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Problem 1 Let f : [0, 1]→ [0, 1] be a differentiable function such that |f ′(x)| 6= 1 for all x ∈ [0, 1]. Prove that
there exist unique points α, β ∈ [0, 1] such that f(α) = α and f(β) = 1− β.
Solution Existence: Since f is derivable in [0, 1], then f is continuous in [0, 1]. Considering the functions
g(x) = f(x)− x and h(x) = f(x)− (1− x) that are continuous in [0, 1] and applying Bolzano’s theorem we get
that exists α ∈ [0, 1] such that g(α) = 0 and β ∈ [0, 1] with h(β) = 0. That is, there exist α, β ∈ [0, 1] for which
f(α) = α and f(β) = 1− β.

Uniqueness: Suppose that there exist α, α′ ∈ [0, 1], α < α′) such that f(α) = α and f(α′) = α′. On account
of Lagrange’s theorem, there exists θ ∈ (α, α′) ⊂ [0, 1] such that

f ′(θ) =
f(α′)− f(α)

α′ − α
=
α′ − α
α′ − α

= 1

contradiction. Likewise, if we assume that there exist β, β′ ∈ [0, 1], (β < β′) such that f(β) = 1 − β and
f(β′) = 1− β′. On account of Lagrange’s theorem, there exists θ′ ∈ (β, β′) ⊂ [0, 1] such that

f ′(θ′) =
f(β′)− f(β)

β′ − β
=

(1− β′)− (1− β)

β′ − β
= −1

contradiction. This completes the proof. �
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Problem 2 Determine all 2× 2 integer matrices A having the following properties:

1. the entries of A are (positive) prime numbers,

2. there exists a 2× 2 integer matrix B such that A = B2 and the determinant of B is the square of a prime
number.

Solution Let
A =

(
p1 p2
p3 p4

)
= B2,

and d = det(B) = q2 with p1, p2, p3, p4, q ∈ P; here P denotes the set of positive prime numbers.
By Cayley-Hamilton Theorem,

B2 = tr(B)B − det(B)E,

where E is the 2× 2 identity matrix. Without loss of generality, we assume that tr(B) ≥ 0, otherwise, replace
B by −B. The equality

tr(B)B = B2 + dE = A+ dE =

(
p1 + d p2
p3 p4 + d

)
implies that tr(B) divides the numbers p2 and p3. Moreover,

(tr(B))2 = tr(tr(B)B) = p1 + p4 + 2d ≥ 2 + 2 + 8 = 12 =⇒ tr(B) > 3.

It follows that
tr(B) = p2 = p3, and B =

1

tr(B)

(
p1 + d p2
p3 p4 + d

)
=

(
a 1
1 b

)
for some positive integers a and b. Hence,

A = B2 =

(
a2 + 1 a+ b
a+ b b2 + 1

)
.

The numbers a2 + 1, b2 + 1, a+ b cannot all be odd, thus, one of them equals 2. Since ab = d+ 1 = q2 + 1 ≥ 5
we have max(a, b) ≥ 3. Hence, a+ b ≥ 3 + 1 > 2.

Now we assume that a2 + 1 ≤ b2 + 1. Then a2 + 1 = 2 and a = 1. Note that d = ab − 1 = b − 1 and
0 < p2 = a+b = b+1 = d+2 = q2+2. If q 6= 3 then q2 ≡ 1 mod 3 =⇒ p2 ≡ 0 mod 3 =⇒ p2 = 3 =⇒ q2 = 1,
which is impossible. Hence, q = 3, b = p2 − a = 32 + 2− 1 = 10,

B =

(
1 1
1 10

)
, and A = B2 =

(
2 11
11 101

)
.

Similarly, if a2 + 1 > b2 + 1 we obtain the matrix

A =

(
101 11
11 2

)
.

Answer:
A =

(
2 11
11 101

)
, and A =

(
101 11
11 2

)
.
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Problem 3 Determine the smallest real number C such that the inequality

x√
yz
· 1

x+ 1
+

y√
zx
· 1

y + 1
+

z√
xy
· 1

z + 1
≤ C

holds for all positive real numbers x, y and z with

1

x+ 1
+

1

y + 1
+

1

z + 1
= 1 .

Solution In what follows we shall deal with the harder version of the problem only.

1. We consider the case x = y = t. Then
2

t+ 1
+

1

z + 1
= 1

that is
z =

2

t− 1
.

Thus the inequality under consideration becomes

2t√
t · 2

t− 1

· 1

t+ 1
+

2
t−1√
t · t
· 1

2
t−1 + 1

≤ C

that is √
2 ·
√
t ·
√
t− 1

t+ 1
+

2

t(t+ 1)
≤ C.

Letting here t→∞ leads to C ≥
√

2.

2. We are now going to prove that always

x
√
yz
· 1

x+ 1
+

y√
zx
· 1

y + 1
+

z
√
xy
· 1

z + 1
<
√

2.

In order to achieve this goal we make use of the following transformation

a =
1

x+ 1
, b =

1

y + 1
, c =

1

z + 1
.

Then the three new variables satisfy a, b, c ∈ (0; 1) and are subject to the condition a+ b+ c = 1.
Furthermore

x =
1− a
a

, y =
1− b
b

, z =
1− c
c

that is (due to 1− a = b+ c, etc.)

x =
b+ c

a
, y =

c+ a

b
, z =

a+ b

c

yield for the claimed inequality

(a+ b)
√
ab√

(b+ c)(c+ a)
+

(b+ c)
√
bc√

(c+ a)(a+ b)
+

(c+ a)
√
ca√

(a+ b)(b+ c)
<
√

2.

Upon clearing fractions this inequality becomes

(a+ b)
√
ab(a+ b) + (b+ c)

√
bc(b+ c) + (c+ a)

√
ca(a+ c) <

√
2(a+ b)(b+ c)(c+ a).



We smuggle the condition 1 = a+ b+ c into the inequality and get

(a+ b)
√
ab(a+ b) + (b+ c)

√
bc(b+ c) + (c+ a)

√
ca(a+ c) <

√
2(a+ b)(b+ c)(c+ a)(a+ b+ c).

Next, we deal with the right-hand expressions. For them we have√
(a+ b)(b+ c)(c+ a) =

√
ab(a+ b) + bc(b+ c) + ca(c+ a) + 2abc

and √
2(a+ b+ c) =

√
2(a+ b+ c)2 =

√
(a+ b)2 + (a+ c)2 + (b+ c)2 + 2(ab+ bc+ ca)

But, employing the Cauchy-Schwarz inequality yields for our inequality

(a+ b)
√
ab(a+ b) + (b+ c)

√
bc(b+ c) + (c+ a)

√
ca(a+ c) ≤√

(a+ b)2 + (b+ c)2 + (c+ a)2 ·
√
ab(a+ b) + ac(a+ c) + bc(b+ c).

This together with the two previously stated equations completes the proof. It is also evident that there
cannot exist any triples (a, b, c), and thus also (x, y, z), yielding equality.
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Problem 4 Find all positive integers n for which there exists a positive integer k such that the decimal
representation of nk starts and ends with the same digit.
Solution The number nk ends with zero whenever n is divisible by 10 and starts with nonzero digit. We show
that the claim is true for all other n’s.

It can be easily shown that all the numbers

n, n5, n9, . . . , n4m+1, . . . (1)

ends with the same digit. In fact, n5 − n = n(n− 1)(n+ 1)(n2 + 1) is even and for each possible reminder of n
modulo 5 there is a factor divisible by 5 in this product. Thus n5− n is divisible by 10 and in the same fashion
we can show this for n9 − n5, n13 − n9, . . .

Now it suffices to show that for any nonzero digit c there is a number in the sequence (1) which starts with
c. For any nonnegative integer m put dm = n4m+1/10l, where l is the greatest integer for which 10l ≤ n4m+1.
Thus 1 ≤ dm < 10 and bdmc is the first digit of n4m+1. Clearly all the dm’s are different, since for m′ > m we
have

dm′

dm
=
n4m

′+1/10l
′

n4m+1/10l
=
n4(m

′−m)

10l′−l
6= 1

(the numerator is not a power of 10 for n not divisible by 10).
The sequence (dm)∞m=1 has the following property: If dm+i = dm · q, then dm+2i = dm · q2 · 10ε, where

ε ∈ {−1, 0, 1}. This is true since when

dm = n4m+1/10l, dm+i = n4(m+i)+1/10l
′

and dm+2i = n4(m+2i)+1/10l
′′
,

we have q = dm+i/dm = n4i/10l
′−l and so

dm+2i/dm = n8i/10l
′′−l = q2 · 102l

′−l−l′′ = q2 · 10ε

for some integer ε. But dm, dm · q, dm · q2 · 10ε ∈ [1, 10), i. e. ε ∈ {−1, 0, 1}.
Since all the terms of the sequence (dm)∞m=1 are different and all lie in the interval [1, 10), there have to

be two terms dm and dm′ such that |dm′ − dm| < 1
10 . Without loss of generality let m′ > m. There are two

possibilities.
Let dm′ > dm. Then we have dm′ < dm + 1

10 . Thus

1 < q = dm′/dm <
dm + 1

10

dm
= 1 +

1

10dm
≤ 1 + 1

10 .

By previous remark dm ·q2 lies in the studied sequence, whenever it lies in the interval [1, 10). Repeating this idea
we have the numbers dm, dm ·q, dm ·q2, dm ·q3, . . . , dm ·qi all lying in the studied sequence and after overrunning
the value 10 we have the numbers dm · qi+1/10, dm · qi+2/10, . . . in the sequence, and so on. Computing the
difference of two consecutive terms in this recurrence we get

dm · qj+1 − dm · qj = dm · qj(q − 1) < dm · qj · 1
10 < 1 for j < i,

dm · qj+1/10− dm · qj/10 = dm · qj(q − 1)/10 < dm · qj/10 · 1
10 < 1 for j > i

and for the first term after overrunning 10 we obtain

dm · qi+1/10 = dm · qi/10 · q < 10/10 · (1 + 1
10 ) = 11

10 < 2.

Since the difference is less then 1 and after overrunning we jump into the interval [1, 2), we must get at least
one dm+j(m′−m) in the interval [c, c+ 1) for every nonzero digit c.

Let dm′ < dm. Then we have dm < dm′ + 1
10 . Thus

1 < q = dm/dm′ <
dm′ + 1

10

dm′
= 1 +

1

10dm′
≤ 1 + 1

10 .



In the very similar way as in the previous case (new terms are generated by dividing instead of multiplying by
q) we obtain the new sequence of terms with consecutive differences less then 1 and after underrunning 1 we
jump to

dm/q
i+1 · 10 = dm/q

i · 10/q > 1 · 10

1 + 1
10

= 100
11 > 9.

Thus also in this case we must obtain some dm+j(m′−m) in the interval [c, c+ 1) for every nonzero digit c.
This ends the proof.
Answer. Integers satisfying the given conditions are all integers not divisible by 10. �


