The $24^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2014
Category I

Problem 1 Find all complex numbers z such that $\left|z^{3}+2-2 i\right|+z \bar{z}|z|=2 \sqrt{2}$. (\bar{z} is the conjugate of z.)

Solution

$$
\sqrt{(-2)^{2}+2^{2}}=2 \sqrt{2}=\left|z^{3}+2-2 i\right|+z \bar{z}|z|=\left|z^{3}-(-2+2 i)\right|+\left|z^{3}\right|
$$

By the triangle inequality number z^{3} must be a point of the straight line segment with ends 0 and $-2+2 i=$ $(1+i)^{3}$, so z must be a point of the union of the three straight line segments with the common end 0 and the remaining end equal to either $1+i$ or

$$
(1+i)\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=\frac{1}{2}(-1-\sqrt{3}+i(\sqrt{3}-1))
$$

or

$$
(1+i)\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)=\frac{1}{2}(-1+\sqrt{3}-i(\sqrt{3}+1))
$$

Second solution

Since $z \bar{z}=|z|^{2}=\left|z^{2}\right|$ the equation may be rewritten as $\left|z^{3}+2-2 i\right|+\left|z^{3}\right|=2 \sqrt{2}$. Let $z^{3}=x+y i$ where $x, y \in \mathbb{R}$. The equation is equivalent to

$$
\begin{equation*}
\sqrt{(x+2)^{2}+(y-2)^{2}}+\sqrt{x^{2}+y^{2}}=2 \sqrt{2} \tag{1}
\end{equation*}
$$

Therefore

$$
(x+2)^{2}+(y-2)^{2}=8-4 \sqrt{2} \sqrt{x^{2}+y^{2}}+x^{2}+y^{2}
$$

so $x-y=\sqrt{2} \sqrt{x^{2}+y^{2}}$ and $(x+y)^{2}=0$, i.e. $y=-x$. Therefore the equation 1 takes the form

$$
\begin{equation*}
\sqrt{(x+2)^{2}+(-x-2)^{2}}+\sqrt{x^{2}+(-x)^{2}}=2 \sqrt{2} \tag{2}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
|x+2|+|x|=2 \tag{3}
\end{equation*}
$$

Therefore $-2 \leq x \leq 0$. This means that $z^{3}=x-x i$ for some $x \in[-2,0]$, i.e. $z^{3}=r\left(\cos 135^{\circ}+i \sin 135^{\circ}\right)$ for some $r \in[0,2 \sqrt{2}]$. Therefore $z=\varrho\left(\cos \left(45^{\circ}+n \cdot 120^{\circ}\right)+i \sin \left(45^{\circ}+n \cdot 120^{\circ}\right)\right)$ with $n \in\{0,1,2\}$ and $0 \leq \varrho \leq \sqrt{2}$.

The $24^{\text {th }}$ Annual Vojtěch Jarník International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2014
Category I

Problem 2 We have a deck of $2 n$ cards. Each shuffing changes the order from $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ to $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{n}$. Determine all even numbers $2 n$ such that after shuffling the deck 8 times the original order is restored.
Solution Note that the cards a_{1} and b_{n} always stay on the top/bottom of the deck respectively. From now on we will ignore the card b_{n}. Let us number the positions of the cards: $f\left(a_{i}\right)=i-1, f\left(b_{i}\right)=n+i-1$. Note that the shuffle will put the card with position i to position $2 i$ for every $i<n$, or to $2 i-(2 n-1)$ for every $n \leq i$.

This shows that the shuffling works like the mapping

$$
\varphi: \mathbb{Z}_{2 n-1} \rightarrow \mathbb{Z}_{2 n-1}, \quad k \mapsto 2 k
$$

Shuffling 8 times will map each k to $256 k$. So we can reformulate the question:
For what numbers $2 n$ will the following congruence hold for every $k \in \mathbb{Z}_{2 n-1}$:

$$
k \equiv 256 k \quad(\bmod 2 n-1)
$$

It is easy to see that this congruence holds iff it is true for $k=1$:

$$
1 \equiv 256 \quad(\bmod 2 n-1)
$$

Which holds iff $2 n-1 \mid 255$. So the set we are looking for is: $\{2,4,6,16,18,52,86,256\}$.

Problem 3 Let $n \geq 2$ be an integer and let $x>0$ be a real number. Prove that

$$
(1-\sqrt{\tanh x})^{n}+\sqrt{\tanh (n x)}<1
$$

Recall that $\tanh t=\frac{\mathrm{e}^{2 t}-1}{\mathrm{e}^{2 t}+1}$.
Solution We will prove that for all real numbers $x, y>0$

$$
\begin{equation*}
(1-\sqrt{\tanh x})(1-\sqrt{\tanh y})<1-\sqrt{\tanh (x+y)} \tag{1}
\end{equation*}
$$

Since

$$
\tanh x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}=\frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}+1} \quad \text { and } \quad \tanh (x+y)=\frac{\sinh x \cosh y+\sinh y \cosh x}{\cosh x \cosh y+\sinh x \sinh y}=\frac{\tanh x+\tanh y}{1+\tanh x \tanh y}
$$

the inequality (1) is equivalent to

$$
\begin{equation*}
(1-u)(1-v)<1-\sqrt{\frac{u^{2}+v^{2}}{1+u^{2} v^{2}}} \quad \text { for } 0<u, v<1 \tag{2}
\end{equation*}
$$

via the substitutions $u:=\sqrt{\tanh x}$ and $v:=\sqrt{\tanh y}$. The inequality (2) can be shown as follows:

$$
\begin{aligned}
& (1-u)(1-v)>0 \\
\Longrightarrow & 2(1+u v)>(1+u)(1+v) \\
\Longrightarrow & 2 u v>\frac{(1+u)(1+v) u v}{1+u v}=(1+u)(1+v)-\frac{(1+u)(1+v)}{1+u v} \\
\Longrightarrow & \frac{(1+u)(1+v)}{1+u^{2} v^{2}}>\frac{(1+u)(1+v)}{1+u v}>(1+u)(1+v)-2 u v=2-(1-u)(1-v) \\
\Longrightarrow & \frac{\left(1-u^{2}\right)\left(1-v^{2}\right)}{1+u^{2} v^{2}}>2(1-u)(1-v)-(1-u)^{2}(1-v)^{2}=1-(1-(1-u)(1-v))^{2} \\
\Longrightarrow & \sqrt{\frac{u^{2}+v^{2}}{1+u^{2} v^{2}}}=\sqrt{1-\frac{\left(1-u^{2}\right)\left(1-v^{2}\right)}{1+u^{2} v^{2}}}<|1-(1-u)(1-v)|=1-(1-u)(1-v) \\
\Longrightarrow & (1-u)(1-v)<1-\sqrt{\frac{u^{2}+v^{2}}{1+u^{2} v^{2}}} .
\end{aligned}
$$

Thus we have shown (1) and from this the assertion follows by induction: Take $y=x$ for the case $n=2$ and $y=n x$ for the inductive step $n \rightarrow n+1$.

The $24^{\text {th }}$ Annual Vojtěch Jarník International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2014 Category I

Problem 4 Let $P_{1}, P_{2}, P_{3}, P_{4}$ be the graphs of four quadratic polynomials drawn in the coordinate plane. Suppose that P_{1} is tangent to P_{2} at the point q_{2}, P_{2} is tangent to P_{3} at the point q_{3}, P_{3} is tangent to P_{4} at the point q_{4}, and P_{4} is tangent to P_{1} at the point q_{1}. Assume that all the points $q_{1}, q_{2}, q_{3}, q_{4}$ have distinct x-coordinates. Prove that $q_{1}, q_{2}, q_{3}, q_{4}$ lie on a graph of an at most quadratic polynomial.
Solution We may subtract a quadratic trinomial from all the given trinomials so that the points q_{1}, q_{2}, q_{3} get to the $0 x$ axis. After this the trinomials remain trinomials, possibly degenerate, and the tangency is not affected. Let q_{4}^{\prime} be the point of intersection of P_{3} and $0 x$ distinct from q_{3}; and let $q_{4}^{\prime \prime}$ be the intersection of P_{4} and $0 x$ distinct from q_{1}. If q_{4}^{\prime} and $q_{4}^{\prime \prime}$ coincide then they also coincide with q_{4} and the assertion follows.

Assume not. Every parabola (graph of a quadratic trinomial) that intersects the $0 x$ axis twice, intersects it at the same angles. Having applied this to all the four parabolas in the circular order, we obtain that P_{3} in q_{4}^{\prime} and P_{4} in $q_{4}^{\prime \prime} \neq q_{4}^{\prime}$ have the same slopes. But they also touch each other in the point q_{4}; therefore they are homothetic with respect to the point q_{4}. This homothety takes q_{4}^{\prime} into $q_{4}^{\prime \prime}$, because the slope is preserved under the homothety and the point on a parabola is defined uniquely by its slope. Hence q_{4} must also lie on the $0 x$ axis, this is what we need to prove. The argument with homothety fails in one of the parabolas P_{3} or P_{4} degenerate to a straight line; but in this case the point q_{4} also must be on $0 x$ evidently.

