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Problem 1 A positive integer m is called self-descriptive in base b, where b ≥ 2 is an integer, if:

i) The representation of m in base b is of the form (a0a1 . . . ab−1)b
(that is m = a0b

b−1 + a1b
b−2 + · · ·+ ab−2b+ ab−1, where 0 ≤ ai ≤ b− 1 are integers).

ii) ai is equal to the number of occurences of the number i in the sequence (a0a1 . . . ab−1).

For example, (1210)4 is self-descriptive in base 4, because it has four digits and contains one 0, two 1s, one 2
and no 3s.

a) Find all bases b ≥ 2 such that no number is self-descriptive in base b.

b) Prove that if x is a self-descriptive number in base b then the last (least significant) digit of x is 0.
[10 points]

Solution

1. For b ≥ 7 it is easy to verify that the number of the form (b−4)bb−1 +2bb−2 +bb−3 +b4 is a self descriptive
number (it contains b − 4 instances of digit 0, two instances of digit 1, one instance of digit 2 and one
instance of digit b − 4), and numbers 21200(5) and 2020(4) are self-descriptive numbers in bases 5 and 4,
respectively.

It remains to show that for bases 2, 3 and 6 no self descriptive numbers exist. First note, that a self-
descriptive number (in any admissible base) contains at least one instance of the digit 0. If it does not,
then the first digit is 0, which is a contradiction.

It is easy to prove the claim for b = 2, 3.

Let us prove it for b = 6. Assume there exists x = (b0b1b2b3b4b5)(6), where x is a self-descriptive number.

We observe the following about x:

(a)
∑5
i=0 bi = 6

(b) b0 6= 0

(c)
∑5
i=1 bi = |{bi, bi 6= 0, i ≥ 1}|+ 1

(d) Other than the first digit, the set of all other non-zero digits consists of several 1’s and one 2.

Observation 1d implies that all but one of the digits b3, b4 and b5 are 0, now it is easy to check, that no
such number is self-descriptive, which is a contradiction. Therefore base b = 6 contains no self-descriptive
numbers.

2. Assume that there is in fact a self-descriptive number x in base b that it is b-digits long but not a multiple
of b. The digit at position b− 1 must be at least 1, meaning that there is at least one instance of the digit
b− 1 in x. At whatever position a that digit b− 1 falls, there must be at least b− 1 instances of digit a in
x. Therefore, we have at least one instance of the digit 1, and b − 1 instances of a. If a > 1, then x has
more than b digits, leading to a contradiction of our initial statement. And if a = 0 or a = 1, that also
leads to a contradiction.

3. These numbers are: 1210, 2020, 21200, 3211000, 42101000, 521001000, 6210001000. That these are the
only such numbers, follows from previous observations.

�



The 19th Annual Vojtěch Jarńık
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Problem 2 Let E be the set of all continuously differentiable real valued functions f on [0, 1] such that f(0) = 0
and f(1) = 1. Define

J(f) =
∫ 1

0

(1 + x2)(f ′(x))2 dx .

a) Show that J achieves its minimum value at some element of E.

b) Calculate min
f∈E

J(f).

[10 points]
Solution By the fundamental theorem of Calculus, we have

1 = |f ′(1)− f ′(0)| =
∣∣∣∫ 1

0

f ′′(x) dx
∣∣∣ .

Next, by using the Cauchy-Schwartz inequality, we obtain∣∣∣∫ 1

0

f ′′(x) dx
∣∣∣ =

∣∣∣∫ 1

0

√
1 + x2

√
1 + x2

f ′′(x) dx
∣∣∣

≤
(∫ 1

0

(1 + x2)(f ′′(x))2 dx
)1/2(∫ 1

0

1
1 + x2

dx
)1/2

=
(∫ 1

0

(1 + x2)(f ′′(x))2 dx
)1/2(

arctanx
∣∣∣1
0

)1/2

=
(∫ 1

0

(1 + x2)(f ′′(x))2 dx
)1/2
√
π

2
.

Hence

inf
f∈E

∫ 1

0

(1 + x2)(f ′′(x))2 dx ≥ 4
π
.

Finally, let

f(x) :=
4
π

∫ x

0

arctan tdt

for x ∈ [0, 1]. Then f ′(x) = 4
π arctanx (by the fundamental theorem of Calculus) and f ′′(x) = 4

π
1

1+x2 , for
x ∈ [0, 1]. Consequently, we deduce that f ∈ E and

J(f) =
∫ 1

0

(1 + x2)
( 4
π

1
1 + x2

)2

dx =
16
π2

∫ 1

0

1
1 + x2

dx =
16
π2
· π

4
=

4
π
,

which proves that J attains its minimum on E. This completes the solution. �
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Problem 3 Let A be an n × n square matrix with integer entries. Suppose that p2Ap
2

= q2Aq
2

+ r2In for
some positive integers p, q, r where r is odd and p2 = q2 + r2. Prove that |detA| = 1.
(Here In means the n× n identity matrix.) [10 points]
Solution Consider the function f : R→ R.

f(x) = p2xp
2
− q2xq

2
− r2 . (1)

Observe that

f ′(x) = p4xq
2−1

(
xr

2
−
(q
p

)4
)
.

The roots of equation f ′(x) = 0 are x1 = 0 and x2 =
(
q
p

) 4
r2 (r 6= 0 and q 6= 1). From f(0) = −r2 < 0 and

f
((
q
p

) 4
r2
)
< 0 we obtain

sgn f(x) =


−1 if x < 1 ,
0 if x = 1 ,
1 if x > 1 .

(2)

So x = 1 is the only real root of equation f(x) = 0.
Since the matrix A verifies f(A) = On, some eigenvalue λ ∈ σP(A) satisfies the equation f(λ) = 0. Let

λ1, λ2, . . . , λn be eigenvalues of the matrix A. We show that |λk| ≤ 1 for all k. The fact f(λ) = 0 can be written
as

p2λp
2

= q2λq
2

+ r2. (3)

Passing the relation (3) at modulus we obtain p2|λ|p2 ≤ q2|λ|q2 + r2 or

f(|λ|) ≤ 0 . (4)

From (2) and (4) we obtain 0 ≤ |λ| ≤ 1 or 0 ≤ |λk| ≤ 1 for all k = 1, . . . , n. Because f(0) = −r2 6= 0, it results
that λk 6= 0 for all k.

Hence
0 < |λk| ≤ 1 for all k = 1, . . . , n . (5)

From detA = λ1λ2 · · ·λn we obtain

|detA| = |λ1λ2 · · ·λn| = |λ1||λ2| · · · |λn| ≤ 1 . (6)

From (5) and (6) we obtain
0 < |detA| ≤ 1 . (7)

Since A ∈Mn(Z), it follows that |detA| ∈ N. From (7) we obtain the conclusion that |detA| = 1. �
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Problem 4 Let k,m, n be positive integers such that 1 ≤ m ≤ n and denote S = {1, 2, . . . , n}. Suppose that
A1, A2, . . . , Ak are m-element subsets of S with the following property: for every i = 1, 2, . . . , k there exists a
partition S = S1,i ∪ S2,i ∪ · · · ∪ Sm,i (into pairwise disjoint subsets) such that

(i) Ai has precisely one element in common with each member of the above partition.

(ii) Every Aj , j 6= i is disjoint from at least one member of the above partition.

Show that k ≤
(
n−1
m−1

)
. [10 points]

Solution Without loss of generality assume that 1 ∈ S(i)
1 for all i = 1, 2, . . . , k, because otherwise we simply

rename members of each partition.
For every i = 1, 2, . . . , k define the polynomial

Pi(x2, x3, . . . , xn) =
m∏
l=2

( ∑
s∈S(i)

l

xs

)

and regard it as a polynomial over R in variables x2, x3, . . . , xn.
Observe that Pi is a homogenous polynomial of degree m − 1 in n − 1 variables. Also observe that all

monomials in Pi are products of different x’s, i.e. there are no monomials with squares or higher powers. The
last statement follows simply from the fact that S(i)

2 , . . . , S
(i)
m are mutually disjoint. Such polynomials form a

linear space over R of dimension
(
n−1
m−1

)
and polynomials Pi belong to that space. If we prove that polynomials

Pi, i = 1, 2, . . . , k are linearly independent, the inequality k ≤
(
n−1
m−1

)
will follow from the dimension argument.

For any i = 1, 2, . . . , k let χi be the characteristic vector of A∩ {2, 3, . . . , n}. In other words, χi ∈ {0, 1}n−1

where the j-th coordinate of χi equals 1 if j + 1 ∈ A, and 0 otherwise.
For every i we know that each Ai ∩ S(i)

l has exactly one element and therefore

Pi(χi) =
m∏
l=2

|Ai ∩ S(i)
l | =

m∏
l=2

1 = 1 .

On the other hand, if j 6= i then either some Aj ∩ S(i)
l , l ≥ 2 is empty, or all Aj ∩ S(i)

l , l ≥ 2 are nonempty but
Aj ∩ S(i)

1 = ∅. In the latter case we must have |Aj ∩ S(i)
l | = 2 for some l ≥ 2. In any case we have at least one

even factor in the following product, and so

Pi(χj) =
m∏
l=2

|Aj ∩ S(i)
l | ≡ 0 (mod 2) .

Therefore all diagonal entries in the matrix [Pi(χj)]i,j=1,2,...,k are odd, while all non-diagonal entries are
even. Consequently, its determinant is an odd integer, in particular it is not 0, and thus the matrix is regular.
If polynomials Pi were linearly dependent, we would conclude that rows of [Pi(χj)]i,j=1,2,...,k are also linearly
dependent, but this is not the case. Therefore Pi, i = 1, 2, . . . , k must be linearly independent and this completes
the proof. �


