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Problem 1 Find all complex numbers z such that |z3 + 2− 2i|+ zz̄|z| = 2
√

2 . (z̄ is the conjugate of z.)

Solution √
(−2)2 + 22 = 2

√
2 = |z3 + 2− 2i|+ zz̄|z| = |z3 − (−2 + 2i)|+ |z3| .

By the triangle inequality number z3 must be a point of the straight line segment with ends 0 and −2 + 2i =
(1 + i)3, so z must be a point of the union of the three straight line segments with the common end 0 and the
remaining end equal to either 1 + i or

(1 + i)

(
−1

2
+

√
3

2
i

)
=

1

2

(
−1−

√
3 + i(

√
3− 1)

)
or

(1 + i)

(
−1

2
−
√

3

2
i

)
=

1

2

(
−1 +

√
3− i(

√
3 + 1)

)
.
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Second solution
Since zz̄ = |z|2 = |z2| the equation may be rewritten as |z3 + 2 − 2i| + |z3| = 2

√
2. Let z3 = x + yi where

x, y ∈ R. The equation is equivalent to√
(x+ 2)2 + (y − 2)2 +

√
x2 + y2 = 2

√
2. (1)

Therefore
(x+ 2)2 + (y − 2)2 = 8− 4

√
2
√
x2 + y2 + x2 + y2 ,

so x− y =
√

2
√
x2 + y2 and (x+ y)2 = 0, i.e. y = −x. Therefore the equation 1 takes the form√

(x+ 2)2 + (−x− 2)2 +
√
x2 + (−x)2 = 2

√
2 (2)

which is equivalent to
|x+ 2|+ |x| = 2. (3)

Therefore −2 ≤ x ≤ 0. This means that z3 = x − xi for some x ∈ [−2, 0], i.e. z3 = r(cos 135◦ + i sin 135◦)
for some r ∈

[
0, 2
√

2
]
. Therefore z = % (cos(45◦ + n · 120◦) + i sin(45◦ + n · 120◦)) with n ∈ {0, 1, 2} and

0 ≤ % ≤
√

2.
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Problem 2 We have a deck of 2n cards. Each shuffling changes the order from a1, a2, . . . , an, b1, b2, . . . , bn to
a1, b1, a2, b2, . . . , an, bn. Determine all even numbers 2n such that after shuffling the deck 8 times the original
order is restored.

Solution Note that the cards a1 and bn always stay on the top/bottom of the deck respectively. From now on
we will ignore the card bn. Let us number the positions of the cards: f(ai) = i− 1, f(bi) = n+ i− 1. Note that
the shuffle will put the card with position i to position 2i for every i < n, or to 2i− (2n− 1) for every n ≤ i.

This shows that the shuffling works like the mapping

ϕ : Z2n−1 → Z2n−1, k 7→ 2k.

Shuffling 8 times will map each k to 256k. So we can reformulate the question:
For what numbers 2n will the following congruence hold for every k ∈ Z2n−1:

k ≡ 256k (mod 2n− 1)

It is easy to see that this congruence holds iff it is true for k = 1:

1 ≡ 256 (mod 2n− 1)

Which holds iff 2n− 1 | 255. So the set we are looking for is: {2, 4, 6, 16, 18, 52, 86, 256}.
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Problem 3 Let n ≥ 2 be an integer and let x > 0 be a real number. Prove that(
1−

√
tanhx

)n
+
√

tanh (nx) < 1 .

Recall that tanh t =
e2t − 1

e2t + 1
.

Solution We will prove that for all real numbers x, y > 0(
1−
√

tanhx
)(

1−
√

tanh y
)
< 1−

√
tanh(x+ y). (1)

Since

tanhx =
ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
and tanh(x+ y) =

sinhx cosh y + sinh y coshx

coshx cosh y + sinhx sinh y
=

tanhx+ tanh y

1 + tanhx tanh y

the inequality (1) is equivalent to

(1− u) (1− v) < 1−
√

u2 + v2

1 + u2v2
for 0 < u, v < 1 (2)

via the substitutions u :=
√

tanhx and v :=
√

tanh y. The inequality (2) can be shown as follows:

(1− u)(1− v) > 0

=⇒ 2(1 + uv) > (1 + u)(1 + v)

=⇒ 2uv >
(1 + u)(1 + v)uv

1 + uv
= (1 + u)(1 + v)− (1 + u)(1 + v)

1 + uv

=⇒ (1 + u)(1 + v)

1 + u2v2
>

(1 + u)(1 + v)

1 + uv
> (1 + u)(1 + v)− 2uv = 2− (1− u)(1− v)

=⇒ (1− u2)(1− v2)

1 + u2v2
> 2(1− u)(1− v)− (1− u)2(1− v)2 = 1− (1− (1− u)(1− v))2

=⇒
√

u2 + v2

1 + u2v2
=

√
1− (1− u2)(1− v2)

1 + u2v2
< |1− (1− u)(1− v)| = 1− (1− u)(1− v)

=⇒ (1− u)(1− v) < 1−
√

u2 + v2

1 + u2v2
.

Thus we have shown (1) and from this the assertion follows by induction: Take y = x for the case n = 2 and
y = nx for the inductive step n→ n+ 1. �
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Problem 4 Let P1, P2, P3, P4 be the graphs of four quadratic polynomials drawn in the coordinate plane.
Suppose that P1 is tangent to P2 at the point q2, P2 is tangent to P3 at the point q3, P3 is tangent to P4 at
the point q4, and P4 is tangent to P1 at the point q1. Assume that all the points q1, q2, q3, q4 have distinct
x-coordinates. Prove that q1, q2, q3, q4 lie on a graph of an at most quadratic polynomial.

Solution We may subtract a quadratic trinomial from all the given trinomials so that the points q1, q2, q3
get to the 0x axis. After this the trinomials remain trinomials, possibly degenerate, and the tangency is not
affected. Let q′4 be the point of intersection of P3 and 0x distinct from q3; and let q′′4 be the intersection of P4

and 0x distinct from q1. If q′4 and q′′4 coincide then they also coincide with q4 and the assertion follows.
Assume not. Every parabola (graph of a quadratic trinomial) that intersects the 0x axis twice, intersects

it at the same angles. Having applied this to all the four parabolas in the circular order, we obtain that P3

in q′4 and P4 in q′′4 6= q′4 have the same slopes. But they also touch each other in the point q4; therefore they
are homothetic with respect to the point q4. This homothety takes q′4 into q′′4 , because the slope is preserved
under the homothety and the point on a parabola is defined uniquely by its slope. Hence q4 must also lie on
the 0x axis, this is what we need to prove. The argument with homothety fails in one of the parabolas P3 or
P4 degenerate to a straight line; but in this case the point q4 also must be on 0x evidently. �


