The $23^{\text {rd }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $12^{\text {th }}$ April 2013
Category I

Problem 1 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable function with $|f(x)| \leq M$ and $f(x) f^{\prime}(x) \geq \cos x$ for $x \in[0, \infty)$, where $M>0$. Prove that $f(x)$ does not have a limit as $x \rightarrow \infty$.
Solution Consider a function $F:[0, \infty) \rightarrow \mathbb{R}$ given by

$$
F(x):=f^{2}(x)-2 \sin x .
$$

Then:

- $|F(x)| \leqslant f^{2}(x)+2|\sin x| \leqslant M+2$.
- $F^{\prime}(x)=2 f(x) f^{\prime}(x)-2 \cos x \geqslant 0$.

Hence we infer that F is increasing and bounded. Let

$$
x_{n}=\left\{\begin{array}{lll}
n \pi & \text { if } & n=2 k-1 \\
n \pi+\frac{\pi}{2} & \text { if } & n=2 k
\end{array}\right.
$$

Then $\left(F\left(x_{n}\right)\right)$ is increasing and bounded and hence convergent. Assume on the contrary that $\lim _{x \rightarrow \infty} f(x)$ exists. In turn, this implies that $\lim _{n \rightarrow \infty} f^{2}\left(x_{n}\right)$ exists. Thus the sequence $F\left(x_{n}\right)-f^{2}\left(x_{n}\right)$ is convergent. But

$$
F\left(x_{n}\right)-f^{2}\left(x_{n}\right)=-2 \sin \left(x_{n}\right) .
$$

Consequently we get that the sequence $\left(\sin \left(x_{n}\right)\right)$ is convergent. This contradicts the fact that $\left(\sin \left(x_{n}\right)\right)$ is not convergent since

$$
\sin \left(x_{n}\right)=\left\{\begin{array}{lll}
0 & \text { if } & n=2 k-1 \\
1 & \text { if } & n=2 k
\end{array}\right.
$$

The $23^{\text {rd }}$ Annual Vojtěch Jarník
 International Mathematical Competition
 Ostrava, $12^{\text {th }}$ April 2013
 Category I

Problem 2 Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two real 10×10 matrices such that $a_{i j}=b_{i j}+1$ for all i, j and $A^{3}=0$. Prove that $\operatorname{det} B=0$.
Solution Let H be the matrix 10×10 consisting of units. Then $A=B+H$. As $A^{3}=0$ then

$$
B^{3}=(A-H)^{3}=A^{3}+\text { a sum of } 7 \text { matrices of the rank } \leq 1 .
$$

Therefore rank $B^{3} \leq 7$. Since B is of size $10 \times 10, B$ is degenerate.

The $23^{\text {rd }}$ Annual Vojtěch Jarník International Mathematical Competition
Ostrava, $12^{\text {th }}$ April 2013
Category I

Problem 3 Let S be a finite set of integers. Prove that there exists a number c depending on S such that for each non-constant polynomial f with integer coefficients the number of integers k satisfying $f(k) \in S$ does not exceed $\max (\operatorname{deg} f, c)$.
Solution For each set $T \subseteq \mathbb{Z}$ let $N(f, T)$ denote the number of distinct integers k for which $f(k) \in T$. Suppose that the cardinality of S is at least 2 and suppose for some two elements $s_{1} \neq s_{2}$ of S the equations $f(x)=s_{1}$ and $f(x)=s_{2}$ both have integer solutions, say, $x=k_{1}$ and $x=k_{2}$, respectively. (Otherwise, we immediately obtain $N(f, S) \leq \operatorname{deg} f$.) Put $d=d(S)$ for the difference between the largest and the smallest elements of S. We claim that then $N(f, S) \leq 4 d(S)$.

Indeed, if for some $k \in \mathbb{Z}$ we have $f(k)=s \in S$, where $s \neq s_{1}$ (and so $k \neq k_{1}$), then $k-k_{1}$ divides the integer $f(k)-f\left(k_{1}\right)=s-s_{1}$. Thus $\left|k-k_{1}\right| \leq\left|s-s_{1}\right| \leq d$. Clearly, there are at most $2 d$ of such integers k (since $k \neq k_{1}$), so $N\left(f, S \backslash\left\{s_{1}\right\}\right) \leq 2 d$. By the same argument, we must have $N\left(f, S \backslash\left\{s_{2}\right\}\right) \leq 2 d$. Since S is contained in the union of the sets $S \backslash\left\{s_{1}\right\}$ and $S \backslash\left\{s_{2}\right\}$, we deduce that

$$
N(f, S) \leq N\left(f, S \backslash\left\{s_{1}\right\}\right)+N\left(f, S \backslash\left\{s_{2}\right\}\right) \leq 2 d+2 d=4 d
$$

Therefore, $N(f, S) \leq \max (\operatorname{deg} f, 4 d(S))$.

Problem 4 Let n and k be positive integers. Evaluate the following sum

$$
\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{n+2 k-j}{2 k}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
Solution We show that

$$
\begin{equation*}
\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{n+2 k-j}{2 k}=\binom{n+k}{k}^{2} \tag{1}
\end{equation*}
$$

Multiplying equation (1) by $\frac{(2 k)!n!}{(n+k)!k!}$ we get

$$
\begin{align*}
\sum_{j=0}^{k} & \binom{k}{j} \frac{k!}{j!(k-j)!} \frac{(n+2 k-j)!}{(2 k)!(n-j)!} \frac{(2 k)!n!}{(n+k)!k!}=\sum_{j=0}^{k}\binom{k}{j} \frac{n!}{j!(n-j)!} \frac{(n+2 k-j)!}{(n+k)!(k-j)!} \\
& =\sum_{j=0}^{k}\binom{k}{j}\binom{n}{j}\binom{n+2 k-j}{k-j} . \tag{2}
\end{align*}
$$

On the right side in the formula (1) after multiplying we obtain

$$
\binom{n+k}{k} \frac{(n+k)!}{k!n!} \frac{(2 k)!n!}{(n+k)!k!}=\binom{n+k}{k}\binom{2 k}{k}
$$

Applying Cauchy identity

$$
\binom{m+n}{k}=\sum_{r=0}^{k}\binom{n}{r}\binom{m}{k-r}
$$

to formula (2) we have

$$
\begin{equation*}
\sum_{j=0}^{k}\binom{k}{j}\binom{n}{j} \sum_{r=0}^{k-j}\binom{n-j}{r}\binom{2 k}{k-j-r} \tag{3}
\end{equation*}
$$

By changing the order of summation in formula (3) putting $s=r+j$ we get

$$
\begin{gather*}
\sum_{j=0}^{k}\binom{k}{j}\binom{n}{j} \sum_{s=j}^{k}\binom{n-j}{s-j}\binom{2 k}{k-s}= \\
\quad \sum_{j=0}^{k}\binom{k}{j}\binom{n}{j} \sum_{s=0}^{k}\binom{n-j}{s-j}\binom{2 k}{k-s} . \tag{4}
\end{gather*}
$$

Once again by changing the order of summation in formula (4) it follows

$$
\sum_{s=0}^{k}\binom{2 k}{k-s} \sum_{j=0}^{s}\binom{k}{j}\binom{n}{j}\binom{n-j}{s-j}
$$

On account of the Cauchy identity we have

$$
\binom{2 k}{k} \sum_{s=0}^{k}\binom{n}{s}\binom{k}{k-s}
$$

Finally we show that

$$
\binom{2 k}{k-s} \sum_{j=0}^{s}\binom{k}{j}\binom{n}{j}\binom{n-j}{s-j}=\binom{2 k}{k}\binom{n}{s}\binom{k}{k-s}
$$

By applying well-known formula

$$
\binom{n}{m}\binom{m}{k}=\binom{n}{k}\binom{n-k}{m-k}
$$

it follows

$$
\begin{aligned}
\binom{2 k}{k-s} \sum_{j=0}^{s}\binom{k}{j}\binom{n}{j}\binom{n-j}{s-j} & =\binom{2 k}{k+s} \sum_{j=0}^{s}\binom{k}{j}\binom{n}{s}\binom{s}{j}=\binom{2 k}{k+s}\binom{n}{s} \sum_{j=0}^{s}\binom{k}{j}\binom{s}{s-j} \\
& =\binom{2 k}{k+s}\binom{n}{s}\binom{k+s}{s}=\binom{2 k}{k+s}\binom{n}{s}\binom{k+s}{k}=\binom{n}{s}\binom{2 k}{k}\binom{2 k-k}{k+s-k} \\
& =\binom{n}{s}\binom{2 k}{k}\binom{k}{s}=\binom{n}{s}\binom{2 k}{k}\binom{k}{k-s} .
\end{aligned}
$$

This completes the proof of Li-en-Szua formula.

