The $19^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $1^{\text {st }}$ April 2009
Category II

Problem $1 A$ positive integer m is called self-descriptive in base b, where $b \geq 2$ is an integer, if:
i) The representation of m in base b is of the form $\left(a_{0} a_{1} \ldots a_{b-1}\right)_{b}$ (that is $m=a_{0} b^{b-1}+a_{1} b^{b-2}+\cdots+a_{b-2} b+a_{b-1}$, where $0 \leq a_{i} \leq b-1$ are integers).
ii) a_{i} is equal to the number of occurences of the number i in the sequence $\left(a_{0} a_{1} \ldots a_{b-1}\right)$.

For example, $(1210)_{4}$ is self-descriptive in base 4 , because it has four digits and contains one 0 , two 1 s, one 2 and no 3 s .
a) Find all bases $b \geq 2$ such that no number is self-descriptive in base b.
b) Prove that if x is a self-descriptive number in base b then the last (least significant) digit of x is 0 .
[10 points]

Solution

1. For $b \geq 7$ it is easy to verify that the number of the form $(b-4) b^{b-1}+2 b^{b-2}+b^{b-3}+b^{4}$ is a self descriptive number (it contains $b-4$ instances of digit 0 , two instances of digit 1 , one instance of digit 2 and one instance of digit $b-4$), and numbers $21200_{(5)}$ and $2020_{(4)}$ are self-descriptive numbers in bases 5 and 4, respectively.
It remains to show that for bases 2,3 and 6 no self descriptive numbers exist. First note, that a selfdescriptive number (in any admissible base) contains at least one instance of the digit 0 . If it does not, then the first digit is 0 , which is a contradiction.
It is easy to prove the claim for $b=2,3$.
Let us prove it for $b=6$. Assume there exists $x=\left(b_{0} b_{1} b_{2} b_{3} b_{4} b_{5}\right)_{(6)}$, where x is a self-descriptive number.
We observe the following about x :
(a) $\sum_{i=0}^{5} b_{i}=6$
(b) $b_{0} \neq 0$
(c) $\sum_{i=1}^{5} b_{i}=\left|\left\{b_{i}, b_{i} \neq 0, i \geq 1\right\}\right|+1$
(d) Other than the first digit, the set of all other non-zero digits consists of several 1's and one 2.

Observation 1d implies that all but one of the digits b_{3}, b_{4} and b_{5} are 0 , now it is easy to check, that no such number is self-descriptive, which is a contradiction. Therefore base $b=6$ contains no self-descriptive numbers.
2. Assume that there is in fact a self-descriptive number x in base b that it is b-digits long but not a multiple of b. The digit at position $b-1$ must be at least 1 , meaning that there is at least one instance of the digit $b-1$ in x. At whatever position a that digit $b-1$ falls, there must be at least $b-1$ instances of digit a in x. Therefore, we have at least one instance of the digit 1 , and $b-1$ instances of a. If $a>1$, then x has more than b digits, leading to a contradiction of our initial statement. And if $a=0$ or $a=1$, that also leads to a contradiction.
3. These numbers are: $1210,2020,21200,3211000,42101000,521001000,6210001000$. That these are the only such numbers, follows from previous observations.

Problem 2 Let E be the set of all continuously differentiable real valued functions f on $[0,1]$ such that $f(0)=0$ and $f(1)=1$. Define

$$
J(f)=\int_{0}^{1}\left(1+x^{2}\right)\left(f^{\prime}(x)\right)^{2} \mathrm{~d} x
$$

a) Show that J achieves its minimum value at some element of E.
b) Calculate $\min _{f \in E} J(f)$.

Solution By the fundamental theorem of Calculus, we have

$$
1=\left|f^{\prime}(1)-f^{\prime}(0)\right|=\left|\int_{0}^{1} f^{\prime \prime}(x) \mathrm{d} x\right|
$$

Next, by using the Cauchy-Schwartz inequality, we obtain

$$
\begin{aligned}
\left|\int_{0}^{1} f^{\prime \prime}(x) \mathrm{d} x\right| & =\left|\int_{0}^{1} \frac{\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}} f^{\prime \prime}(x) \mathrm{d} x\right| \\
& \leq\left(\int_{0}^{1}\left(1+x^{2}\right)\left(f^{\prime \prime}(x)\right)^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x\right)^{1 / 2} \\
& =\left(\int_{0}^{1}\left(1+x^{2}\right)\left(f^{\prime \prime}(x)\right)^{2} \mathrm{~d} x\right)^{1 / 2}\left(\left.\arctan x\right|_{0} ^{1}\right)^{1 / 2} \\
& =\left(\int_{0}^{1}\left(1+x^{2}\right)\left(f^{\prime \prime}(x)\right)^{2} \mathrm{~d} x\right)^{1 / 2} \frac{\sqrt{\pi}}{2}
\end{aligned}
$$

Hence

$$
\inf _{f \in E} \int_{0}^{1}\left(1+x^{2}\right)\left(f^{\prime \prime}(x)\right)^{2} \mathrm{~d} x \geq \frac{4}{\pi}
$$

Finally, let

$$
f(x):=\frac{4}{\pi} \int_{0}^{x} \arctan t \mathrm{~d} t
$$

for $x \in[0,1]$. Then $f^{\prime}(x)=\frac{4}{\pi} \arctan x$ (by the fundamental theorem of Calculus) and $f^{\prime \prime}(x)=\frac{4}{\pi} \frac{1}{1+x^{2}}$, for $x \in[0,1]$. Consequently, we deduce that $f \in E$ and

$$
J(f)=\int_{0}^{1}\left(1+x^{2}\right)\left(\frac{4}{\pi} \frac{1}{1+x^{2}}\right)^{2} \mathrm{~d} x=\frac{16}{\pi^{2}} \int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x=\frac{16}{\pi^{2}} \cdot \frac{\pi}{4}=\frac{4}{\pi},
$$

which proves that J attains its minimum on E. This completes the solution.

The $19^{\text {th }}$ Annual Vojtěch Jarník
 International Mathematical Competition
 Ostrava, $1^{\text {st }}$ April 2009
 Category II

Problem 3 Let A be an $n \times n$ square matrix with integer entries. Suppose that $p^{2} A^{p^{2}}=q^{2} A^{q^{2}}+r^{2} I_{n}$ for some positive integers p, q, r where r is odd and $p^{2}=q^{2}+r^{2}$. Prove that $|\operatorname{det} A|=1$.
(Here I_{n} means the $n \times n$ identity matrix.)
[10 points]
Solution Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$.

$$
\begin{equation*}
f(x)=p^{2} x^{p^{2}}-q^{2} x^{q^{2}}-r^{2} \tag{1}
\end{equation*}
$$

Observe that

$$
f^{\prime}(x)=p^{4} x^{q^{2}-1}\left(x^{r^{2}}-\left(\frac{q}{p}\right)^{4}\right)
$$

The roots of equation $f^{\prime}(x)=0$ are $x_{1}=0$ and $x_{2}=\left(\frac{q}{p}\right)^{\frac{4}{r^{2}}}(r \neq 0$ and $q \neq 1)$. From $f(0)=-r^{2}<0$ and $f\left(\left(\frac{q}{p}\right)^{\frac{4}{r^{2}}}\right)<0$ we obtain

$$
\operatorname{sgn} f(x)= \begin{cases}-1 & \text { if } x<1 \tag{2}\\ 0 & \text { if } x=1 \\ 1 & \text { if } x>1\end{cases}
$$

So $x=1$ is the only real root of equation $f(x)=0$.
Since the matrix A verifies $f(A)=O_{n}$, some eigenvalue $\lambda \in \sigma_{\mathrm{P}}(A)$ satisfies the equation $f(\lambda)=0$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be eigenvalues of the matrix A. We show that $\left|\lambda_{k}\right| \leq 1$ for all k. The fact $f(\lambda)=0$ can be written as

$$
\begin{equation*}
p^{2} \lambda^{p^{2}}=q^{2} \lambda^{q^{2}}+r^{2} . \tag{3}
\end{equation*}
$$

Passing the relation (3) at modulus we obtain $p^{2}|\lambda|^{p^{2}} \leq q^{2}|\lambda|^{q^{2}}+r^{2}$ or

$$
\begin{equation*}
f(|\lambda|) \leq 0 . \tag{4}
\end{equation*}
$$

From (2) and (4) we obtain $0 \leq|\lambda| \leq 1$ or $0 \leq\left|\lambda_{k}\right| \leq 1$ for all $k=1, \ldots, n$. Because $f(0)=-r^{2} \neq 0$, it results that $\lambda_{k} \neq 0$ for all k.

Hence

$$
\begin{equation*}
0<\left|\lambda_{k}\right| \leq 1 \quad \text { for all } k=1, \ldots, n \tag{5}
\end{equation*}
$$

From $\operatorname{det} A=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$ we obtain

$$
\begin{equation*}
|\operatorname{det} A|=\left|\lambda_{1} \lambda_{2} \cdots \lambda_{n}\right|=\left|\lambda_{1}\right|\left|\lambda_{2}\right| \cdots\left|\lambda_{n}\right| \leq 1 \tag{6}
\end{equation*}
$$

From (5) and (6) we obtain

$$
\begin{equation*}
0<|\operatorname{det} A| \leq 1 \tag{7}
\end{equation*}
$$

Since $A \in M_{n}(\mathbb{Z})$, it follows that $|\operatorname{det} A| \in \mathbb{N}$. From (7) we obtain the conclusion that $|\operatorname{det} A|=1$.

The $19^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $1^{\text {st }}$ April 2009
Category II

Problem 4 Let k, m, n be positive integers such that $1 \leq m \leq n$ and denote $S=\{1,2, \ldots, n\}$. Suppose that $A_{1}, A_{2}, \ldots, A_{k}$ are m-element subsets of S with the following property: for every $i=1,2, \ldots, k$ there exists a partition $S=S_{1, i} \cup S_{2, i} \cup \cdots \cup S_{m, i}$ (into pairwise disjoint subsets) such that
(i) A_{i} has precisely one element in common with each member of the above partition.
(ii) Every $A_{j}, j \neq i$ is disjoint from at least one member of the above partition.

Show that $k \leq\binom{ n-1}{m-1}$.
[10 points]
Solution Without loss of generality assume that $1 \in S_{1}^{(i)}$ for all $i=1,2, \ldots, k$, because otherwise we simply rename members of each partition.

For every $i=1,2, \ldots, k$ define the polynomial

$$
P_{i}\left(x_{2}, x_{3}, \ldots, x_{n}\right)=\prod_{l=2}^{m}\left(\sum_{s \in S_{l}^{(i)}} x_{s}\right)
$$

and regard it as a polynomial over \mathbb{R} in variables $x_{2}, x_{3}, \ldots, x_{n}$.
Observe that P_{i} is a homogenous polynomial of degree $m-1$ in $n-1$ variables. Also observe that all monomials in P_{i} are products of different x 's, i.e. there are no monomials with squares or higher powers. The last statement follows simply from the fact that $S_{2}^{(i)}, \ldots, S_{m}^{(i)}$ are mutually disjoint. Such polynomials form a linear space over \mathbb{R} of dimension $\binom{n-1}{m-1}$ and polynomials P_{i} belong to that space. If we prove that polynomials $P_{i}, i=1,2, \ldots, k$ are linearly independent, the inequality $k \leq\binom{ n-1}{m-1}$ will follow from the dimension argument.

For any $i=1,2, \ldots, k$ let χ_{i} be the characteristic vector of $A \cap\{2,3, \ldots, n\}$. In other words, $\chi_{i} \in\{0,1\}^{n-1}$ where the j-th coordinate of χ_{i} equals 1 if $j+1 \in A$, and 0 otherwise.

For every i we know that each $A_{i} \cap S_{l}^{(i)}$ has exactly one element and therefore

$$
P_{i}\left(\chi_{i}\right)=\prod_{l=2}^{m}\left|A_{i} \cap S_{l}^{(i)}\right|=\prod_{l=2}^{m} 1=1 .
$$

On the other hand, if $j \neq i$ then either some $A_{j} \cap S_{l}^{(i)}, l \geq 2$ is empty, or all $A_{j} \cap S_{l}^{(i)}, l \geq 2$ are nonempty but $A_{j} \cap S_{1}^{(i)}=\emptyset$. In the latter case we must have $\left|A_{j} \cap S_{l}^{(i)}\right|=2$ for some $l \geq 2$. In any case we have at least one even factor in the following product, and so

$$
P_{i}\left(\chi_{j}\right)=\prod_{l=2}^{m}\left|A_{j} \cap S_{l}^{(i)}\right| \equiv 0 \quad(\bmod 2)
$$

Therefore all diagonal entries in the matrix $\left[P_{i}\left(\chi_{j}\right)\right]_{i, j=1,2, \ldots, k}$ are odd, while all non-diagonal entries are even. Consequently, its determinant is an odd integer, in particular it is not 0 , and thus the matrix is regular. If polynomials P_{i} were linearly dependent, we would conclude that rows of $\left[P_{i}\left(\chi_{j}\right)\right]_{i, j=1,2, \ldots, k}$ are also linearly dependent, but this is not the case. Therefore $P_{i}, i=1,2, \ldots, k$ must be linearly independent and this completes the proof.

