The $24^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2014
Category II

Problem 1 Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function. Assume that

$$
\lim _{x \rightarrow \infty}\left(f(x)+\frac{f^{\prime}(x)}{x}\right)=0
$$

Prove that

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

Solution Assume that

$$
\lim _{x \rightarrow \infty}\left(f(x)+\frac{f^{\prime}(x)}{x}\right)=0
$$

Fix $\varepsilon>0$. Then there exists $x_{0}>a$ such that

$$
\left|f(x)+\frac{f^{\prime}(x)}{x}\right|<\frac{\varepsilon}{2}
$$

for all $x \geqslant x_{0}$. Take $x>x_{0}$ and define two functions $g, h:\left[x_{0}, x\right] \rightarrow \mathbb{R}$ by

$$
g(x)=\mathrm{e}^{\frac{x^{2}}{2}} f(x) \text { and } h(x)=\mathrm{e}^{\frac{x^{2}}{2}}
$$

Now by applying Cauchy's mean value theorem we get

$$
\frac{g(x)-g\left(x_{0}\right)}{h(x)-h\left(x_{0}\right)}=\frac{g^{\prime}(\eta)}{h^{\prime}(\eta)}=f(\eta)+\frac{f^{\prime}(\eta)}{\eta}
$$

where $\eta \in\left(x_{0}, x\right)$. Hence

$$
\left|f(x)-f\left(x_{0}\right) \mathrm{e}^{\frac{1}{2}\left(x_{0}^{2}-x^{2}\right)}\right|=\left|f(\eta)+\frac{f^{\prime}(\eta)}{\eta}\right| \cdot\left|1-\mathrm{e}^{\frac{1}{2}\left(x_{0}^{2}-x^{2}\right)}\right|
$$

Consequently, for all $x>x_{0}$ one has

$$
|f(x)|<\left|f\left(x_{0}\right) \mathrm{e}^{\frac{1}{2}\left(x_{0}^{2}-x^{2}\right)}\right|+\frac{\varepsilon}{2}\left|1-\mathrm{e}^{\frac{1}{2}\left(x_{0}^{2}-x^{2}\right)}\right|<\left|f\left(x_{0}\right)\right| \mathrm{e}^{\frac{1}{2}\left(x_{0}^{2}-x^{2}\right)}+\frac{\varepsilon}{2}
$$

Since $\lim _{x \rightarrow \infty} \mathrm{e}^{\frac{1}{2}\left(x_{0}^{2}-x^{2}\right)}=0$, there exists $\widetilde{x} \geqslant x_{0}$ such that

$$
\left|f\left(x_{0}\right)\right| \mathrm{e}^{\frac{1}{2}\left(x_{0}^{2}-x^{2}\right)}<\frac{\varepsilon}{2}
$$

for all $x \geqslant \tilde{x}$. Finally, taking into account the above considerations, we infer that

$$
|f(x)|<\varepsilon
$$

for all $x \geqslant \tilde{x}$, which implies the desired conclusion.

The $24^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2014
Category II

Problem 2 Let p be a prime number and let A be a subgroup of the multiplicative group \mathbb{F}_{p}^{*} of the finite field \mathbb{F}_{p} with p elements. Prove that if the order of A is a multiple of 6 , then there exist $x, y, z \in A$ satisfying $x+y=z$.
Solution Obviously the existence of $x, y, z \in A$ with $x+y=z$ is equivalent to the existence of $x^{\prime}, y^{\prime} \in A$ with $x^{\prime}+y^{\prime}=1$ (just divide by z). First observe that A is cyclic, so $6 \mid d$ implies the existence of some $a \in A$ of order 6 , hence $a^{6}=1$. This yields $a^{3}=-1$, so that we obtain

$$
a+a^{3}+a^{5}=a\left(1+a^{2}+a^{4}\right)=a \frac{1-a^{6}}{1-a^{2}}=0
$$

from which we conclude

$$
a+a^{5}=-a^{3}=1 .
$$

Setting $x^{\prime}:=a, y^{\prime}:=a^{5}$ gives the desired equality.

The $24^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2014
Category II

Problem 3 Let k be a positive even integer. Show that

$$
\sum_{n=0}^{k / 2}(-1)^{n}\binom{k+2}{n}\binom{2(k-n)+1}{k+1}=\frac{(k+1)(k+2)}{2}
$$

Solution

Lemma For any positive integer k and $-1<x<1$ the following formula holds

$$
\left(\frac{1}{1-x}\right)^{k}=\sum_{n=0}^{\infty}\binom{k+n-1}{k-1} x^{n}
$$

Proof For $k=1$ we have

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty}\binom{n}{0} x^{n}
$$

Assume inductively that

$$
\left(\frac{1}{1-x}\right)^{k}=\sum_{n=0}^{\infty}\binom{k+n-1}{k-1} x^{n} .
$$

Then for $k+1$, by using the Cauchy product for two infinite series, we obtain

$$
\left(\frac{1}{1-x}\right)^{k+1}=\left(\frac{1}{1-x}\right)^{k}\left(\frac{1}{1-x}\right)=\left(\sum_{n=0}^{\infty}\binom{k+n-1}{k-1} x^{n}\right)\left(\sum_{n=0}^{\infty} x^{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n}\binom{k+m-1}{k-1} x^{n}\right)
$$

But, by using once again the induction principle, one can prove that

$$
\sum_{m=0}^{n}\binom{k+m-1}{k-1}=\binom{k+n}{k}
$$

Finally, we obtain that

$$
\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n}\binom{k+m-1}{k-1} x^{n}\right)=\sum_{n=0}^{\infty}\binom{k+n}{k} x^{n}
$$

which completes the proof of the lemma.
Observe that

$$
(1-x)^{k+2}=\frac{\left(1-x^{2}\right)^{k+2}}{(1+x)^{k+2}}=\left(1-x^{2}\right)^{k+2} \frac{1}{(1+x)^{k+2}},
$$

for $-1<x<1$. On the other hand,

$$
\begin{aligned}
& (1-x)^{k+2}=\sum_{n=0}^{k+2}(-1)^{n}\binom{k+2}{n} x^{n}, \\
& \left(1-x^{2}\right)^{k+2} \frac{1}{(1+x)^{k+2}}=\left(\sum_{n=0}^{k+2}\binom{k+2}{n}(-1)^{n} x^{2 n}\right)\left(\sum_{n=0}^{\infty}\binom{k+n+1}{k+1}(-1)^{n} x^{n}\right) .
\end{aligned}
$$

Consequently, by comparing the corresponding coefficients of x^{k} in the above equalities we obtain the following equation:

$$
(-1)^{k}\binom{k+2}{k}=\sum_{n=0}^{k / 2}\binom{k+2}{n}(-1)^{n}\binom{k+(k-2 n)+1}{k+1}(-1)^{k-2 n}
$$

which implies the desired equality:

$$
\sum_{n=0}^{k / 2}(-1)^{n}\binom{k+2}{n}\binom{2(k-n)+1}{k+1}=\binom{k+2}{k}
$$

Ostrava, $4^{\text {th }}$ April 2014
Category II

Problem 4 Let $0<a<b$ and let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function with $\int_{a}^{b} f(t) \mathrm{d} t=0$. Show that

$$
\int_{a}^{b} \int_{a}^{b} f(x) f(y) \ln (x+y) \mathrm{d} x \mathrm{~d} y \leq 0
$$

Solution

Lemma (well-known)

$$
\int_{0}^{\infty} \frac{e^{-t}-e^{-K t}}{t} \mathrm{~d} t=\log K
$$

for every $K>0$.
Proof Let

$$
h(K)=\int_{0}^{\infty} \frac{e^{-t}-e^{-K t}}{t} \mathrm{~d} t
$$

From $h(1)=0$ and $h^{\prime}(K)=\int_{0}^{\infty} e^{-K t} \mathrm{~d} t=\frac{1}{K}$ we get

$$
h(K)=\int_{1}^{K} \frac{\mathrm{~d} k}{k}=\log K
$$

To prove the problem statement, take the sum of the identities

$$
\int_{a}^{b} \int_{a}^{b} f(x) f(y)\left(\int_{0}^{\infty} \frac{e^{-t}-e^{-(x+y) t}}{t} \mathrm{~d} t\right) \mathrm{d} x \mathrm{~d} y=\int_{a}^{b} \int_{a}^{b} f(x) f(y) \log (x+y) \mathrm{d} x \mathrm{~d} y
$$

$\int_{a}^{b} \int_{a}^{b} f(x) f(y)\left(\int_{0}^{\infty} \frac{-e^{-t}+e^{-\left(x+\frac{1}{2}\right) t}}{t} \mathrm{~d} t\right) \mathrm{d} x \mathrm{~d} y=\int_{a}^{b} \int_{0}^{\infty} f(x) \frac{-e^{-t}+e^{-\left(x+\frac{1}{2}\right) t}}{t} \mathrm{~d} t \mathrm{~d} x \cdot \int_{a}^{b} f(y) \mathrm{d} y=0 \quad$ and $\int_{a}^{b} \int_{a}^{b} f(x) f(y)\left(\int_{0}^{\infty} \frac{-e^{-t}+e^{-\left(y+\frac{1}{2}\right) t}}{t} \mathrm{~d} t\right) \mathrm{d} x \mathrm{~d} y=\int_{a}^{b} \int_{0}^{\infty} f(y) \frac{-e^{-t}+e^{-\left(y+\frac{1}{2}\right) t}}{t} \mathrm{~d} t \mathrm{~d} x \cdot \int_{a}^{b} f(x) \mathrm{d} x=0$.

As can be seen,

$$
\begin{aligned}
\int_{a}^{b} \int_{a}^{b} f(x) f(y) \log (x+y) \mathrm{d} x \mathrm{~d} y & =\int_{a}^{b} \int_{a}^{b} f(x) f(y)\left(\int_{0}^{\infty} \frac{-e^{-t}+e^{-\left(x+\frac{1}{2}\right) t}+e^{-\left(y+\frac{1}{2}\right) t}-e^{-(x+y) t}}{t} \mathrm{~d} t\right) \mathrm{d} x \mathrm{~d} y \\
& =-\int_{0}^{\infty} \int_{a}^{b} \int_{a}^{b} f(x) f(y) \frac{\left(e^{-\frac{1}{2} t}-e^{-x t}\right)\left(e^{-\frac{1}{2} t}-e^{-y t}\right)}{t} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t \\
& =-\int_{0}^{\infty}\left(\int_{a}^{b} f(x)\left(e^{-\frac{1}{2} t}-e^{-x t}\right) \mathrm{d} x\right)^{2} \frac{\mathrm{~d} t}{t} \leq 0
\end{aligned}
$$

