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Problem 1

(a) Is there a polynomial P (x) with real coefficients such that

P
(1
k

)
=
k + 2

k
,

for all positive integers k?

(b) Is there a polynomial P (x) with real coefficients such that

P
(1
k

)
=

1

2k + 1
,

for all positive integers k?

Solution (a) YES. It suffices to define a polynomial W (x) as follows

W (x) = 2x+ 1.

(b) NO. Suppose that such a polynomial W (x) exists. Define a polynomial F (x) as follows

F (x) = (x+ 2)W (x)− x.

Then

F
(1
k

)
=
(1
k
+ 2
)
W
(1
k

)
− 1

k
= 0,

for all k ∈ N. Hence, the polynomial F (x) admits infinitely many zeros. Consequently,

(x+ 2)W (x)− x = 0,

for all x ∈ R. But this implies that

W (x) =
x

x+ 2
,

for all x ∈ R – a contradiction. �
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Problem 2 Let (an)∞n=1 be unbounded and strictly increasing sequence of positive reals such that the arithmetic
mean of any four consecutive terms an, an+1, an+2, an+3 belongs to the same sequence. Prove that the sequence
an+1/an converges and find all possible values of its limit.

Solution Since an < an+1 < an+2 < an+3, one has

an <
1

4
(an + an+1 + an+2 + an+3) < an+3,

thus (an + an+1 + an+2 + an+3)/4 ∈ {an+1, an+2}. Hence for any n ∈ N precisely one of the two identities

an + an+1 + an+2 + an+3 = 4an+1 (1)

or
an + an+1 + an+2 + an+3 = 4an+2 (2)

holds. Let A be the set of indices n ∈ N for which (1) holds and let B be the set of indices n ∈ N for which (2)
holds. Clearly, A∪B = N, A∩B = ∅. We shall prove that one of A or B is finite. Indeed, suppose the contrary,
that both A and B are infinite. Since A and B partition N, there exists a positive integer k, such that k ∈ B,
k + 1 ∈ A. From (1) and (2), it follows that

ak + ak+1 + ak+2 + ak+3 = 4ak+2 and ak+1 + ak+2 + ak+3 + ak+4 = 4ak+2.

Hence ak = ak+4, which contradicts the fact that an is strictly increasing. We now consider two cases.
Case 1) The set A is infinite, the set B is finite. By (1), the sequence an satisfies a linear recurrence

an − 3an+1 + an+2 + an+3 = 0 for all n > n0. The characteristic polynomial of the linear recurrence

φ(λ) = λ3 + λ2 − 3λ+ 1 = (λ− 1)(λ2 + 2λ− 1)

has roots λ1 = 1, λ2 = −1−
√
2, λ3 = −1 +

√
2. Hence

an = C1 + C2(−1−
√
2)n + C3(−1 +

√
2)n, C1, C2, C3 ∈ R, n > n0.

Observe that λ2 < −1, 0 < λ3 < 1. If C2 6= 0, then limn→∞ |an| =∞ and an alternates in sign for n sufficiently
large which contradicts the monotonicity property. If C2 = 0, then the sequence an is bounded, which leads to
the contradiction again. Thus we reject the case one.

Case 2) The set A is finite, the set B is infinite. By (1), the sequence an satisfies a linear recurrence
an + an+1 − 3an+2 + an+3 = 0 for all n > n0. The characteristic polynomial of the linear recurrence

φ(λ) = λ3 − 3λ2 + λ+ 1 = (λ− 1)(λ2 − 2λ− 1)

has roots λ1 = 1, λ2 = 1−
√
2, λ3 = 1 +

√
2. Hence

an = C1 + C2(1−
√
2)n + C3(1 +

√
2)n, C1, C2, C3 ∈ R, n > n0.

Note that −1 < λ2 < 0, λ3 > 1. If C3 ≤ 0, then the sequence an is bounded from above. Hence C3 > 0 so
an ∼ C3λ

n
3 as n→∞ . The standard limit calculation now shows that bn converges and has limit value

lim
n→∞

bn = lim
n→∞

an+1

an
= λ3 = 1 +

√
2.

�
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Problem 3 Prove that
∞∑
k=0

xk
1 + x2k+2

(1− x2k+2)2
=

∞∑
k=0

(−1)k xk

(1− xk+1)2

for all x ∈ (−1, 1).
Solution We use the binomial series

1

(1− u)2
=

∞∑
j=0

(j + 1)uj , |u| < 1

to get

∞∑
k=0

xk
1 + x2k+2

(1− x2k+2)2
=

∞∑
k=0

xk(1 + x2k+2)

∞∑
j=0

(j + 1)xj(2k+2) =

∞∑
j=0

∞∑
k=0

xk(1 + x2k+2)(j + 1)xj(2k+2) =

=

∞∑
j=0

(j + 1)x2j
∞∑
k=0

xk(1 + x2k+2)xj2k =

∞∑
j=0

(j + 1)x2j
(

1

1− x2j+1
+

x2

1− x2j+3

)
=

=

∞∑
j=0

(j + 1)x2j

1− x2j+1
+

∞∑
j=1

jx2j

1− x2j+1
=

∞∑
j=0

(2j + 1)x2j

1− x2j+1
= − d

dx

∞∑
j=0

log(1− x2j+1)

and

∞∑
k=0

(−x)k

(1− xk+1)2
=

∞∑
k=0

(−x)k
∞∑
j=0

(j + 1)x(k+1)j =

∞∑
j=0

(j + 1)xj
∞∑
k=0

(−x)kxkj =
∞∑
j=0

(j + 1)xj

1 + xj+1
=

=
d

dx

∞∑
j=0

log(1 + xj+1).

The proposition now follows by logarithmic differentiation of the classical identity

∞∏
n=0

1

1− x2n+1
=

∞∏
n=1

(1 + xn),

which can be proved as follows:

∞∏
n=1

(1 + xn) =

∞∏
n=1

1− x2n

1− xn
=

∏∞
n=1(1− x2n)∏∞
n=1(1− xn)

=

∏∞
n=1(1− x2n)∏∞

n=1(1− x2n)
∏∞

n=1(1− x2n−1)
=

∞∏
n=1

1

1− x2n−1
.
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Problem 4 Let a, b, c be elements of finite order in some group. Prove that if a−1ba = b2, b−2cb2 = c2 and
c−3ac3 = a2, then a = b = c = e, where e is the unit element.

Solution Let r(g) denote the rank of g ∈ G. Assume that the assertion does not hold. Let p be the smallest
prime number dividing r(a)r(b)r(c). Without loss of generality we can assume that p | r(b) (if p | r(a) or
p | r(c), then the reasoning is the same). Then there exists k such that r(b) = pk. Let d := bk. Then r(d) = p.

Lemma For any m ∈ N, a−mdam = d2
m

.

Proof First we prove that
a−1da = d2.

Indeed, multiplying the equation a−1ba = b2 k-times with itself we get

(a−1ba)(a−1ba) · · · (a−1ba) = b2b2 · · · b2;

and hence
a−1bka = (b2)k = (bk)2.

Now, the assertion of the above lemma follows from the following calculations:

d = ad2a−1 = a(ad2a−1)2a−1 = a2d2
2

a−2 = a2(ad2a−1)2
2

a−2 = a3d2
3

a−3 = · · · = amd2
m

a−m. (1)

�

Observe that Fermat’s little theorem implies that 2p ≡ 2 (mod p). Consequently,

a−pdap = d2
p

= d2 = a−1da. (2)

Since gcd(r(a), p− 1) = 1, there exist integers r and s such that

r · r(a) + s · (p− 1) = 1. (3)

From (2) we get
a−l(p−1)dal(p−1) = d,

for all l ∈ Z (see the calculations in (1)). Finally, putting l := s, we obtain

d = a−s(p−1)das(p−1)
(3)
= arr(a)−1da−rr(a)+1 = a−1da = d2,

which implies that d = e, a contradiction. �


