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Problem 1

a) Is it true that for every bijection f : N → N the series

∞∑
n=1

1
nf(n)

is convergent?

b) Prove that there exists a bijection f : N → N such that the series

∞∑
n=1

1
n + f(n)

is convergent.

(N is the set of all positive integers.) [10 points]

Solution a) Yes. Applying the inequality, if 0 ≤ a1 ≤ · · · ≤ an and 0 ≤ b1 ≤ · · · ≤ bn and σ : {1, . . . , n} →
{1, . . . , n} is a permutation, then

n∑
j=1

ajbσ(j) ≤
n∑

j=1

ajbj ,

for every n we get
n∑

j=1

1
jf(j)

≤
n∑

j=1

1
j2
≤

∞∑
j=1

1
j2

.

Since the sequence
(∑n

j=1
1

jf(j)

)
is increasing and bounded, it converges.

b) No. We will construct a permutation f : N → N such that the series

∞∑
n=1

1
n + f(n)

is convergent. Let f : N → N be given in the following way: f(1) = 4 and for [(n!)2 + 1, ((n + 1)!)2] ∩ N we put

f((n!)2 + k) = [(n + 2)!]2 − (k − 1) if 1 ≤ k < [(n + 1)!]2 − 1−
n−1∑
j=0

(−1)j [(n− j)!]2.

and

f([(n + 1)!]2 − k) = [(n− 1)!]2 + k + 1 if 0 ≤ k ≤ 1 +
n−1∑
j=0

(−1)j [(n− j)!]2.

Then

[(n+1)!]2∑
j=(n!)2+1

1
n + f(n)

≤ ((n + 1)!)2 − (n!)2

(n!)2 + [(n + 2)!]2 + 1
+

(n!)2 − [(n− 1)!]2

[(n + 1)!]2 + [(n− 1)!]2 + 1

<
1

(n + 2)2
+

1
(n + 1)2

.

Thus we show that the sequence
(∑n

j=1
1

j+f(j)

)
is bounded. Since it is increasing, it converges. �



The 20th Annual Vojtěch Jarník
International Mathematical Competition

Ostrava, 25th March 2010
Category I

Problem 2 Let A and B be two complex 2× 2 matrices such that AB −BA = B2. Prove that AB = BA.
[10 points]

Solution We may conclude that AB = BA if and only if 2 6= 0 in F (that is, char F 6= 2).

If char F = 2, take B =
(

1 1
0 1

)
, A =

(
0 0
1 0

)
.

Assume that char F 6= 2. Let B =
(

a b
c d

)
, then B2 =

(
a2 + bc b(a + d)
c(a + d) d2 + bc

)
. We have a2 + d2 + 2bc =

trace B2 = trace AB − trace BA = 0. If B is invertible, then A = B(A + B)B−1, hence

trace A = trace(B(A + B)B−1) = trace(A + B) = trace A + trace B,

so trace B = 0, d = −a, trace B2 = 2(a2 + bc) = 0. Since char F 6= 2, it implies a2 + bc = 0, hence B2 = 0 and
AB = BA. If B is not invertible, then det B = ad− bc = 0, so (a + d)2 = a2 + d2 + 2bc = 0, a + d = 0, a = −d,
a2 + bc = −ad + bc = 0, so B2 = 0. �
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Problem 3 Prove that there exist positive constants c1 and c2 with the following properties:

a) For all real k > 1, ∣∣∣∫ 1

0

√
1− x2 cos(kx) dx

∣∣∣ <
c1

k3/2
.

b) For all real k > 1, ∣∣∣∫ 1

0

√
1− x2 sin(kx) dx

∣∣∣ >
c2

k
.

[10 points]

Solution Put f(x) =
√

1− x2.
1. Integrating by parts, we have∫ 1

0

f(x) · cos kxdx =
[
f(x) · 1

k
sin kx

]1

0
−

∫ 1

0

f ′(x) · 1
k

sin kxdx .

The first term is 0− 0 = 0. The second term is (−1/k) times∫ √
1−1/k

0

f ′(x) · sin kxdx +
∫ 1

√
1−1/k

f ′(x) · sin kxdx . (1)

Here the first term equals

[
−f ′(x) · 1

k
cos kx

]√1−1/k

0
+

∫ √
1−1/k

0

f ′′(x) · 1
k

cos kxdx ,

whose absolute value is

≤ −2
k

f ′
(√

1− 1/k
)

=
2
k

√
1− 1/k√

1/k
<

2√
k

.

The absolute value of the second term in (1) is

≤
∫ 1

√
1−1/k

|f ′(x)|dx = −[f(x)]1√
1−1/k

=
1√
k

.

Thus, we may choose c1 = 2 + 1 = 3.
2. Integrating by parts, we have∫ 1

0

f(x) · sin kxdx = −
[
f(x) · 1

k
cos kx

]1

0
+

∫ 1

0

f ′(x) · 1
k

cos kxdx .

The first term is 1/k. The second term is (1/k) times∫ √
1−1/k

0

f ′(x) · cos kxdx +
∫ 1

√
1−1/k

f ′(x) · cos kxdx . (2)

Here the first term equals

[
f ′(x) · 1

k
sin kx

]√1−1/k

0
−

∫ √
1−1/k

0

f ′′(x) · 1
k

sin kxdx ,

whose absolute value is

≤ −2
k

f ′
(√

1− 1/k
)

=
2
k

√
1− 1/k√

1/k
<

2√
k

.

The absolute value of the second term in (2) is

≤
∫ 1

√
1−1/k

|f ′(x)|dx = −[f(x)]1√
1−1/k

=
1√
k

.



Thus, ∫ 1

0

f(x) · sin kxdx >
1
k

(
1− 3√

k

)
.

This proves the desired claim for k ≥ 3π.
The integral has a positive lower bound for k < 3π as well, since∫ 1

0

f(x) · sin kxdx =
∫ 1

0

(
−f ′(x)

)
· 1− cos kx

k
dx > 0 .

�
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Problem 4 For every positive integer n let σ(n) denote the sum of all its positive divisors. A number n is
called weird if σ(n) ≥ 2n and there exists no representation

n = d1 + d2 + · · ·+ dr ,

where r > 1 and d1, . . . , dr are pairwise distinct positive divisors of n.
Prove that there are infinitely many weird numbers. [10 points]

Solution The idea is to show that given a weird number, one can construct a sequence of weird numbers
tending to infinity.
We claim that for weird n and p a prime greater than σ(n) and coprime to n, the number pn is also weird.

In fact, if 1 = d1, d2, . . . , dk = n are the positive divisors of n, the ones of pn are d1, d2, . . . , dk, pd1, . . . , pdk and
they are pairwise distinct as (p, n) = 1. Suppose now that we have

pn = di1 + · · ·+ dir + p(dj1 + · · ·+ djs)

with ik, jl ∈ {1, . . . , k}. Then we have

di1 + · · ·+ dir = p(n− dj1 − · · · − djs) .

Note that n /∈ {dj1 , . . . , djs} as the representation must have more than only one summand and the assumption
that n is weird implies n − dj1 − . . . − djs 6= 0. Hence as the right hand expression is divisible by p and non
zero, so must be di1 + · · ·+ dir which is impossible as p > σ(n).
It remains to find a weird number. A possible reasoning could be: look for a number n with σ(n) = 2n + 4

that is not divisible by 3 and 4. Then the smallest possible divisors are 1, 2, 5 so that it will be impossible to
represent 4, and hence n, as a sum of pairwise distinct divisors of n. Checking for numbers with three distinct
prime factors 2, p, q yields

σ(2pq) = 3(p + 1)(q + 1) = 3pq + 3p + 3q + 3

and hence we need
3pq + 3p + 3q + 3 = 4pq + 4 ⇐⇒ (p− 3)(q − 3) = 8 .

This equality is solved by p = 5 and q = 7 which yields the weird number n = 70. �


