The $23^{\rm rd}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $12^{\rm th}$ April 2013 Category II

Problem 1 Let S_n denote the sum of the first n prime numbers. Prove that for any n there exists the square of an integer between S_n and S_{n+1} .

Solution We have

$$\sqrt{x} < m < \sqrt{y} \Rightarrow x < m^2 < y,$$

so if $\sqrt{y} - \sqrt{x} > 1$, there is certainly a square between x and y. We have

$$\sqrt{y} - \sqrt{x} > 1 \Rightarrow y - x > 1 + 2\sqrt{x},$$

hence it suffices to prove

$$S_{n+1} - S_n > 1 + 2\sqrt{S_n}$$
.

For n = 1, 2, 3, 4 the assertion can be seen directly. For $n \ge 5$, we use

$$S_n < 1 + 3 + 5 + \ldots + p_n$$

where the sum contains all odd integers up to p_n . Their sum equals $1/4(1+p_n)^2$, so it follows that $2\sqrt{S_n} < 1+p_n$. As p_{n+2} is at least p_n+2 , we get $S_{n+1}-S_n>1+2\sqrt{S_n}$ as desired.

The $23^{\rm rd}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $12^{\rm th}$ April 2013 Category II

Problem 2 An *n*-dimensional cube is given. Consider all the segments connecting any two different vertices of the cube. How many distinct intersection points do these segments have (excluding the vertices)?

Solution We may think that every vertex of the cube has a view $(\varepsilon_1,\ldots,\varepsilon_n)$ where $\varepsilon_i\in\{0,1\}$ for $i=1,2,\ldots,n$. A cross-point of two segments has a view $(\alpha_1,\ldots,\alpha_n)$ where $\alpha_i\in\{0,\frac{1}{2},1\}$. For example, if A=(0,0,0,1,1), B=(1,0,0,0,1), C=(1,0,0,1,1), D=(0,0,0,0,1) then $AB\cap CD=(\frac{1}{2},0,0,\frac{1}{2},1)$. However a row containing less than 2 of $\frac{1}{2}$ may be not a cross-point. Therefore, there are exactly $3^n-2^n-n2^{n-1}$ of cross-points. \square

The $23^{\rm rd}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $12^{\rm th}$ April 2013 Category II

Problem 3 Prove that there is no polynomial P with integer coefficients such that $P(\sqrt[3]{5} + \sqrt[3]{25}) = 5 + \sqrt[3]{5}$. **Solution** First we prove two lemmas.

Lemma 1. There is no polynomial w(x) = ax + b with integer coefficients such that $w(\sqrt[3]{5} + \sqrt[3]{25}) = 5 + \sqrt[3]{5}$; **Proof** Assume on the contrary that such a polynomial w(x) = ax + b exists. Since $\sqrt[3]{5}$ and $\sqrt[3]{25}$ are irrational, it follows that $a \neq 0$ and $a \neq 1$. Furthermore, one has

$$a(\sqrt[3]{5} + \sqrt[3]{25}) + b = 5 + \sqrt[3]{5} \Longrightarrow (a-1)\sqrt[3]{5} + a\sqrt[3]{25} \in \mathbb{Q}$$

$$\Longrightarrow \left((a-1)\sqrt[3]{5} + a\sqrt[3]{25} \right)^2 \in \mathbb{Q} \Longrightarrow (a-1)^2\sqrt[3]{25} + 5a^2\sqrt[3]{5} \in \mathbb{Q}$$

$$\Longrightarrow \frac{5a^2}{(1-a)} \left((a-1)\sqrt[3]{5} + a\sqrt[3]{25} \right) + \left((a-1)^2\sqrt[3]{25} + 5a^2\sqrt[3]{5} \right) \in \mathbb{Q}$$

$$\Longrightarrow \left(\frac{(a-1)^3 - 5a^3}{(a-1)} \right) \sqrt[3]{25} \in \mathbb{Q} \Longrightarrow \sqrt[3]{25} \in \mathbb{Q},$$

which contradicts the fact that $\sqrt[3]{25} \in n\mathbb{Q}$, where \mathbb{Q} and $n\mathbb{Q}$ denote the set of rational and irrational numbers, respectively. This completes the proof of the lemma.

Lemma 2. There exists exactly one polynomial w(x) of degree two and rational coefficients such that $w(\sqrt[3]{5} + \sqrt[3]{25}) = 5 + \sqrt[3]{5}$;

Proof Consider a polynomial $w(x) = ax^2 + bx + c$, where $a, b, c \in \mathbb{Q}$. Then

$$w(\sqrt[3]{5} + \sqrt[3]{25}) = 5 + \sqrt[3]{5} \iff a(\sqrt[3]{5} + \sqrt[3]{25})^2 + b(\sqrt[3]{5} + \sqrt[3]{25}) + c = 5 + \sqrt[3]{5}$$

$$\iff \begin{cases} a+b &= 0 \\ 5a+b &= 1 \\ 10a+c &= 5 \end{cases} \iff \begin{cases} a &= 1/4 \\ b &= -1/4 \\ c &= 10/4 \end{cases}$$

This implies that there exists only one polynomial w(x) with the required properties, i.e.,

$$w(x) = \frac{1}{4}x^2 - \frac{1}{4}x + \frac{10}{4}$$
 and $w(\sqrt[3]{5} + \sqrt[3]{25}) = 5 + \sqrt[3]{5}$,

which completes the proof of the second lemma.

Now we are ready to solve the problem. Let $x_0 := \sqrt[3]{5} + \sqrt[3]{25}$. Then

$$x_0^3 = (\sqrt[3]{5} + \sqrt[3]{25})^3 = 5 + 3\sqrt[3]{5^4} + 3\sqrt[3]{5^5} + 25 = 30 + 15\sqrt[3]{5} + 15\sqrt[3]{5} = 15x_0 + 30.$$

We put $Q(x) := x^3 - 15x - 30$. Then $Q(x_0) = 0$. Assume on the contrary that such a polynomial P(x) exists. Then there exist two polynomials R(x) and w(x) with integer coefficients such that

$$P(x) = Q(x)R(x) + w(x),$$

where the degree $\deg w(x)$ of w(x) is less than or equal 2. Consequently we obtain

$$5 + \sqrt[3]{5} = P(\sqrt[3]{5} + \sqrt[3]{25}) = Q(\sqrt[3]{5} + \sqrt[3]{25})R(\sqrt[3]{5} + \sqrt[3]{25}) + w(\sqrt[3]{5} + \sqrt[3]{25}) = w(\sqrt[3]{5} + \sqrt[3]{25}).$$

From this it follows that there exists a polynomial w(x) of degree less than or equal 2 with integer coefficients such that

$$w(\sqrt[3]{5} + \sqrt[3]{25}) = 5 + \sqrt[3]{5},$$

a contradiction with Lemma 1 and Lemma 2. This completes the solution.

The 23rd Annual Vojtěch Jarník International Mathematical Competition Ostrava, 12th April 2013 Category II

Problem 4 Let \mathcal{F} be the set of all continuous functions $f:[0,1]\to\mathbb{R}$ with the property

$$\left| \int_0^x \frac{f(t)}{\sqrt{x-t}} \, \mathrm{d}t \right| \le 1 \quad \text{for all } x \in (0,1] \, .$$

Compute $\sup_{f \in \mathcal{F}} \left| \int_0^1 f(x) \, \mathrm{d}x \right|$.

Solution We will use the following lemma.

Lemma For every functions $f \in L_1[0,1]$,

$$\int_0^1 \left(\int_0^x \frac{f(t)dt}{\sqrt{x-t}} \right) \frac{dx}{\sqrt{1-x}} = \pi \int_0^1 f.$$

Proof Changing the order of integration then substituting $t = -1 + 2\frac{x-t}{1-t}$,

$$\begin{split} \int_0^1 \left(\int_0^x \frac{f(t) \mathrm{d}t}{\sqrt{x-t}} \right) \frac{\mathrm{d}x}{\sqrt{1-x}} &= \int_0^1 f(t) \left(\int_t^1 \frac{\mathrm{d}x}{\sqrt{(x-t)(1-x)}} \right) \mathrm{d}t \\ &= \int_0^1 f(t) \left(\int_{-1}^1 \frac{\mathrm{d}t}{\sqrt{(1+t)(1-t)}} \right) \mathrm{d}t = \pi \int_0^1 f. \end{split}$$

Now, by Lemma, for all $f \in \mathcal{F} \subset L_1[0,1]$ we have

$$\left| \int_0^1 f \right| \le \frac{1}{\pi} \int_0^1 \left| \int_0^x \frac{f(t) dt}{\sqrt{x - t}} \right| \frac{dx}{\sqrt{1 - x}} \le \frac{1}{\pi} \int_0^1 \frac{dx}{\sqrt{1 - x}} = \frac{2}{\pi}$$

so $\sup_{f \in \mathbb{F}} \left| \int_0^1 f \right| \le \frac{2}{\pi}$.

For the function $g(x) = \frac{1}{\pi \sqrt{x}}$ we have

$$\int_0^x \frac{g(t)dt}{\sqrt{x-t}} = \frac{1}{\pi} \int_0^x \frac{dt}{\sqrt{t(x-t)}} = 1.$$

Define a sequence f_1, f_2, \ldots of $[0,1] \to \mathbb{R}$ functions as $f_n(x) = \frac{1}{\pi \sqrt{x + \frac{1}{n}}}$. Then $f_n \in C[0,1]$ and $0 < f \le g$, so

 $f_n \in \mathcal{F}$. As $f_n(x) \to g(x)$ pointwise, we have $\int_0^1 f_n \to \int_0^1 g = \frac{2}{\pi}$. Hence, $\sup_{f \in \mathcal{F}} \left| \int_0^1 f \right| = \frac{2}{\pi}$.

Hence,
$$\sup_{f \in \mathcal{F}} \left| \int_0^1 f \right| = \frac{2}{\pi}$$
.