = 1, 2, ..., k let χ_i be the characteristic vector of $A \cap \{2, 3, ..., n\}$. In other words, $\chi_i \in \{0, 1\}^{n-1}$ where the *j*-th coordinate of χ_i equals 1 if $j + 1 \in A$, and 0 otherwise. For every *i* we know that each $A_i \cap S_l^{(i)}$ has exactly one element and therefore

$$P_i(\chi_i) = \prod_{l=2}^m |A_i \cap S_l^{(i)}| = \prod_{l=2}^m 1 = 1$$

On the other hand, if $j \neq i$ then either some $A_j \cap S_l^{(i)}$, $l \ge 2$ is empty, or all $A_j \cap S_l^{(i)}$, $l \ge 2$ are nonempty but $A_j \cap S_1^{(i)} = \emptyset$. In the latter case we must have $|A_j \cap S_l^{(i)}| = 2$ for some $l \ge 2$. In any case we have at least one even factor in the following product, and so

$$P_i(\chi_j) = \prod_{l=2}^m |A_j \cap S_l^{(i)}| \equiv 0 \pmod{2}.$$

Therefore all diagonal entries in the matrix $[P_i(\chi_i)]_{i,j=1,2,\ldots,k}$ are odd, while all non-diagonal entries are even. Consequently, its determinant is an odd integer, in particular it is not 0, and thus the matrix is regular. If polynomials P_i were linearly dependent, we would conclude that rows of $[P_i(\chi_j)]_{i,j=1,2,...,k}$ are also linearly dependent, but this is not the case. Therefore P_i , i = 1, 2, ..., k must be linearly independent and this completes the proof. \Box