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Problem 1 Let Sn denote the sum of the first n prime numbers. Prove that for any n there exists the square
of an integer between Sn and Sn+1.

Solution We have √
x < m <

√
y ⇒ x < m2 < y,

so if
√
y −
√
x > 1, there is certainly a square between x and y.

We have √
y −
√
x > 1⇒ y − x > 1 + 2

√
x,

hence it suffices to prove
Sn+1 − Sn > 1 + 2

√
Sn.

For n = 1, 2, 3, 4 the assertion can be seen directly. For n ≥ 5, we use

Sn < 1 + 3 + 5 + . . .+ pn,

where the sum contains all odd integers up to pn. Their sum equals 1/4(1+pn)2, so it follows that 2
√
Sn < 1+pn.

As pn+2 is at least pn + 2, we get Sn+1 − Sn > 1 + 2
√
Sn as desired. �
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Problem 2 An n-dimensional cube is given. Consider all the segments connecting any two different vertices
of the cube. How many distinct intersection points do these segments have (excluding the vertices)?

Solution We may think that every vertex of the cube has a view (ε1, . . . , εn) where εi ∈ {0, 1} for i = 1, 2, . . . , n.
A cross-point of two segments has a view (α1, . . . , αn) where αi ∈ {0, 12 , 1}. For example, if A = (0, 0, 0, 1, 1),
B = (1, 0, 0, 0, 1), C = (1, 0, 0, 1, 1), D = (0, 0, 0, 0, 1) then AB ∩CD = ( 12 , 0, 0,

1
2 , 1). However a row containing

less than 2 of 1
2 may be not a cross-point. Therefore, there are exactly 3n − 2n − n2n−1 of cross-points. �
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Problem 3 Prove that there is no polynomial P with integer coefficients such that P ( 3
√
5 + 3
√
25) = 5 + 3

√
5.

Solution First we prove two lemmas.

Lemma 1. There is no polynomial w(x) = ax+ b with integer coefficients such that w( 3
√
5 + 3
√
25) = 5 + 3

√
5;

Proof Assume on the contrary that such a polynomial w(x) = ax+ b exists. Since 3
√
5 and 3

√
25 are irrational,

it follows that a 6= 0 and a 6= 1. Furthermore, one has

a(
3
√
5 +

3
√
25) + b = 5 +

3
√
5 =⇒ (a− 1)

3
√
5 + a

3
√
25 ∈ Q

=⇒
(
(a− 1)

3
√
5 + a

3
√
25
)2
∈ Q =⇒ (a− 1)2

3
√
25 + 5a2

3
√
5 ∈ Q

=⇒ 5a2

(1− a)

(
(a− 1)

3
√
5 + a

3
√
25
)
+
(
(a− 1)2

3
√
25 + 5a2

3
√
5
)
∈ Q

=⇒
(
(a− 1)3 − 5a3

(a− 1)

)
3
√
25 ∈ Q =⇒ 3

√
25 ∈ Q,

which contradicts the fact that 3
√
25 ∈ nQ, where Q and nQ denote the set of rational and irrational numbers,

respectively. This completes the proof of the lemma. �

Lemma 2. There exists exactly one polynomial w(x) of degree two and rational coefficients such that w( 3
√
5+

3
√
25) = 5 + 3

√
5;

Proof Consider a polynomial w(x) = ax2 + bx+ c, where a, b, c ∈ Q. Then

w(
3
√
5 +

3
√
25) = 5 +

3
√
5⇐⇒ a(

3
√
5 +

3
√
25)2 + b(

3
√
5 +

3
√
25) + c = 5 +

3
√
5

⇐⇒

 a+ b = 0
5a+ b = 1
10a+ c = 5

⇐⇒

 a = 1/4
b = −1/4
c = 10/4

This implies that there exists only one polynomial w(x) with the required properties, i.e.,

w(x) =
1

4
x2 − 1

4
x+

10

4
and w(

3
√
5 +

3
√
25) = 5 +

3
√
5,

which completes the proof of the second lemma.
�

Now we are ready to solve the problem. Let x0 := 3
√
5 + 3
√
25. Then

x30 = (
3
√
5 +

3
√
25)3 = 5 + 3

3
√
54 + 3

3
√
55 + 25 = 30 + 15

3
√
5 + 15

3
√
5 = 15x0 + 30.

We put Q(x) := x3 − 15x− 30. Then Q(x0) = 0. Assume on the contrary that such a polynomial P (x) exists.
Then there exist two polynomials R(x) and w(x) with integer coefficients such that

P (x) = Q(x)R(x) + w(x),

where the degree degw(x) of w(x) is less than or equal 2. Consequently we obtain

5 +
3
√
5 = P (

3
√
5 +

3
√
25) = Q(

3
√
5 +

3
√
25)R(

3
√
5 +

3
√
25) + w(

3
√
5 +

3
√
25) = w(

3
√
5 +

3
√
25).

From this it follows that there exists a polynomial w(x) of degree less than or equal 2 with integer coefficients
such that

w(
3
√
5 +

3
√
25) = 5 +

3
√
5,

a contradiction with Lemma 1 and Lemma 2. This completes the solution. �
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Problem 4 Let F be the set of all continuous functions f : [0, 1]→ R with the property∣∣∣∣∫ x

0

f(t)√
x− t

dt

∣∣∣∣ ≤ 1 for all x ∈ (0, 1] .

Compute sup
f∈F

∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣.
Solution We will use the following lemma.

Lemma For every functions f ∈ L1[0, 1],∫ 1

0

(∫ x

0

f(t)dt√
x− t

)
dx√
1− x

= π

∫ 1

0

f.

Proof Changing the order of integration then substituting t = −1 + 2x−t1−t ,∫ 1

0

(∫ x

0

f(t)dt√
x− t

)
dx√
1− x

=

∫ 1

0

f(t)

(∫ 1

t

dx√
(x− t)(1− x)

)
dt

=

∫ 1

0

f(t)

(∫ 1

−1

dt√
(1 + t)(1− t)

)
dt = π

∫ 1

0

f.

�

Now, by Lemma, for all f ∈ F ⊂ L1[0, 1] we have∣∣∣∣∫ 1

0

f

∣∣∣∣ ≤ 1

π

∫ 1

0

∣∣∣∣∫ x

0

f(t)dt√
x− t

∣∣∣∣ dx√
1− x

≤ 1

π

∫ 1

0

dx√
1− x

=
2

π

so supf∈F

∣∣∣ ∫ 1

0
f
∣∣∣ ≤ 2

π .

For the function g(x) =
1

π
√
x

we have

∫ x

0

g(t)dt√
x− t

=
1

π

∫ x

0

dt√
t(x− t)

= 1.

Define a sequence f1, f2, . . . of [0, 1]→ R functions as fn(x) =
1

π
√
x+ 1

n

. Then fn ∈ C[0, 1] and 0 < f ≤ g, so

fn ∈ F . As fn(x)→ g(x) pointwise, we have
∫ 1

0
fn →

∫ 1

0
g = 2

π .

Hence, supf∈F

∣∣∣ ∫ 1

0
f
∣∣∣ = 2

π . �


