Problem 1

a) Is it true that for every bijection $f: \mathbb{N} \rightarrow \mathbb{N}$ the series

$$
\sum_{n=1}^{\infty} \frac{1}{n f(n)}
$$

is convergent?
b) Prove that there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{N}$ such that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n+f(n)}
$$

is convergent.
(\mathbb{N} is the set of all positive integers.)
Solution a) Yes. Applying the inequality, if $0 \leq a_{1} \leq \cdots \leq a_{n}$ and $0 \leq b_{1} \leq \cdots \leq b_{n}$ and $\sigma:\{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n\}$ is a permutation, then

$$
\sum_{j=1}^{n} a_{j} b_{\sigma(j)} \leq \sum_{j=1}^{n} a_{j} b_{j}
$$

for every n we get

$$
\sum_{j=1}^{n} \frac{1}{j f(j)} \leq \sum_{j=1}^{n} \frac{1}{j^{2}} \leq \sum_{j=1}^{\infty} \frac{1}{j^{2}}
$$

Since the sequence $\left(\sum_{j=1}^{n} \frac{1}{j f(j)}\right)$ is increasing and bounded, it converges.
b) No. We will construct a permutation $f: \mathbb{N} \rightarrow \mathbb{N}$ such that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n+f(n)}
$$

is convergent. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be given in the following way: $f(1)=4$ and for $\left[(n!)^{2}+1,((n+1)!)^{2}\right] \cap \mathbb{N}$ we put

$$
f\left((n!)^{2}+k\right)=[(n+2)!]^{2}-(k-1) \quad \text { if } \quad 1 \leq k<[(n+1)!]^{2}-1-\sum_{j=0}^{n-1}(-1)^{j}[(n-j)!]^{2} .
$$

and

$$
f\left([(n+1)!]^{2}-k\right)=[(n-1)!]^{2}+k+1 \quad \text { if } \quad 0 \leq k \leq 1+\sum_{j=0}^{n-1}(-1)^{j}[(n-j)!]^{2}
$$

Then

$$
\begin{aligned}
\sum_{j=(n!)^{2}+1}^{[(n+1)!]^{2}} \frac{1}{n+f(n)} & \leq \frac{((n+1)!)^{2}-(n!)^{2}}{(n!)^{2}+[(n+2)!]^{2}+1}+\frac{(n!)^{2}-[(n-1)!]^{2}}{[(n+1)!]^{2}+[(n-1)!]^{2}+1} \\
& <\frac{1}{(n+2)^{2}}+\frac{1}{(n+1)^{2}}
\end{aligned}
$$

Thus we show that the sequence $\left(\sum_{j=1}^{n} \frac{1}{j+f(j)}\right)$ is bounded. Since it is increasing, it converges.

The $20^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $25^{\text {th }}$ March 2010
Category I

Problem 2 Let A and B be two complex 2×2 matrices such that $A B-B A=B^{2}$. Prove that $A B=B A$.
[10 points]
Solution We may conclude that $A B=B A$ if and only if $2 \neq 0$ in F (that is, char $F \neq 2$).
If char $F=2$, take $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), A=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
Assume that char $F \neq 2$. Let $B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $B^{2}=\left(\begin{array}{cc}a^{2}+b c & b(a+d) \\ c(a+d) & d^{2}+b c\end{array}\right)$. We have $a^{2}+d^{2}+2 b c=$ $\operatorname{trace} B^{2}=\operatorname{trace} A B-\operatorname{trace} B A=0$. If B is invertible, then $A=B(A+B) B^{-1}$, hence

$$
\operatorname{trace} A=\operatorname{trace}\left(B(A+B) B^{-1}\right)=\operatorname{trace}(A+B)=\operatorname{trace} A+\operatorname{trace} B
$$

so trace $B=0, d=-a$, trace $B^{2}=2\left(a^{2}+b c\right)=0$. Since char $F \neq 2$, it implies $a^{2}+b c=0$, hence $B^{2}=0$ and $A B=B A$. If B is not invertible, then $\operatorname{det} B=a d-b c=0$, so $(a+d)^{2}=a^{2}+d^{2}+2 b c=0, a+d=0, a=-d$, $a^{2}+b c=-a d+b c=0$, so $B^{2}=0$.

The $20^{\text {th }}$ Annual Vojtěch Jarník
 International Mathematical Competition
 Ostrava, 25 ${ }^{\text {th }}$ March 2010
 Category I

Problem 3 Prove that there exist positive constants c_{1} and c_{2} with the following properties:
a) For all real $k>1$,

$$
\left|\int_{0}^{1} \sqrt{1-x^{2}} \cos (k x) \mathrm{d} x\right|<\frac{c_{1}}{k^{3 / 2}} .
$$

b) For all real $k>1$,

$$
\left|\int_{0}^{1} \sqrt{1-x^{2}} \sin (k x) \mathrm{d} x\right|>\frac{c_{2}}{k}
$$

Solution Put $f(x)=\sqrt{1-x^{2}}$.

1. Integrating by parts, we have

$$
\int_{0}^{1} f(x) \cdot \cos k x \mathrm{~d} x=\left[f(x) \cdot \frac{1}{k} \sin k x\right]_{0}^{1}-\int_{0}^{1} f^{\prime}(x) \cdot \frac{1}{k} \sin k x \mathrm{~d} x .
$$

The first term is $0-0=0$. The second term is $(-1 / k)$ times

$$
\begin{equation*}
\int_{0}^{\sqrt{1-1 / k}} f^{\prime}(x) \cdot \sin k x \mathrm{~d} x+\int_{\sqrt{1-1 / k}}^{1} f^{\prime}(x) \cdot \sin k x \mathrm{~d} x \tag{1}
\end{equation*}
$$

Here the first term equals

$$
\left[-f^{\prime}(x) \cdot \frac{1}{k} \cos k x\right]_{0}^{\sqrt{1-1 / k}}+\int_{0}^{\sqrt{1-1 / k}} f^{\prime \prime}(x) \cdot \frac{1}{k} \cos k x \mathrm{~d} x
$$

whose absolute value is

$$
\leq-\frac{2}{k} f^{\prime}(\sqrt{1-1 / k})=\frac{2}{k} \frac{\sqrt{1-1 / k}}{\sqrt{1 / k}}<\frac{2}{\sqrt{k}}
$$

The absolute value of the second term in (1) is

$$
\leq \int_{\sqrt{1-1 / k}}^{1}\left|f^{\prime}(x)\right| \mathrm{d} x=-[f(x)]_{\sqrt{1-1 / k}}^{1}=\frac{1}{\sqrt{k}}
$$

Thus, we may choose $c_{1}=2+1=3$.
2. Integrating by parts, we have

$$
\int_{0}^{1} f(x) \cdot \sin k x \mathrm{~d} x=-\left[f(x) \cdot \frac{1}{k} \cos k x\right]_{0}^{1}+\int_{0}^{1} f^{\prime}(x) \cdot \frac{1}{k} \cos k x \mathrm{~d} x .
$$

The first term is $1 / k$. The second term is $(1 / k)$ times

$$
\begin{equation*}
\int_{0}^{\sqrt{1-1 / k}} f^{\prime}(x) \cdot \cos k x \mathrm{~d} x+\int_{\sqrt{1-1 / k}}^{1} f^{\prime}(x) \cdot \cos k x \mathrm{~d} x \tag{2}
\end{equation*}
$$

Here the first term equals

$$
\left[f^{\prime}(x) \cdot \frac{1}{k} \sin k x\right]_{0}^{\sqrt{1-1 / k}}-\int_{0}^{\sqrt{1-1 / k}} f^{\prime \prime}(x) \cdot \frac{1}{k} \sin k x \mathrm{~d} x
$$

whose absolute value is

$$
\leq-\frac{2}{k} f^{\prime}(\sqrt{1-1 / k})=\frac{2}{k} \frac{\sqrt{1-1 / k}}{\sqrt{1 / k}}<\frac{2}{\sqrt{k}} .
$$

The absolute value of the second term in (2) is

$$
\leq \int_{\sqrt{1-1 / k}}^{1}\left|f^{\prime}(x)\right| \mathrm{d} x=-[f(x)]_{\sqrt{1-1 / k}}^{1}=\frac{1}{\sqrt{k}}
$$

Thus,

$$
\int_{0}^{1} f(x) \cdot \sin k x \mathrm{~d} x>\frac{1}{k}\left(1-\frac{3}{\sqrt{k}}\right) .
$$

This proves the desired claim for $k \geq 3 \pi$.
The integral has a positive lower bound for $k<3 \pi$ as well, since

$$
\int_{0}^{1} f(x) \cdot \sin k x \mathrm{~d} x=\int_{0}^{1}\left(-f^{\prime}(x)\right) \cdot \frac{1-\cos k x}{k} \mathrm{~d} x>0 .
$$

The $20^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, 25 ${ }^{\text {th }}$ March 2010
Category I

Problem 4 For every positive integer n let $\sigma(n)$ denote the sum of all its positive divisors. A number n is called weird if $\sigma(n) \geq 2 n$ and there exists no representation

$$
n=d_{1}+d_{2}+\cdots+d_{r},
$$

where $r>1$ and d_{1}, \ldots, d_{r} are pairwise distinct positive divisors of n.
Prove that there are infinitely many weird numbers.
[10 points]
Solution The idea is to show that given a weird number, one can construct a sequence of weird numbers tending to infinity.

We claim that for weird n and p a prime greater than $\sigma(n)$ and coprime to n, the number $p n$ is also weird. In fact, if $1=d_{1}, d_{2}, \ldots, d_{k}=n$ are the positive divisors of n, the ones of $p n$ are $d_{1}, d_{2}, \ldots, d_{k}, p d_{1}, \ldots, p d_{k}$ and they are pairwise distinct as $(p, n)=1$. Suppose now that we have

$$
p n=d_{i_{1}}+\cdots+d_{i_{r}}+p\left(d_{j_{1}}+\cdots+d_{j_{s}}\right)
$$

with $i_{k}, j_{l} \in\{1, \ldots, k\}$. Then we have

$$
d_{i_{1}}+\cdots+d_{i_{r}}=p\left(n-d_{j_{1}}-\cdots-d_{j_{s}}\right) .
$$

Note that $n \notin\left\{d_{j_{1}}, \ldots, d_{j_{s}}\right\}$ as the representation must have more than only one summand and the assumption that n is weird implies $n-d_{j_{1}}-\ldots-d_{j_{s}} \neq 0$. Hence as the right hand expression is divisible by p and non zero, so must be $d_{i_{1}}+\cdots+d_{i_{r}}$ which is impossible as $p>\sigma(n)$.

It remains to find a weird number. A possible reasoning could be: look for a number n with $\sigma(n)=2 n+4$ that is not divisible by 3 and 4 . Then the smallest possible divisors are $1,2,5$ so that it will be impossible to represent 4 , and hence n, as a sum of pairwise distinct divisors of n. Checking for numbers with three distinct prime factors $2, p, q$ yields

$$
\sigma(2 p q)=3(p+1)(q+1)=3 p q+3 p+3 q+3
$$

and hence we need

$$
3 p q+3 p+3 q+3=4 p q+4 \Longleftrightarrow(p-3)(q-3)=8
$$

This equality is solved by $p=5$ and $q=7$ which yields the weird number $n=70$.

