The $21^{\text {st }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $31^{\text {st }}$ March 2011
Category I

## Problem 1

(a) Is there a polynomial $P(x)$ with real coefficients such that

$$
P\left(\frac{1}{k}\right)=\frac{k+2}{k},
$$

for all positive integers $k$ ?
(b) Is there a polynomial $P(x)$ with real coefficients such that

$$
P\left(\frac{1}{k}\right)=\frac{1}{2 k+1},
$$

for all positive integers $k$ ?
Solution (a) YES. It suffices to define a polynomial $W(x)$ as follows

$$
W(x)=2 x+1 .
$$

(b) NO. Suppose that such a polynomial $W(x)$ exists. Define a polynomial $F(x)$ as follows

$$
F(x)=(x+2) W(x)-x .
$$

Then

$$
F\left(\frac{1}{k}\right)=\left(\frac{1}{k}+2\right) W\left(\frac{1}{k}\right)-\frac{1}{k}=0,
$$

for all $k \in \mathbb{N}$. Hence, the polynomial $F(x)$ admits infinitely many zeros. Consequently,

$$
(x+2) W(x)-x=0
$$

for all $x \in \mathbb{R}$. But this implies that

$$
W(x)=\frac{x}{x+2},
$$

for all $x \in \mathbb{R}$ - a contradiction.

The $21^{\text {st }}$ Annual Vojtěch Jarník International Mathematical Competition<br>Ostrava, $31^{\text {st }}$ March 2011<br>Category I

Problem 2 Let $\left(a_{n}\right)_{n=1}^{\infty}$ be unbounded and strictly increasing sequence of positive reals such that the arithmetic mean of any four consecutive terms $a_{n}, a_{n+1}, a_{n+2}, a_{n+3}$ belongs to the same sequence. Prove that the sequence $a_{n+1} / a_{n}$ converges and find all possible values of its limit.
Solution Since $a_{n}<a_{n+1}<a_{n+2}<a_{n+3}$, one has

$$
a_{n}<\frac{1}{4}\left(a_{n}+a_{n+1}+a_{n+2}+a_{n+3}\right)<a_{n+3},
$$

thus $\left(a_{n}+a_{n+1}+a_{n+2}+a_{n+3}\right) / 4 \in\left\{a_{n+1}, a_{n+2}\right\}$. Hence for any $n \in \mathbb{N}$ precisely one of the two identities

$$
\begin{equation*}
a_{n}+a_{n+1}+a_{n+2}+a_{n+3}=4 a_{n+1} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{n}+a_{n+1}+a_{n+2}+a_{n+3}=4 a_{n+2} \tag{2}
\end{equation*}
$$

holds. Let $A$ be the set of indices $n \in \mathbb{N}$ for which (1) holds and let $B$ be the set of indices $n \in \mathbb{N}$ for which (2) holds. Clearly, $A \cup B=\mathbb{N}, A \cap B=\emptyset$. We shall prove that one of $A$ or $B$ is finite. Indeed, suppose the contrary, that both $A$ and $B$ are infinite. Since $A$ and $B$ partition $\mathbb{N}$, there exists a positive integer $k$, such that $k \in B$, $k+1 \in A$. From (1) and (2), it follows that

$$
a_{k}+a_{k+1}+a_{k+2}+a_{k+3}=4 a_{k+2} \quad \text { and } \quad a_{k+1}+a_{k+2}+a_{k+3}+a_{k+4}=4 a_{k+2} .
$$

Hence $a_{k}=a_{k+4}$, which contradicts the fact that $a_{n}$ is strictly increasing. We now consider two cases.
Case 1) The set $A$ is infinite, the set $B$ is finite. By (1), the sequence $a_{n}$ satisfies a linear recurrence $a_{n}-3 a_{n+1}+a_{n+2}+a_{n+3}=0$ for all $n>n_{0}$. The characteristic polynomial of the linear recurrence

$$
\phi(\lambda)=\lambda^{3}+\lambda^{2}-3 \lambda+1=(\lambda-1)\left(\lambda^{2}+2 \lambda-1\right)
$$

has roots $\lambda_{1}=1, \lambda_{2}=-1-\sqrt{2}, \lambda_{3}=-1+\sqrt{2}$. Hence

$$
a_{n}=C_{1}+C_{2}(-1-\sqrt{2})^{n}+C_{3}(-1+\sqrt{2})^{n}, \quad C_{1}, C_{2}, C_{3} \in \mathbb{R}, \quad n>n_{0} .
$$

Observe that $\lambda_{2}<-1,0<\lambda_{3}<1$. If $C_{2} \neq 0$, then $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$ and $a_{n}$ alternates in sign for $n$ sufficiently large which contradicts the monotonicity property. If $C_{2}=0$, then the sequence $a_{n}$ is bounded, which leads to the contradiction again. Thus we reject the case one.

Case 2) The set $A$ is finite, the set $B$ is infinite. By (1), the sequence $a_{n}$ satisfies a linear recurrence $a_{n}+a_{n+1}-3 a_{n+2}+a_{n+3}=0$ for all $n>n_{0}$. The characteristic polynomial of the linear recurrence

$$
\phi(\lambda)=\lambda^{3}-3 \lambda^{2}+\lambda+1=(\lambda-1)\left(\lambda^{2}-2 \lambda-1\right)
$$

has roots $\lambda_{1}=1, \lambda_{2}=1-\sqrt{2}, \lambda_{3}=1+\sqrt{2}$. Hence

$$
a_{n}=C_{1}+C_{2}(1-\sqrt{2})^{n}+C_{3}(1+\sqrt{2})^{n}, \quad C_{1}, C_{2}, C_{3} \in \mathbb{R}, \quad n>n_{0} .
$$

Note that $-1<\lambda_{2}<0, \lambda_{3}>1$. If $C_{3} \leq 0$, then the sequence $a_{n}$ is bounded from above. Hence $C_{3}>0$ so $a_{n} \sim C_{3} \lambda_{3}^{n}$ as $n \rightarrow \infty$. The standard limit calculation now shows that $b_{n}$ converges and has limit value

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lambda_{3}=1+\sqrt{2}
$$

The $21^{\text {st }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $31^{\text {st }}$ March 2011
Category I

Problem 3 Prove that

$$
\sum_{k=0}^{\infty} x^{k} \frac{1+x^{2 k+2}}{\left(1-x^{2 k+2}\right)^{2}}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{\left(1-x^{k+1}\right)^{2}}
$$

for all $x \in(-1,1)$.
Solution We use the binomial series

$$
\frac{1}{(1-u)^{2}}=\sum_{j=0}^{\infty}(j+1) u^{j},|u|<1
$$

to get

$$
\begin{gathered}
\sum_{k=0}^{\infty} x^{k} \frac{1+x^{2 k+2}}{\left(1-x^{2 k+2}\right)^{2}}=\sum_{k=0}^{\infty} x^{k}\left(1+x^{2 k+2}\right) \sum_{j=0}^{\infty}(j+1) x^{j(2 k+2)}=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} x^{k}\left(1+x^{2 k+2}\right)(j+1) x^{j(2 k+2)}= \\
=\sum_{j=0}^{\infty}(j+1) x^{2 j} \sum_{k=0}^{\infty} x^{k}\left(1+x^{2 k+2}\right) x^{j 2 k}=\sum_{j=0}^{\infty}(j+1) x^{2 j}\left(\frac{1}{1-x^{2 j+1}}+\frac{x^{2}}{1-x^{2 j+3}}\right)= \\
\quad=\sum_{j=0}^{\infty} \frac{(j+1) x^{2 j}}{1-x^{2 j+1}}+\sum_{j=1}^{\infty} \frac{j x^{2 j}}{1-x^{2 j+1}}=\sum_{j=0}^{\infty} \frac{(2 j+1) x^{2 j}}{1-x^{2 j+1}}=-\frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=0}^{\infty} \log \left(1-x^{2 j+1}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\sum_{k=0}^{\infty} \frac{(-x)^{k}}{\left(1-x^{k+1}\right)^{2}}=\sum_{k=0}^{\infty}(-x)^{k} \sum_{j=0}^{\infty}(j+1) x^{(k+1) j}=\sum_{j=0}^{\infty}(j+1) x^{j} \sum_{k=0}^{\infty}(-x)^{k} x^{k j}=\sum_{j=0}^{\infty} \frac{(j+1) x^{j}}{1+x^{j+1}}= \\
=\frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=0}^{\infty} \log \left(1+x^{j+1}\right)
\end{gathered}
$$

The proposition now follows by logarithmic differentiation of the classical identity

$$
\prod_{n=0}^{\infty} \frac{1}{1-x^{2 n+1}}=\prod_{n=1}^{\infty}\left(1+x^{n}\right)
$$

which can be proved as follows:

$$
\prod_{n=1}^{\infty}\left(1+x^{n}\right)=\prod_{n=1}^{\infty} \frac{1-x^{2 n}}{1-x^{n}}=\frac{\prod_{n=1}^{\infty}\left(1-x^{2 n}\right)}{\prod_{n=1}^{\infty}\left(1-x^{n}\right)}=\frac{\prod_{n=1}^{\infty}\left(1-x^{2 n}\right)}{\prod_{n=1}^{\infty}\left(1-x^{2 n}\right) \prod_{n=1}^{\infty}\left(1-x^{2 n-1}\right)}=\prod_{n=1}^{\infty} \frac{1}{1-x^{2 n-1}}
$$

The $21^{\text {st }}$ Annual Vojtěch Jarník International Mathematical Competition<br>Ostrava, 31 ${ }^{\text {st }}$ March 2011<br>Category I

Problem 4 Let $a, b, c$ be elements of finite order in some group. Prove that if $a^{-1} b a=b^{2}, b^{-2} c b^{2}=c^{2}$ and $c^{-3} a c^{3}=a^{2}$, then $a=b=c=e$, where $e$ is the unit element.
Solution Let $r(g)$ denote the rank of $g \in G$. Assume that the assertion does not hold. Let $p$ be the smallest prime number dividing $r(a) r(b) r(c)$. Without loss of generality we can assume that $p \mid r(b)$ (if $p \mid r(a)$ or $p \mid r(c)$, then the reasoning is the same). Then there exists $k$ such that $r(b)=p k$. Let $d:=b^{k}$. Then $r(d)=p$.
Lemma For any $m \in \mathbb{N}, a^{-m} d a^{m}=d^{2^{m}}$.
Proof First we prove that

$$
a^{-1} d a=d^{2}
$$

Indeed, multiplying the equation $a^{-1} b a=b^{2} \mathrm{k}$-times with itself we get

$$
\left(a^{-1} b a\right)\left(a^{-1} b a\right) \cdots\left(a^{-1} b a\right)=b^{2} b^{2} \cdots b^{2}
$$

and hence

$$
a^{-1} b^{k} a=\left(b^{2}\right)^{k}=\left(b^{k}\right)^{2}
$$

Now, the assertion of the above lemma follows from the following calculations:

$$
\begin{equation*}
d=a d^{2} a^{-1}=a\left(a d^{2} a^{-1}\right)^{2} a^{-1}=a^{2} d^{2^{2}} a^{-2}=a^{2}\left(a d^{2} a^{-1}\right)^{2^{2}} a^{-2}=a^{3} d^{2^{3}} a^{-3}=\cdots=a^{m} d^{2^{m}} a^{-m} \tag{1}
\end{equation*}
$$

Observe that Fermat's little theorem implies that $2^{p} \equiv 2(\bmod p)$. Consequently,

$$
\begin{equation*}
a^{-p} d a^{p}=d^{2^{p}}=d^{2}=a^{-1} d a \tag{2}
\end{equation*}
$$

Since $\operatorname{gcd}(r(a), p-1)=1$, there exist integers $r$ and $s$ such that

$$
\begin{equation*}
r \cdot r(a)+s \cdot(p-1)=1 \tag{3}
\end{equation*}
$$

From (2) we get

$$
a^{-l(p-1)} d a^{l(p-1)}=d,
$$

for all $l \in \mathbb{Z}$ (see the calculations in (1)). Finally, putting $l:=s$, we obtain

$$
d=a^{-s(p-1)} d a^{s(p-1)} \stackrel{(3)}{=} a^{r r(a)-1} d a^{-r r(a)+1}=a^{-1} d a=d^{2},
$$

which implies that $d=e$, a contradiction.

