Problem 11777
(American Mathematical Monthly, Vol.121, May 2014)

Proposed by M. Dinca (Romania).

Let n > 3 and let x4,...,x, be real numbers such that HZZI xy = 1. Prove that
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Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universita di Roma “Tor
Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Remark: the inequality does not hold for n = 1 and n = 2 (for example take 1 = 29 = 1).

If z1,..., 2, and w1, ..., w, are complex numbers then, by the Lagrange’s identity,
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Let wy = ¢, € RT and let z;, = ¢y with 4 € C, then the above inequality implies
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where the second inequality holds for n > 3 with ¢,411 = ¢; and Y41 = y1.

By assuming that y1,...,y, are distinct and letting ¢, = 1/|yr — yr+1| > 0, we obtain
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Finally, let yx11/yx = €2™/"/xy # 1, then 1 = [[}_; (yrt+1/yr) = (e2™/™)" /([To—, zx), and we get
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