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Problem 1 Let f : [0,∞) → R be a differentiable function with |f(x)| ≤ M and f(x)f ′(x) ≥ cosx for
x ∈ [0,∞), where M > 0. Prove that f(x) does not have a limit as x→∞.

Solution Consider a function F : [0,∞)→ R given by

F (x) := f2(x)− 2 sinx.

Then:

• |F (x)| 6 f2(x) + 2|sinx| 6M + 2.

• F ′(x) = 2f(x)f ′(x)− 2 cosx > 0.

Hence we infer that F is increasing and bounded. Let

xn =

{
nπ if n = 2k − 1,
nπ + π

2 if n = 2k.

Then (F (xn)) is increasing and bounded and hence convergent. Assume on the contrary that lim
x→∞

f(x) exists.

In turn, this implies that lim
n→∞

f2(xn) exists. Thus the sequence F (xn)− f2(xn) is convergent. But

F (xn)− f2(xn) = −2 sin(xn) .

Consequently we get that the sequence (sin(xn)) is convergent. This contradicts the fact that (sin(xn)) is not
convergent since

sin(xn) =

{
0 if n = 2k − 1,
1 if n = 2k.

�
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Problem 2 Let A = (aij) and B = (bij) be two real 10 × 10 matrices such that aij = bij + 1 for all i, j and
A3 = 0. Prove that detB = 0.

Solution Let H be the matrix 10× 10 consisting of units. Then A = B +H. As A3 = 0 then

B3 = (A−H)3 = A3 + a sum of 7 matrices of the rank ≤ 1.

Therefore rankB3 ≤ 7. Since B is of size 10× 10, B is degenerate. �
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Problem 3 Let S be a finite set of integers. Prove that there exists a number c depending on S such that for
each non-constant polynomial f with integer coefficients the number of integers k satisfying f(k) ∈ S does not
exceed max(deg f, c).

Solution For each set T ⊆ Z let N(f, T ) denote the number of distinct integers k for which f(k) ∈ T . Suppose
that the cardinality of S is at least 2 and suppose for some two elements s1 6= s2 of S the equations f(x) = s1
and f(x) = s2 both have integer solutions, say, x = k1 and x = k2, respectively. (Otherwise, we immediately
obtain N(f, S) ≤ deg f .) Put d = d(S) for the difference between the largest and the smallest elements of S.
We claim that then N(f, S) ≤ 4d(S).

Indeed, if for some k ∈ Z we have f(k) = s ∈ S, where s 6= s1 (and so k 6= k1), then k − k1 divides the
integer f(k) − f(k1) = s − s1. Thus |k − k1| ≤ |s − s1| ≤ d. Clearly, there are at most 2d of such integers k
(since k 6= k1), so N(f, S \ {s1}) ≤ 2d. By the same argument, we must have N(f, S \ {s2}) ≤ 2d. Since S is
contained in the union of the sets S \ {s1} and S \ {s2}, we deduce that

N(f, S) ≤ N(f, S \ {s1}) +N(f, S \ {s2}) ≤ 2d+ 2d = 4d.

Therefore, N(f, S) ≤ max(deg f, 4d(S)). �
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Problem 4 Let n and k be positive integers. Evaluate the following sum

k∑
j=0

(
k

j

)2(
n+ 2k − j

2k

)

where
(
n
k

)
= n!

k! (n−k)! .

Solution We show that

k∑
j=0

(
k

j

)2(
n+ 2k − j

2k

)
=

(
n+ k

k

)2

. (1)

Multiplying equation (1) by
(2k)!n!

(n+ k)!k!
we get

k∑
j=0

(
k

j

)
k!

j!(k − j)!
(n+ 2k − j)!
(2k)!(n− j)!

(2k)!n!

(n+ k)!k!
=

k∑
j=0

(
k

j

)
n!

j!(n− j)!
(n+ 2k − j)!

(n+ k)!(k − j)!

=

k∑
j=0

(
k

j

)(
n

j

)(
n+ 2k − j
k − j

)
. (2)

On the right side in the formula (1) after multiplying we obtain(
n+ k

k

)
(n+ k)!

k!n!

(2k)!n!

(n+ k)!k!
=

(
n+ k

k

)(
2k

k

)
.

Applying Cauchy identity (
m+ n

k

)
=

k∑
r=0

(
n

r

)(
m

k − r

)
,

to formula (2) we have

k∑
j=0

(
k

j

)(
n

j

) k−j∑
r=0

(
n− j
r

)(
2k

k − j − r

)
. (3)

By changing the order of summation in formula (3) putting s = r + j we get

k∑
j=0

(
k

j

)(
n

j

) k∑
s=j

(
n− j
s− j

)(
2k

k − s

)
=

k∑
j=0

(
k

j

)(
n

j

) k∑
s=0

(
n− j
s− j

)(
2k

k − s

)
. (4)

Once again by changing the order of summation in formula (4) it follows

k∑
s=0

(
2k

k − s

) s∑
j=0

(
k

j

)(
n

j

)(
n− j
s− j

)
.

On account of the Cauchy identity we have(
2k

k

) k∑
s=0

(
n

s

)(
k

k − s

)
.



Finally we show that (
2k

k − s

) s∑
j=0

(
k

j

)(
n

j

)(
n− j
s− j

)
=

(
2k

k

)(
n

s

)(
k

k − s

)
.

By applying well-known formula (
n

m

)(
m

k

)
=

(
n

k

)(
n− k
m− k

)
.

it follows(
2k

k − s

) s∑
j=0

(
k

j

)(
n

j

)(
n− j
s− j

)
=

(
2k

k + s

) s∑
j=0

(
k

j

)(
n

s

)(
s

j

)
=

(
2k

k + s

)(
n

s

) s∑
j=0

(
k

j

)(
s

s− j

)

=

(
2k

k + s

)(
n

s

)(
k + s

s

)
=

(
2k

k + s

)(
n

s

)(
k + s

k

)
=

(
n

s

)(
2k

k

)(
2k − k
k + s− k

)
=

(
n

s

)(
2k

k

)(
k

s

)
=

(
n

s

)(
2k

k

)(
k

k − s

)
.

This completes the proof of Li-en-Szua formula. �


